This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/modifiers/intern/MOD_laplaciandeform.c
Sergey Sharybin 8fb0b9aebb Subdiv: Enable topology cache in edit mode
The general idea of this change is to have a runtime data pointer
in the ModifierData, so it can be preserved through copy-on-write
updates by the dependency graph.

This is where subdivision surface modifier can store its topology
cache, so it is not getting trashed on every copy-on-write which
is happening when moving a vertex.

Similar mechanism should be used by multiresolution, dynamic paint
and some other modifiers which cache evaluated data.

This fixes T61746.

Thing to keep in mind, that there are more reports about slow
subdivision surface in the tracker, but that boils down to the
fact that those have a lot of extraordinary vertices, and hence
a lot slower to evaluated topology.
Other thing is, this speeds up oeprations which doesn't change
topology (i.e. moving vertices).

Reviewers: brecht

Reviewed By: brecht

Maniphest Tasks: T61746

Differential Revision: https://developer.blender.org/D4541
2019-03-18 17:11:43 +01:00

798 lines
25 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2013 by the Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup modifiers
*/
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_utildefines_stack.h"
#include "MEM_guardedalloc.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_library.h"
#include "BKE_mesh_mapping.h"
#include "BKE_mesh_runtime.h"
#include "BKE_particle.h"
#include "MOD_util.h"
#include "eigen_capi.h"
enum {
LAPDEFORM_SYSTEM_NOT_CHANGE = 0,
LAPDEFORM_SYSTEM_IS_DIFFERENT,
LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS,
LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP,
LAPDEFORM_SYSTEM_ONLY_CHANGE_MESH,
LAPDEFORM_SYSTEM_CHANGE_VERTEXES,
LAPDEFORM_SYSTEM_CHANGE_EDGES,
LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP,
};
typedef struct LaplacianSystem {
bool is_matrix_computed;
bool has_solution;
int total_verts;
int total_edges;
int total_tris;
int total_anchors;
int repeat;
char anchor_grp_name[64]; /* Vertex Group name */
float (*co)[3]; /* Original vertex coordinates */
float (*no)[3]; /* Original vertex normal */
float (*delta)[3]; /* Differential Coordinates */
unsigned int (*tris)[3]; /* Copy of MLoopTri (tessellation triangle) v1-v3 */
int *index_anchors; /* Static vertex index list */
int *unit_verts; /* Unit vectors of projected edges onto the plane orthogonal to n */
int *ringf_indices; /* Indices of faces per vertex */
int *ringv_indices; /* Indices of neighbors(vertex) per vertex */
LinearSolver *context; /* System for solve general implicit rotations */
MeshElemMap *ringf_map; /* Map of faces per vertex */
MeshElemMap *ringv_map; /* Map of vertex per vertex */
} LaplacianSystem;
static LaplacianSystem *newLaplacianSystem(void)
{
LaplacianSystem *sys;
sys = MEM_callocN(sizeof(LaplacianSystem), "DeformCache");
sys->is_matrix_computed = false;
sys->has_solution = false;
sys->total_verts = 0;
sys->total_edges = 0;
sys->total_anchors = 0;
sys->total_tris = 0;
sys->repeat = 1;
sys->anchor_grp_name[0] = '\0';
return sys;
}
static LaplacianSystem *initLaplacianSystem(
int totalVerts, int totalEdges, int totalTris, int totalAnchors,
const char defgrpName[64], int iterations)
{
LaplacianSystem *sys = newLaplacianSystem();
sys->is_matrix_computed = false;
sys->has_solution = false;
sys->total_verts = totalVerts;
sys->total_edges = totalEdges;
sys->total_tris = totalTris;
sys->total_anchors = totalAnchors;
sys->repeat = iterations;
BLI_strncpy(sys->anchor_grp_name, defgrpName, sizeof(sys->anchor_grp_name));
sys->co = MEM_malloc_arrayN(totalVerts, sizeof(float[3]), "DeformCoordinates");
sys->no = MEM_calloc_arrayN(totalVerts, sizeof(float[3]), "DeformNormals");
sys->delta = MEM_calloc_arrayN(totalVerts, sizeof(float[3]), "DeformDeltas");
sys->tris = MEM_malloc_arrayN(totalTris, sizeof(int[3]), "DeformFaces");
sys->index_anchors = MEM_malloc_arrayN((totalAnchors), sizeof(int), "DeformAnchors");
sys->unit_verts = MEM_calloc_arrayN(totalVerts, sizeof(int), "DeformUnitVerts");
return sys;
}
static void deleteLaplacianSystem(LaplacianSystem *sys)
{
MEM_SAFE_FREE(sys->co);
MEM_SAFE_FREE(sys->no);
MEM_SAFE_FREE(sys->delta);
MEM_SAFE_FREE(sys->tris);
MEM_SAFE_FREE(sys->index_anchors);
MEM_SAFE_FREE(sys->unit_verts);
MEM_SAFE_FREE(sys->ringf_indices);
MEM_SAFE_FREE(sys->ringv_indices);
MEM_SAFE_FREE(sys->ringf_map);
MEM_SAFE_FREE(sys->ringv_map);
if (sys->context) {
EIG_linear_solver_delete(sys->context);
}
MEM_SAFE_FREE(sys);
}
static void createFaceRingMap(
const int mvert_tot, const MLoopTri *mlooptri, const int mtri_tot,
const MLoop *mloop, MeshElemMap **r_map, int **r_indices)
{
int i, j, totalr = 0;
int *indices, *index_iter;
MeshElemMap *map = MEM_calloc_arrayN(mvert_tot, sizeof(MeshElemMap), "DeformRingMap");
const MLoopTri *mlt;
for (i = 0, mlt = mlooptri; i < mtri_tot; i++, mlt++) {
for (j = 0; j < 3; j++) {
const unsigned int v_index = mloop[mlt->tri[j]].v;
map[v_index].count++;
totalr++;
}
}
indices = MEM_calloc_arrayN(totalr, sizeof(int), "DeformRingIndex");
index_iter = indices;
for (i = 0; i < mvert_tot; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
map[i].count = 0;
}
for (i = 0, mlt = mlooptri; i < mtri_tot; i++, mlt++) {
for (j = 0; j < 3; j++) {
const unsigned int v_index = mloop[mlt->tri[j]].v;
map[v_index].indices[map[v_index].count] = i;
map[v_index].count++;
}
}
*r_map = map;
*r_indices = indices;
}
static void createVertRingMap(
const int mvert_tot, const MEdge *medge, const int medge_tot,
MeshElemMap **r_map, int **r_indices)
{
MeshElemMap *map = MEM_calloc_arrayN(mvert_tot, sizeof(MeshElemMap), "DeformNeighborsMap");
int i, vid[2], totalr = 0;
int *indices, *index_iter;
const MEdge *me;
for (i = 0, me = medge; i < medge_tot; i++, me++) {
vid[0] = me->v1;
vid[1] = me->v2;
map[vid[0]].count++;
map[vid[1]].count++;
totalr += 2;
}
indices = MEM_calloc_arrayN(totalr, sizeof(int), "DeformNeighborsIndex");
index_iter = indices;
for (i = 0; i < mvert_tot; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
map[i].count = 0;
}
for (i = 0, me = medge; i < medge_tot; i++, me++) {
vid[0] = me->v1;
vid[1] = me->v2;
map[vid[0]].indices[map[vid[0]].count] = vid[1];
map[vid[0]].count++;
map[vid[1]].indices[map[vid[1]].count] = vid[0];
map[vid[1]].count++;
}
*r_map = map;
*r_indices = indices;
}
/**
* This method computes the Laplacian Matrix and Differential Coordinates for all vertex in the mesh.
* The Linear system is LV = d
* Where L is Laplacian Matrix, V as the vertices in Mesh, d is the differential coordinates
* The Laplacian Matrix is computes as a
* Lij = sum(Wij) (if i == j)
* Lij = Wij (if i != j)
* Wij is weight between vertex Vi and vertex Vj, we use cotangent weight
*
* The Differential Coordinate is computes as a
* di = Vi * sum(Wij) - sum(Wij * Vj)
* Where :
* di is the Differential Coordinate i
* sum (Wij) is the sum of all weights between vertex Vi and its vertices neighbors (Vj)
* sum (Wij * Vj) is the sum of the product between vertex neighbor Vj and weight Wij for all neighborhood.
*
* This Laplacian Matrix is described in the paper:
* Desbrun M. et.al, Implicit fairing of irregular meshes using diffusion and curvature flow, SIGGRAPH '99, pag 317-324,
* New York, USA
*
* The computation of Laplace Beltrami operator on Hybrid Triangle/Quad Meshes is described in the paper:
* Pinzon A., Romero E., Shape Inflation With an Adapted Laplacian Operator For Hybrid Quad/Triangle Meshes,
* Conference on Graphics Patterns and Images, SIBGRAPI, 2013
*
* The computation of Differential Coordinates is described in the paper:
* Sorkine, O. Laplacian Surface Editing. Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing,
* 2004. p. 179-188.
*/
static void initLaplacianMatrix(LaplacianSystem *sys)
{
float no[3];
float w2, w3;
int i = 3, j, ti;
int idv[3];
for (ti = 0; ti < sys->total_tris; ti++) {
const unsigned int *vidt = sys->tris[ti];
const float *co[3];
co[0] = sys->co[vidt[0]];
co[1] = sys->co[vidt[1]];
co[2] = sys->co[vidt[2]];
normal_tri_v3(no, UNPACK3(co));
add_v3_v3(sys->no[vidt[0]], no);
add_v3_v3(sys->no[vidt[1]], no);
add_v3_v3(sys->no[vidt[2]], no);
for (j = 0; j < 3; j++) {
const float *v1, *v2, *v3;
idv[0] = vidt[j];
idv[1] = vidt[(j + 1) % i];
idv[2] = vidt[(j + 2) % i];
v1 = sys->co[idv[0]];
v2 = sys->co[idv[1]];
v3 = sys->co[idv[2]];
w2 = cotangent_tri_weight_v3(v3, v1, v2);
w3 = cotangent_tri_weight_v3(v2, v3, v1);
sys->delta[idv[0]][0] += v1[0] * (w2 + w3);
sys->delta[idv[0]][1] += v1[1] * (w2 + w3);
sys->delta[idv[0]][2] += v1[2] * (w2 + w3);
sys->delta[idv[0]][0] -= v2[0] * w2;
sys->delta[idv[0]][1] -= v2[1] * w2;
sys->delta[idv[0]][2] -= v2[2] * w2;
sys->delta[idv[0]][0] -= v3[0] * w3;
sys->delta[idv[0]][1] -= v3[1] * w3;
sys->delta[idv[0]][2] -= v3[2] * w3;
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[1], -w2);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[2], -w3);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[0], w2 + w3);
}
}
}
static void computeImplictRotations(LaplacianSystem *sys)
{
int vid, *vidn = NULL;
float minj, mjt, qj[3], vj[3];
int i, j, ln;
for (i = 0; i < sys->total_verts; i++) {
normalize_v3(sys->no[i]);
vidn = sys->ringv_map[i].indices;
ln = sys->ringv_map[i].count;
minj = 1000000.0f;
for (j = 0; j < ln; j++) {
vid = vidn[j];
copy_v3_v3(qj, sys->co[vid]);
sub_v3_v3v3(vj, qj, sys->co[i]);
normalize_v3(vj);
mjt = fabsf(dot_v3v3(vj, sys->no[i]));
if (mjt < minj) {
minj = mjt;
sys->unit_verts[i] = vidn[j];
}
}
}
}
static void rotateDifferentialCoordinates(LaplacianSystem *sys)
{
float alpha, beta, gamma;
float pj[3], ni[3], di[3];
float uij[3], dun[3], e2[3], pi[3], fni[3], vn[3][3];
int i, j, num_fni, k, fi;
int *fidn;
for (i = 0; i < sys->total_verts; i++) {
copy_v3_v3(pi, sys->co[i]);
copy_v3_v3(ni, sys->no[i]);
k = sys->unit_verts[i];
copy_v3_v3(pj, sys->co[k]);
sub_v3_v3v3(uij, pj, pi);
mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
sub_v3_v3(uij, dun);
normalize_v3(uij);
cross_v3_v3v3(e2, ni, uij);
copy_v3_v3(di, sys->delta[i]);
alpha = dot_v3v3(ni, di);
beta = dot_v3v3(uij, di);
gamma = dot_v3v3(e2, di);
pi[0] = EIG_linear_solver_variable_get(sys->context, 0, i);
pi[1] = EIG_linear_solver_variable_get(sys->context, 1, i);
pi[2] = EIG_linear_solver_variable_get(sys->context, 2, i);
zero_v3(ni);
num_fni = sys->ringf_map[i].count;
for (fi = 0; fi < num_fni; fi++) {
const unsigned int *vin;
fidn = sys->ringf_map[i].indices;
vin = sys->tris[fidn[fi]];
for (j = 0; j < 3; j++) {
vn[j][0] = EIG_linear_solver_variable_get(sys->context, 0, vin[j]);
vn[j][1] = EIG_linear_solver_variable_get(sys->context, 1, vin[j]);
vn[j][2] = EIG_linear_solver_variable_get(sys->context, 2, vin[j]);
if (vin[j] == sys->unit_verts[i]) {
copy_v3_v3(pj, vn[j]);
}
}
normal_tri_v3(fni, UNPACK3(vn));
add_v3_v3(ni, fni);
}
normalize_v3(ni);
sub_v3_v3v3(uij, pj, pi);
mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
sub_v3_v3(uij, dun);
normalize_v3(uij);
cross_v3_v3v3(e2, ni, uij);
fni[0] = alpha * ni[0] + beta * uij[0] + gamma * e2[0];
fni[1] = alpha * ni[1] + beta * uij[1] + gamma * e2[1];
fni[2] = alpha * ni[2] + beta * uij[2] + gamma * e2[2];
if (len_squared_v3(fni) > FLT_EPSILON) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, fni[0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, fni[1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, fni[2]);
}
else {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
}
}
static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
{
int vid, i, j, n, na;
n = sys->total_verts;
na = sys->total_anchors;
if (!sys->is_matrix_computed) {
sys->context = EIG_linear_least_squares_solver_new(n + na, n, 3);
for (i = 0; i < n; i++) {
EIG_linear_solver_variable_set(sys->context, 0, i, sys->co[i][0]);
EIG_linear_solver_variable_set(sys->context, 1, i, sys->co[i][1]);
EIG_linear_solver_variable_set(sys->context, 2, i, sys->co[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_variable_set(sys->context, 0, vid, vertexCos[vid][0]);
EIG_linear_solver_variable_set(sys->context, 1, vid, vertexCos[vid][1]);
EIG_linear_solver_variable_set(sys->context, 2, vid, vertexCos[vid][2]);
}
initLaplacianMatrix(sys);
computeImplictRotations(sys);
for (i = 0; i < n; i++) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
sys->has_solution = false;
}
}
else {
sys->has_solution = false;
}
sys->is_matrix_computed = true;
}
else if (sys->has_solution) {
for (i = 0; i < n; i++) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
sys->has_solution = false;
}
}
else {
sys->has_solution = false;
}
}
}
static bool isValidVertexGroup(LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh)
{
int defgrp_index;
MDeformVert *dvert = NULL;
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
return (dvert != NULL);
}
static void initSystem(
LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
int i;
int defgrp_index;
int total_anchors;
float wpaint;
MDeformVert *dvert = NULL;
MDeformVert *dv = NULL;
LaplacianSystem *sys;
if (isValidVertexGroup(lmd, ob, mesh)) {
int *index_anchors = MEM_malloc_arrayN(numVerts, sizeof(int), __func__); /* over-alloc */
const MLoopTri *mlooptri;
const MLoop *mloop;
STACK_DECLARE(index_anchors);
STACK_INIT(index_anchors, numVerts);
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
BLI_assert(dvert != NULL);
dv = dvert;
for (i = 0; i < numVerts; i++) {
wpaint = defvert_find_weight(dv, defgrp_index);
dv++;
if (wpaint > 0.0f) {
STACK_PUSH(index_anchors, i);
}
}
total_anchors = STACK_SIZE(index_anchors);
lmd->cache_system = initLaplacianSystem(numVerts, mesh->totedge, BKE_mesh_runtime_looptri_len(mesh),
total_anchors, lmd->anchor_grp_name, lmd->repeat);
sys = (LaplacianSystem *)lmd->cache_system;
memcpy(sys->index_anchors, index_anchors, sizeof(int) * total_anchors);
memcpy(sys->co, vertexCos, sizeof(float[3]) * numVerts);
MEM_freeN(index_anchors);
lmd->vertexco = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "ModDeformCoordinates");
memcpy(lmd->vertexco, vertexCos, sizeof(float[3]) * numVerts);
lmd->total_verts = numVerts;
createFaceRingMap(
mesh->totvert, BKE_mesh_runtime_looptri_ensure(mesh), BKE_mesh_runtime_looptri_len(mesh),
mesh->mloop, &sys->ringf_map, &sys->ringf_indices);
createVertRingMap(
mesh->totvert, mesh->medge, mesh->totedge,
&sys->ringv_map, &sys->ringv_indices);
mlooptri = BKE_mesh_runtime_looptri_ensure(mesh);
mloop = mesh->mloop;
for (i = 0; i < sys->total_tris; i++) {
sys->tris[i][0] = mloop[mlooptri[i].tri[0]].v;
sys->tris[i][1] = mloop[mlooptri[i].tri[1]].v;
sys->tris[i][2] = mloop[mlooptri[i].tri[2]].v;
}
}
}
static int isSystemDifferent(LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh, int numVerts)
{
int i;
int defgrp_index;
int total_anchors = 0;
float wpaint;
MDeformVert *dvert = NULL;
MDeformVert *dv = NULL;
LaplacianSystem *sys = (LaplacianSystem *)lmd->cache_system;
if (sys->total_verts != numVerts) {
return LAPDEFORM_SYSTEM_CHANGE_VERTEXES;
}
if (sys->total_edges != mesh->totedge) {
return LAPDEFORM_SYSTEM_CHANGE_EDGES;
}
if (!STREQ(lmd->anchor_grp_name, sys->anchor_grp_name)) {
return LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP;
}
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
if (!dvert) {
return LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP;
}
dv = dvert;
for (i = 0; i < numVerts; i++) {
wpaint = defvert_find_weight(dv, defgrp_index);
dv++;
if (wpaint > 0.0f) {
total_anchors++;
}
}
if (sys->total_anchors != total_anchors) {
return LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS;
}
return LAPDEFORM_SYSTEM_NOT_CHANGE;
}
static void LaplacianDeformModifier_do(
LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
float (*filevertexCos)[3];
int sysdif;
LaplacianSystem *sys = NULL;
filevertexCos = NULL;
if (!(lmd->flag & MOD_LAPLACIANDEFORM_BIND)) {
if (lmd->cache_system) {
sys = lmd->cache_system;
deleteLaplacianSystem(sys);
lmd->cache_system = NULL;
}
lmd->total_verts = 0;
MEM_SAFE_FREE(lmd->vertexco);
return;
}
if (lmd->cache_system) {
sysdif = isSystemDifferent(lmd, ob, mesh, numVerts);
sys = lmd->cache_system;
if (sysdif) {
if (sysdif == LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS || sysdif == LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP) {
filevertexCos = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "TempModDeformCoordinates");
memcpy(filevertexCos, lmd->vertexco, sizeof(float[3]) * numVerts);
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
deleteLaplacianSystem(sys);
lmd->cache_system = NULL;
initSystem(lmd, ob, mesh, filevertexCos, numVerts);
sys = lmd->cache_system; /* may have been reallocated */
MEM_SAFE_FREE(filevertexCos);
if (sys) {
laplacianDeformPreview(sys, vertexCos);
}
}
else {
if (sysdif == LAPDEFORM_SYSTEM_CHANGE_VERTEXES) {
modifier_setError(&lmd->modifier, "Vertices changed from %d to %d", lmd->total_verts, numVerts);
}
else if (sysdif == LAPDEFORM_SYSTEM_CHANGE_EDGES) {
modifier_setError(&lmd->modifier, "Edges changed from %d to %d", sys->total_edges, mesh->totedge);
}
else if (sysdif == LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP) {
modifier_setError(&lmd->modifier, "Vertex group '%s' is not valid", sys->anchor_grp_name);
}
}
}
else {
sys->repeat = lmd->repeat;
laplacianDeformPreview(sys, vertexCos);
}
}
else {
if (!isValidVertexGroup(lmd, ob, mesh)) {
modifier_setError(&lmd->modifier, "Vertex group '%s' is not valid", lmd->anchor_grp_name);
lmd->flag &= ~MOD_LAPLACIANDEFORM_BIND;
}
else if (lmd->total_verts > 0 && lmd->total_verts == numVerts) {
filevertexCos = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "TempDeformCoordinates");
memcpy(filevertexCos, lmd->vertexco, sizeof(float[3]) * numVerts);
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
initSystem(lmd, ob, mesh, filevertexCos, numVerts);
sys = lmd->cache_system;
MEM_SAFE_FREE(filevertexCos);
laplacianDeformPreview(sys, vertexCos);
}
else {
initSystem(lmd, ob, mesh, vertexCos, numVerts);
sys = lmd->cache_system;
laplacianDeformPreview(sys, vertexCos);
}
}
if (sys && sys->is_matrix_computed && !sys->has_solution) {
modifier_setError(&lmd->modifier, "The system did not find a solution");
}
}
static void initData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
lmd->anchor_grp_name[0] = '\0';
lmd->total_verts = 0;
lmd->repeat = 1;
lmd->vertexco = NULL;
lmd->cache_system = NULL;
lmd->flag = 0;
}
static void copyData(const ModifierData *md, ModifierData *target, const int flag)
{
const LaplacianDeformModifierData *lmd = (const LaplacianDeformModifierData *)md;
LaplacianDeformModifierData *tlmd = (LaplacianDeformModifierData *)target;
modifier_copyData_generic(md, target, flag);
tlmd->vertexco = MEM_dupallocN(lmd->vertexco);
tlmd->cache_system = NULL;
}
static bool isDisabled(const struct Scene *UNUSED(scene), ModifierData *md, bool UNUSED(useRenderParams))
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
if (lmd->anchor_grp_name[0]) return 0;
return 1;
}
static void requiredDataMask(Object *UNUSED(ob), ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
if (lmd->anchor_grp_name[0] != '\0') {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static void deformVerts(
ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
Mesh *mesh_src = MOD_deform_mesh_eval_get(ctx->object, NULL, mesh, NULL, numVerts, false, false);
LaplacianDeformModifier_do((LaplacianDeformModifierData *)md, ctx->object, mesh_src, vertexCos, numVerts);
if (!ELEM(mesh_src, NULL, mesh)) {
BKE_id_free(NULL, mesh_src);
}
}
static void deformVertsEM(
ModifierData *md, const ModifierEvalContext *ctx, struct BMEditMesh *editData,
Mesh *mesh, float (*vertexCos)[3], int numVerts)
{
Mesh *mesh_src = MOD_deform_mesh_eval_get(ctx->object, editData, mesh, NULL, numVerts, false, false);
LaplacianDeformModifier_do((LaplacianDeformModifierData *)md, ctx->object, mesh_src,
vertexCos, numVerts);
if (!ELEM(mesh_src, NULL, mesh)) {
BKE_id_free(NULL, mesh_src);
}
}
static void freeData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
LaplacianSystem *sys = (LaplacianSystem *)lmd->cache_system;
if (sys) {
deleteLaplacianSystem(sys);
}
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
}
ModifierTypeInfo modifierType_LaplacianDeform = {
/* name */ "LaplacianDeform",
/* structName */ "LaplacianDeformModifierData",
/* structSize */ sizeof(LaplacianDeformModifierData),
/* type */ eModifierTypeType_OnlyDeform,
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsEditmode,
/* copyData */ copyData,
/* deformVerts_DM */ NULL,
/* deformMatrices_DM */ NULL,
/* deformVertsEM_DM */ NULL,
/* deformMatricesEM_DM*/NULL,
/* applyModifier_DM */ NULL,
/* deformVerts */ deformVerts,
/* deformMatrices */ NULL,
/* deformVertsEM */ deformVertsEM,
/* deformMatricesEM */ NULL,
/* applyModifier */ NULL,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ freeData,
/* isDisabled */ isDisabled,
/* updateDepsgraph */ NULL,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ NULL,
/* foreachObjectLink */ NULL,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
/* freeRuntimeData */ NULL,
};