This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/mesh/editmesh_rip.c
Campbell Barton de13d0a80c doxygen: add newline after \file
While \file doesn't need an argument, it can't have another doxy
command after it.
2019-02-18 08:22:12 +11:00

1124 lines
31 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2004 by Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup edmesh
*/
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BKE_context.h"
#include "BKE_report.h"
#include "BKE_editmesh.h"
#include "BKE_layer.h"
#include "RNA_define.h"
#include "RNA_access.h"
#include "WM_types.h"
#include "ED_mesh.h"
#include "ED_screen.h"
#include "ED_transform.h"
#include "ED_view3d.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "mesh_intern.h" /* own include */
/**
* helper to find edge for edge_rip,
*
* \param inset: is used so we get some useful distance
* when comparing multiple edges that meet at the same
* point and would result in the same distance.
*/
#define INSET_DEFAULT 0.00001f
static float edbm_rip_edgedist_squared(
ARegion *ar, float mat[4][4],
const float co1[3], const float co2[3], const float mvalf[2],
const float inset)
{
float vec1[2], vec2[2], dist_sq;
ED_view3d_project_float_v2_m4(ar, co1, vec1, mat);
ED_view3d_project_float_v2_m4(ar, co2, vec2, mat);
if (inset != 0.0f) {
const float dist_2d = len_v2v2(vec1, vec2);
if (dist_2d > FLT_EPSILON) {
const float dist = inset / dist_2d;
BLI_assert(isfinite(dist));
interp_v2_v2v2(vec1, vec1, vec2, dist);
interp_v2_v2v2(vec2, vec2, vec1, dist);
}
}
dist_sq = dist_squared_to_line_segment_v2(mvalf, vec1, vec2);
BLI_assert(isfinite(dist_sq));
return dist_sq;
}
#if 0
static float edbm_rip_linedist(
ARegion *ar, float mat[4][4],
const float co1[3], const float co2[3], const float mvalf[2])
{
float vec1[2], vec2[2];
ED_view3d_project_float_v2_m4(ar, co1, vec1, mat);
ED_view3d_project_float_v2_m4(ar, co2, vec2, mat);
return dist_to_line_v2(mvalf, vec1, vec2);
}
#endif
/* calculaters a point along the loop tangent which can be used to measure against edges */
static void edbm_calc_loop_co(BMLoop *l, float l_mid_co[3])
{
BM_loop_calc_face_tangent(l, l_mid_co);
/* scale to average of surrounding edge size, only needs to be approx, but should
* be roughly equivalent to the check below which uses the middle of the edge. */
mul_v3_fl(l_mid_co, (BM_edge_calc_length(l->e) + BM_edge_calc_length(l->prev->e)) / 2.0f);
add_v3_v3(l_mid_co, l->v->co);
}
static float edbm_rip_edge_side_measure(
BMEdge *e, BMLoop *e_l,
ARegion *ar,
float projectMat[4][4], const float fmval[2])
{
float cent[3] = {0, 0, 0}, mid[3];
float vec[2];
float fmval_tweak[2];
float e_v1_co[2], e_v2_co[2];
float score;
BMVert *v1_other;
BMVert *v2_other;
BLI_assert(BM_vert_in_edge(e, e_l->v));
/* method for calculating distance:
*
* for each edge: calculate face center, then made a vector
* from edge midpoint to face center. offset edge midpoint
* by a small amount along this vector. */
/* rather then the face center, get the middle of
* both edge verts connected to this one */
v1_other = BM_face_other_vert_loop(e_l->f, e->v2, e->v1)->v;
v2_other = BM_face_other_vert_loop(e_l->f, e->v1, e->v2)->v;
mid_v3_v3v3(cent, v1_other->co, v2_other->co);
mid_v3_v3v3(mid, e->v1->co, e->v2->co);
ED_view3d_project_float_v2_m4(ar, cent, cent, projectMat);
ED_view3d_project_float_v2_m4(ar, mid, mid, projectMat);
ED_view3d_project_float_v2_m4(ar, e->v1->co, e_v1_co, projectMat);
ED_view3d_project_float_v2_m4(ar, e->v2->co, e_v2_co, projectMat);
sub_v2_v2v2(vec, cent, mid);
normalize_v2_length(vec, 0.01f);
/* rather then adding to both verts, subtract from the mouse */
sub_v2_v2v2(fmval_tweak, fmval, vec);
score = len_v2v2(e_v1_co, e_v2_co);
if (dist_squared_to_line_segment_v2(fmval_tweak, e_v1_co, e_v2_co) >
dist_squared_to_line_segment_v2(fmval, e_v1_co, e_v2_co))
{
return score;
}
else {
return -score;
}
}
/* - Advanced selection handling 'ripsel' functions ----- */
/**
* How rip selection works
*
* Firstly - rip is basically edge split with side-selection & grab.
* Things would be much more simple if we didn't have to worry about side selection
*
* The method used for checking the side of selection is as follows...
* - First tag all rip-able edges.
* - Build a contiguous edge list by looping over tagged edges and following each ones tagged siblings in both
* directions.
* - The loops are not stored in an array, Instead both loops on either side of each edge has its index values set
* to count down from the last edge, this way, once we have the 'last' edge its very easy to walk down the
* connected edge loops.
* The reason for using loops like this is because when the edges are split we don't which face user gets the newly
* created edge (its as good as random so we cant assume new edges will be on once side).
* After splitting, its very simple to walk along boundary loops since each only has one edge from a single side.
* - The end loop pairs are stored in an array however to support multiple edge-selection-islands, so you can rip
* multiple selections at once.
* - * Execute the split *
* - For each #EdgeLoopPair walk down both sides of the split using the loops and measure which is facing the mouse.
* - Deselect the edge loop facing away.
*
* Limitation!
* This currently works very poorly with intersecting edge islands (verts with more than 2 tagged edges)
* This is nice to but for now not essential.
*
* - campbell.
*/
#define IS_VISIT_POSSIBLE(e) (BM_edge_is_manifold(e) && BM_elem_flag_test(e, BM_ELEM_TAG))
#define IS_VISIT_DONE(e) ((e)->l && (BM_elem_index_get((e)->l) != INVALID_UID))
#define INVALID_UID INT_MIN
/* mark, assign uid and step */
static BMEdge *edbm_ripsel_edge_mark_step(BMVert *v, const int uid)
{
BMIter iter;
BMEdge *e;
BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) {
if (IS_VISIT_POSSIBLE(e) && !IS_VISIT_DONE(e)) {
BMLoop *l_a, *l_b;
BM_edge_loop_pair(e, &l_a, &l_b); /* no need to check, we know this will be true */
/* so (IS_VISIT_DONE == true) */
BM_elem_index_set(l_a, uid); /* set_dirty */
BM_elem_index_set(l_b, uid); /* set_dirty */
return e;
}
}
return NULL;
}
typedef struct EdgeLoopPair {
BMLoop *l_a;
BMLoop *l_b;
} EdgeLoopPair;
static EdgeLoopPair *edbm_ripsel_looptag_helper(BMesh *bm)
{
BMIter fiter;
BMIter liter;
BMFace *f;
BMLoop *l;
int uid_start;
int uid_end;
int uid = bm->totedge; /* can start anywhere */
EdgeLoopPair *eloop_pairs = NULL;
BLI_array_declare(eloop_pairs);
EdgeLoopPair *lp;
/* initialize loops with dummy invalid index values */
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_elem_index_set(l, INVALID_UID); /* set_dirty */
}
}
bm->elem_index_dirty |= BM_LOOP;
/* set contiguous loops ordered 'uid' values for walking after split */
while (true) {
int tot = 0;
BMIter eiter;
BMEdge *e_step;
BMVert *v_step;
BMEdge *e;
BMEdge *e_first;
BMEdge *e_last;
e_first = NULL;
BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
if (IS_VISIT_POSSIBLE(e) && !IS_VISIT_DONE(e)) {
e_first = e;
break;
}
}
if (e_first == NULL) {
break;
}
/* initialize */
e_first = e;
v_step = e_first->v1;
e_step = NULL; /* quiet warning, will never remain this value */
uid_start = uid;
while ((e = edbm_ripsel_edge_mark_step(v_step, uid))) {
v_step = BM_edge_other_vert((e_step = e), v_step);
uid++; /* only different line */
tot++;
}
/* this edges loops have the highest uid's, store this to walk down later */
e_last = e_step;
/* always store the highest 'uid' edge for the stride */
uid_end = uid - 1;
uid = uid_start - 1;
/* initialize */
v_step = e_first->v1;
while ((e = edbm_ripsel_edge_mark_step(v_step, uid))) {
v_step = BM_edge_other_vert((e_step = e), v_step);
uid--; /* only different line */
tot++;
}
/* stride far enough not to _ever_ overlap range */
uid_start = uid;
uid = uid_end + bm->totedge;
lp = BLI_array_append_ret(eloop_pairs);
/* no need to check, we know this will be true */
BM_edge_loop_pair(e_last, &lp->l_a, &lp->l_b);
BLI_assert(tot == uid_end - uid_start);
#if 0
printf("%s: found contiguous edge loop of (%d)\n", __func__, uid_end - uid_start);
#endif
}
/* null terminate */
lp = BLI_array_append_ret(eloop_pairs);
lp->l_a = lp->l_b = NULL;
return eloop_pairs;
}
/* - De-Select the worst rip-edge side -------------------------------- */
static BMEdge *edbm_ripsel_edge_uid_step(BMEdge *e_orig, BMVert **v_prev)
{
BMIter eiter;
BMEdge *e;
BMVert *v = BM_edge_other_vert(e_orig, *v_prev);
const int uid_cmp = BM_elem_index_get(e_orig->l) - 1;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (BM_elem_index_get(e->l) == uid_cmp) {
*v_prev = v;
return e;
}
}
return NULL;
}
static BMVert *edbm_ripsel_edloop_pair_start_vert(BMEdge *e)
{
/* try step in a direction, if it fails we know do go the other way */
BMVert *v_test = e->v1;
return (edbm_ripsel_edge_uid_step(e, &v_test)) ? e->v1 : e->v2;
}
static void edbm_ripsel_deselect_helper(BMesh *bm, EdgeLoopPair *eloop_pairs,
ARegion *ar, float projectMat[4][4], float fmval[2])
{
EdgeLoopPair *lp;
for (lp = eloop_pairs; lp->l_a; lp++) {
BMEdge *e;
BMVert *v_prev;
float score_a = 0.0f;
float score_b = 0.0f;
e = lp->l_a->e;
v_prev = edbm_ripsel_edloop_pair_start_vert(e);
for (; e; e = edbm_ripsel_edge_uid_step(e, &v_prev)) {
score_a += edbm_rip_edge_side_measure(e, e->l, ar, projectMat, fmval);
}
e = lp->l_b->e;
v_prev = edbm_ripsel_edloop_pair_start_vert(e);
for (; e; e = edbm_ripsel_edge_uid_step(e, &v_prev)) {
score_b += edbm_rip_edge_side_measure(e, e->l, ar, projectMat, fmval);
}
e = (score_a > score_b) ? lp->l_a->e : lp->l_b->e;
v_prev = edbm_ripsel_edloop_pair_start_vert(e);
for (; e; e = edbm_ripsel_edge_uid_step(e, &v_prev)) {
BM_edge_select_set(bm, e, false);
}
}
}
/* --- end 'ripsel' selection handling code --- */
/* --- face-fill code --- */
/**
* return an un-ordered array of loop pairs
* use for rebuilding face-fill
*
* \note the method currently used fails for edges with 3+ face users and gives
* nasty holes in the mesh, there isnt a good way of knowing ahead of time
* which loops will be split apart (its possible to figure out but quite involved).
* So for now this is a known limitation of current rip-fill option.
*/
typedef struct UnorderedLoopPair {
BMLoop *l_pair[2];
char flag;
} UnorderedLoopPair;
enum {
ULP_FLIP_0 = (1 << 0),
ULP_FLIP_1 = (1 << 1),
};
static UnorderedLoopPair *edbm_tagged_loop_pairs_to_fill(BMesh *bm)
{
BMIter iter;
BMEdge *e;
unsigned int total_tag = 0;
/* count tags, could be pre-calculated */
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_TAG)) {
total_tag++;
}
}
if (total_tag) {
UnorderedLoopPair *uloop_pairs = MEM_mallocN(total_tag * sizeof(UnorderedLoopPair), __func__);
UnorderedLoopPair *ulp = uloop_pairs;
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_TAG)) {
BMLoop *l1, *l2;
if (BM_edge_loop_pair(e, &l1, &l2)) {
BMVert *v_cmp = l1->e->v1;
ulp->flag = (((l1->v != v_cmp) ? ULP_FLIP_0 : 0) |
((l2->v == v_cmp) ? ULP_FLIP_1 : 0));
}
else {
ulp->flag = 0;
}
ulp->l_pair[0] = l1;
ulp->l_pair[1] = l2;
ulp++;
}
}
return uloop_pairs;
}
else {
return NULL;
}
}
static void edbm_tagged_loop_pairs_do_fill_faces(BMesh *bm, UnorderedLoopPair *uloop_pairs)
{
UnorderedLoopPair *ulp;
unsigned int total_tag = MEM_allocN_len(uloop_pairs) / sizeof(UnorderedLoopPair);
unsigned int i;
for (i = 0, ulp = uloop_pairs; i < total_tag; i++, ulp++) {
if ((ulp->l_pair[0] && ulp->l_pair[1]) &&
(ulp->l_pair[0]->e != ulp->l_pair[1]->e))
{
/* time has come to make a face! */
BMVert *v_shared = BM_edge_share_vert(ulp->l_pair[0]->e, ulp->l_pair[1]->e);
BMFace *f, *f_example = ulp->l_pair[0]->f;
BMLoop *l_iter;
BMVert *f_verts[4];
if (v_shared == NULL) {
/* quad */
f_verts[0] = ulp->l_pair[0]->e->v1;
f_verts[1] = ulp->l_pair[1]->e->v1;
f_verts[2] = ulp->l_pair[1]->e->v2;
f_verts[3] = ulp->l_pair[0]->e->v2;
if (ulp->flag & ULP_FLIP_0) {
SWAP(BMVert *, f_verts[0], f_verts[3]);
}
if (ulp->flag & ULP_FLIP_1) {
SWAP(BMVert *, f_verts[1], f_verts[2]);
}
}
else {
/* tri */
f_verts[0] = v_shared;
f_verts[1] = BM_edge_other_vert(ulp->l_pair[0]->e, v_shared);
f_verts[2] = BM_edge_other_vert(ulp->l_pair[1]->e, v_shared);
f_verts[3] = NULL;
/* don't use the flip flags */
if (v_shared == ulp->l_pair[0]->v) {
SWAP(BMVert *, f_verts[0], f_verts[1]);
}
}
/* face should never exist */
BLI_assert(!BM_face_exists(f_verts, f_verts[3] ? 4 : 3));
f = BM_face_create_verts(bm, f_verts, f_verts[3] ? 4 : 3, f_example, BM_CREATE_NOP, true);
l_iter = BM_FACE_FIRST_LOOP(f);
if (f_verts[3]) {
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[0]->e, l_iter), l_iter); l_iter = l_iter->next;
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[1]->e, l_iter), l_iter); l_iter = l_iter->next;
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[1]->e, l_iter), l_iter); l_iter = l_iter->next;
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[0]->e, l_iter), l_iter);
}
else {
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[0]->e, l_iter), l_iter); l_iter = l_iter->next;
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[0]->e, l_iter), l_iter); l_iter = l_iter->next;
BM_elem_attrs_copy(bm, bm, BM_edge_other_loop(ulp->l_pair[1]->e, l_iter), l_iter);
}
}
}
}
/* --- end 'face-fill' code --- */
/**
* This is the main vert ripping function (rip when one vertex is selected)
*/
static int edbm_rip_invoke__vert(bContext *C, const wmEvent *event, Object *obedit, bool do_fill)
{
UnorderedLoopPair *fill_uloop_pairs = NULL;
ARegion *ar = CTX_wm_region(C);
RegionView3D *rv3d = CTX_wm_region_view3d(C);
BMEditMesh *em = BKE_editmesh_from_object(obedit);
BMesh *bm = em->bm;
BMIter iter, liter;
BMLoop *l;
BMEdge *e_best;
BMVert *v;
const int totvert_orig = bm->totvert;
int i;
float projectMat[4][4], fmval[3] = {event->mval[0], event->mval[1]};
float dist_sq = FLT_MAX;
float d;
bool is_wire, is_manifold_region;
BMEditSelection ese;
int totboundary_edge = 0;
ED_view3d_ob_project_mat_get(rv3d, obedit, projectMat);
/* find selected vert - same some time and check history first */
if (BM_select_history_active_get(bm, &ese) && ese.htype == BM_VERT) {
v = (BMVert *)ese.ele;
}
else {
ese.ele = NULL;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT))
break;
}
}
/* (v == NULL) should be impossible */
if ((v == NULL) || (v->e == NULL)) {
return OPERATOR_CANCELLED;
}
is_wire = BM_vert_is_wire(v);
is_manifold_region = BM_vert_is_manifold_region(v);
e_best = NULL;
{
BMEdge *e;
/* find closest edge to mouse cursor */
BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) {
/* consider wire as boundary for this purpose,
* otherwise we can't a face away from a wire edge */
totboundary_edge += (BM_edge_is_boundary(e) || BM_edge_is_wire(e));
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
if ((is_manifold_region == false) || BM_edge_is_manifold(e)) {
d = edbm_rip_edgedist_squared(ar, projectMat, e->v1->co, e->v2->co, fmval, INSET_DEFAULT);
if ((e_best == NULL) || (d < dist_sq)) {
dist_sq = d;
e_best = e;
}
}
}
}
}
if (e_best && e_best->l && (is_manifold_region == false)) {
/* Try to split off a non-manifold fan (when we have multiple disconnected fans) */
BMLoop *l_sep = e_best->l->v == v ? e_best->l : e_best->l->next;
BMVert *v_new;
BLI_assert(l_sep->v == v);
v_new = BM_face_loop_separate_multi_isolated(bm, l_sep);
BLI_assert(BM_vert_find_first_loop(v));
BM_vert_select_set(bm, v, false);
BM_select_history_remove(bm, v);
BM_vert_select_set(bm, v_new, true);
if (ese.ele) {
BM_select_history_store(bm, v_new);
}
if (do_fill) {
BM_edge_create(bm, v, v_new, NULL, BM_CREATE_NOP);
}
return OPERATOR_FINISHED;
}
/* if we are ripping a single vertex from 3 faces,
* then measure the distance to the face corner as well as the edge */
if (BM_vert_face_count_is_equal(v, 3) &&
BM_vert_edge_count_is_equal(v, 3))
{
BMEdge *e_all[3];
BMLoop *l_all[3];
int i1, i2;
BM_iter_as_array(bm, BM_EDGES_OF_VERT, v, (void **)e_all, 3);
BM_iter_as_array(bm, BM_LOOPS_OF_VERT, v, (void **)l_all, 3);
/* not do a loop similar to the one above, but test against loops */
for (i1 = 0; i1 < 3; i1++) {
/* consider wire as boundary for this purpose,
* otherwise we can't a face away from a wire edge */
float l_mid_co[3];
l = l_all[i1];
edbm_calc_loop_co(l, l_mid_co);
d = edbm_rip_edgedist_squared(ar, projectMat, l->v->co, l_mid_co, fmval, INSET_DEFAULT);
if ((e_best == NULL) || (d < dist_sq)) {
dist_sq = d;
/* find the edge that is not in this loop */
e_best = NULL;
for (i2 = 0; i2 < 3; i2++) {
if (!BM_edge_in_loop(e_all[i2], l)) {
e_best = e_all[i2];
break;
}
}
BLI_assert(e_best != NULL);
}
}
}
/* should we go ahead with edge rip or do we need to do special case, split off vertex?:
* split off vertex if...
* - we cant find an edge - this means we are ripping a faces vert that is connected to other
* geometry only at the vertex.
* - the boundary edge total is greater than 2,
* in this case edge split _can_ work but we get far nicer results if we use this special case.
* - there are only 2 edges but we are a wire vert. */
if ((is_wire == false && totboundary_edge > 2) ||
(is_wire == true && totboundary_edge > 1))
{
BMVert **vout;
int vout_len;
BM_vert_select_set(bm, v, false);
bmesh_kernel_vert_separate(bm, v, &vout, &vout_len, true);
if (vout_len < 2) {
MEM_freeN(vout);
/* set selection back to avoid active-unselected vertex */
BM_vert_select_set(bm, v, true);
/* should never happen */
return OPERATOR_CANCELLED;
}
else {
int vi_best = 0;
if (ese.ele) {
BM_select_history_remove(bm, ese.ele);
}
dist_sq = FLT_MAX;
/* in the loop below we find the best vertex to drag based on its connected geometry,
* either by its face corner, or connected edge (when no faces are attached) */
for (i = 0; i < vout_len; i++) {
if (BM_vert_is_wire(vout[i]) == false) {
/* find the best face corner */
BM_ITER_ELEM (l, &iter, vout[i], BM_LOOPS_OF_VERT) {
if (!BM_elem_flag_test(l->f, BM_ELEM_HIDDEN)) {
float l_mid_co[3];
edbm_calc_loop_co(l, l_mid_co);
d = edbm_rip_edgedist_squared(ar, projectMat, v->co, l_mid_co, fmval, INSET_DEFAULT);
if (d < dist_sq) {
dist_sq = d;
vi_best = i;
}
}
}
}
else {
BMEdge *e;
/* a wire vert, find the best edge */
BM_ITER_ELEM (e, &iter, vout[i], BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
float e_mid_co[3];
mid_v3_v3v3(e_mid_co, e->v1->co, e->v2->co);
d = edbm_rip_edgedist_squared(ar, projectMat, v->co, e_mid_co, fmval, INSET_DEFAULT);
if (d < dist_sq) {
dist_sq = d;
vi_best = i;
}
}
}
}
}
/* vout[0] == best
* vout[1] == glue
* vout[2+] == splice with glue (when vout_len > 2)
*/
if (vi_best != 0) {
SWAP(BMVert *, vout[0], vout[vi_best]);
vi_best = 0;
}
/* select the vert from the best region */
v = vout[vi_best];
BM_vert_select_set(bm, v, true);
if (ese.ele) {
BM_select_history_store(bm, v);
}
/* splice all others back together */
if (vout_len > 2) {
for (i = 2; i < vout_len; i++) {
BM_vert_splice(bm, vout[1], vout[i]);
}
}
if (do_fill) {
/* match extrude vert-order */
BM_edge_create(bm, vout[1], vout[0], NULL, BM_CREATE_NOP);
}
MEM_freeN(vout);
return OPERATOR_FINISHED;
}
}
if (!e_best) {
return OPERATOR_CANCELLED;
}
/* *** Execute the split! *** */
/* unlike edge split, for single vertex split we only use the operator in one of the cases
* but both allocate fill */
{
BMVert *v_rip;
BMLoop *larr[2];
int larr_len = 0;
/* rip two adjacent edges */
if (BM_edge_is_boundary(e_best) || BM_vert_face_count_is_equal(v, 2)) {
/* Don't run the edge split operator in this case */
l = BM_edge_vert_share_loop(e_best->l, v);
larr[larr_len] = l;
larr_len++;
/* only tag for face-fill (we don't call the operator) */
if (BM_edge_is_boundary(e_best)) {
BM_elem_flag_enable(e_best, BM_ELEM_TAG);
}
else {
BM_elem_flag_enable(l->e, BM_ELEM_TAG);
BM_elem_flag_enable(l->prev->e, BM_ELEM_TAG);
}
}
else {
if (BM_edge_is_manifold(e_best)) {
BMLoop *l_iter, *l_first;
l_iter = l_first = e_best->l;
do {
larr[larr_len] = BM_edge_vert_share_loop(l_iter, v);
if (do_fill) {
/* Only needed when filling...
* Also, we never want to tag best edge,
* that one won't change during split. See T44618. */
if (larr[larr_len]->e == e_best) {
BM_elem_flag_enable(larr[larr_len]->prev->e, BM_ELEM_TAG);
}
else {
BM_elem_flag_enable(larr[larr_len]->e, BM_ELEM_TAG);
}
}
larr_len++;
} while ((l_iter = l_iter->radial_next) != l_first);
}
else {
/* looks like there are no split edges, we could just return/report-error? - Campbell */
}
}
/* keep directly before edgesplit */
if (do_fill) {
fill_uloop_pairs = edbm_tagged_loop_pairs_to_fill(bm);
}
if (larr_len) {
v_rip = BM_face_loop_separate_multi(bm, larr, larr_len);
}
else {
v_rip = NULL;
}
if (v_rip) {
BM_vert_select_set(bm, v_rip, true);
}
else {
if (fill_uloop_pairs) MEM_freeN(fill_uloop_pairs);
return OPERATOR_CANCELLED;
}
}
{
/* --- select which vert --- */
BMVert *v_best = NULL;
float l_corner_co[3];
dist_sq = FLT_MAX;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
/* disable by default, re-enable winner at end */
BM_vert_select_set(bm, v, false);
BM_select_history_remove(bm, v);
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
/* check if v_best is null in the _rare_ case there are numeric issues */
edbm_calc_loop_co(l, l_corner_co);
d = edbm_rip_edgedist_squared(ar, projectMat, l->v->co, l_corner_co, fmval, INSET_DEFAULT);
if ((v_best == NULL) || (d < dist_sq)) {
v_best = v;
dist_sq = d;
}
}
}
}
if (v_best) {
BM_vert_select_set(bm, v_best, true);
if (ese.ele) {
BM_select_history_store(bm, v_best);
}
}
}
if (do_fill && fill_uloop_pairs) {
edbm_tagged_loop_pairs_do_fill_faces(bm, fill_uloop_pairs);
MEM_freeN(fill_uloop_pairs);
}
if (totvert_orig == bm->totvert) {
return OPERATOR_CANCELLED;
}
return OPERATOR_FINISHED;
}
/**
* This is the main edge ripping function
*/
static int edbm_rip_invoke__edge(bContext *C, const wmEvent *event, Object *obedit, bool do_fill)
{
UnorderedLoopPair *fill_uloop_pairs = NULL;
ARegion *ar = CTX_wm_region(C);
RegionView3D *rv3d = CTX_wm_region_view3d(C);
BMEditMesh *em = BKE_editmesh_from_object(obedit);
BMesh *bm = em->bm;
BMIter iter, eiter;
BMLoop *l;
BMEdge *e_best;
BMVert *v;
const int totedge_orig = bm->totedge;
float projectMat[4][4], fmval[3] = {event->mval[0], event->mval[1]};
EdgeLoopPair *eloop_pairs;
ED_view3d_ob_project_mat_get(rv3d, obedit, projectMat);
/* important this runs on the original selection, before tampering with tagging */
eloop_pairs = edbm_ripsel_looptag_helper(bm);
/* expand edge selection */
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
BMEdge *e;
bool all_manifold;
int totedge_manifold; /* manifold, visible edges */
int i;
e_best = NULL;
i = 0;
totedge_manifold = 0;
all_manifold = true;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_edge_is_wire(e) &&
!BM_elem_flag_test(e, BM_ELEM_HIDDEN))
{
/* important to check selection rather then tag here
* else we get feedback loop */
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
e_best = e;
i++;
}
totedge_manifold++;
}
/** #BM_vert_other_disk_edge has no hidden checks so don't check hidden here */
if ((all_manifold == true) && (BM_edge_is_manifold(e) == false)) {
all_manifold = false;
}
}
/* single edge, extend */
if (i == 1 && e_best->l) {
/* note: if the case of 3 edges has one change in loop stepping,
* if this becomes more involved we may be better off splitting
* the 3 edge case into its own else-if branch */
if ((totedge_manifold == 4 || totedge_manifold == 3) || (all_manifold == false)) {
BMLoop *l_a = e_best->l;
BMLoop *l_b = l_a->radial_next;
/* find the best face to follow, this way the edge won't point away from
* the mouse when there are more than 4 (takes the shortest face fan around) */
l = (edbm_rip_edge_side_measure(e_best, l_a, ar, projectMat, fmval) <
edbm_rip_edge_side_measure(e_best, l_b, ar, projectMat, fmval)) ? l_a : l_b;
l = BM_loop_other_edge_loop(l, v);
/* important edge is manifold else we can be attempting to split off a fan that don't budge,
* not crashing but adds duplicate edge. */
if (BM_edge_is_manifold(l->e)) {
l = l->radial_next;
if (totedge_manifold != 3)
l = BM_loop_other_edge_loop(l, v);
if (l) {
BLI_assert(!BM_elem_flag_test(l->e, BM_ELEM_TAG));
BM_elem_flag_enable(l->e, BM_ELEM_TAG);
}
}
}
else {
e = BM_vert_other_disk_edge(v, e_best);
if (e) {
BLI_assert(!BM_elem_flag_test(e, BM_ELEM_TAG));
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
}
}
}
/* keep directly before edgesplit */
if (do_fill) {
fill_uloop_pairs = edbm_tagged_loop_pairs_to_fill(bm);
}
BM_mesh_edgesplit(em->bm, true, true, true);
/* note: the output of the bmesh operator is ignored, since we built
* the contiguous loop pairs to split already, its possible that some
* edge did not split even though it was tagged which would not work
* as expected (but not crash), however there are checks to ensure
* tagged edges will split. So far its not been an issue. */
edbm_ripsel_deselect_helper(bm, eloop_pairs,
ar, projectMat, fmval);
MEM_freeN(eloop_pairs);
/* deselect loose verts */
BM_mesh_select_mode_clean_ex(bm, SCE_SELECT_EDGE);
if (do_fill && fill_uloop_pairs) {
edbm_tagged_loop_pairs_do_fill_faces(bm, fill_uloop_pairs);
MEM_freeN(fill_uloop_pairs);
}
if (totedge_orig == bm->totedge) {
return OPERATOR_CANCELLED;
}
BM_select_history_validate(bm);
return OPERATOR_FINISHED;
}
/* based on mouse cursor position, it defines how is being ripped */
static int edbm_rip_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
ViewLayer *view_layer = CTX_data_view_layer(C);
uint objects_len = 0;
Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, CTX_wm_view3d(C), &objects_len);
const bool do_fill = RNA_boolean_get(op->ptr, "use_fill");
bool no_vertex_selected = true;
bool error_face_selected = true;
bool error_disconnected_vertices = true;
bool error_rip_failed = true;
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *obedit = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(obedit);
BMesh *bm = em->bm;
BMIter iter;
BMEdge *e;
const bool singlesel = (bm->totvertsel == 1 && bm->totedgesel == 0 && bm->totfacesel == 0);
int ret;
if (em->bm->totvertsel == 0) {
continue;
}
no_vertex_selected = false;
/* running in face mode hardly makes sense, so convert to region loop and rip */
if (bm->totfacesel) {
/* highly nifty but hard to support since the operator can fail and we're left
* with modified selection */
// WM_operator_name_call(C, "MESH_OT_region_to_loop", WM_OP_INVOKE_DEFAULT, NULL);
continue;
}
error_face_selected = false;
/* we could support this, but not for now */
if ((bm->totvertsel > 1) && (bm->totedgesel == 0)) {
continue;
}
error_disconnected_vertices = false;
/* note on selection:
* When calling edge split we operate on tagged edges rather then selected
* this is important because the edges to operate on are extended by one,
* but the selection is left alone.
*
* After calling edge split - the duplicated edges have the same selection state as the
* original, so all we do is de-select the far side from the mouse and we have a
* useful selection for grabbing.
*/
/* BM_ELEM_SELECT --> BM_ELEM_TAG */
BM_ITER_MESH(e, &iter, bm, BM_EDGES_OF_MESH) {
BM_elem_flag_set(e, BM_ELEM_TAG, BM_elem_flag_test(e, BM_ELEM_SELECT));
}
/* split 2 main parts of this operator out into vertex and edge ripping */
if (singlesel) {
ret = edbm_rip_invoke__vert(C, event, obedit, do_fill);
}
else {
ret = edbm_rip_invoke__edge(C, event, obedit, do_fill);
}
if (ret != OPERATOR_FINISHED) {
continue;
}
BLI_assert(singlesel ? (bm->totvertsel > 0) : (bm->totedgesel > 0));
if (bm->totvertsel == 0) {
continue;
}
error_rip_failed = false;
EDBM_update_generic(em, true, true);
}
MEM_freeN(objects);
if (no_vertex_selected) {
/* Ignore it. */
return OPERATOR_CANCELLED;
}
else if (error_face_selected) {
BKE_report(op->reports, RPT_ERROR, "Cannot rip selected faces");
return OPERATOR_CANCELLED;
}
else if (error_disconnected_vertices) {
BKE_report(op->reports, RPT_ERROR, "Cannot rip multiple disconnected vertices");
return OPERATOR_CANCELLED;
}
else if (error_rip_failed) {
BKE_report(op->reports, RPT_ERROR, "Rip failed");
return OPERATOR_CANCELLED;
}
/* No errors, everything went fine. */
return OPERATOR_FINISHED;
}
void MESH_OT_rip(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Rip";
ot->idname = "MESH_OT_rip";
ot->description = "Disconnect vertex or edges from connected geometry";
/* api callbacks */
ot->invoke = edbm_rip_invoke;
ot->poll = EDBM_view3d_poll;
/* flags */
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
/* to give to transform */
Transform_Properties(ot, P_PROPORTIONAL | P_MIRROR_DUMMY);
RNA_def_boolean(ot->srna, "use_fill", false, "Fill", "Fill the ripped region");
}