This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/space_view3d/drawvolume.c
Daniel Genrich 1d1e8595f2 Pointcache:
*introducing unique ID's following brechts hint from ML

Enhancements resulting from this:
* multiple caches per modifier stack position
2009-08-25 18:41:36 +00:00

305 lines
7.7 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Daniel Genrich
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <string.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "MEM_guardedalloc.h"
#include "IMB_imbuf.h"
#include "MTC_matrixops.h"
#include "DNA_armature_types.h"
#include "DNA_boid_types.h"
#include "DNA_camera_types.h"
#include "DNA_curve_types.h"
#include "DNA_constraint_types.h" // for drawing constraint
#include "DNA_effect_types.h"
#include "DNA_lamp_types.h"
#include "DNA_lattice_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_meta_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_object_fluidsim.h"
#include "DNA_particle_types.h"
#include "DNA_space_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_smoke_types.h"
#include "DNA_userdef_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_editVert.h"
#include "BLI_edgehash.h"
#include "BLI_rand.h"
#include "BKE_anim.h" //for the where_on_path function
#include "BKE_curve.h"
#include "BKE_constraint.h" // for the get_constraint_target function
#include "BKE_DerivedMesh.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_font.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_mball.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_particle.h"
#include "BKE_property.h"
#include "BKE_smoke.h"
#include "BKE_unit.h"
#include "BKE_utildefines.h"
#include "smoke_API.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "GPU_draw.h"
#include "GPU_material.h"
#include "GPU_extensions.h"
#include "ED_mesh.h"
#include "ED_particle.h"
#include "ED_screen.h"
#include "ED_types.h"
#include "ED_util.h"
#include "UI_resources.h"
#include "UI_interface_icons.h"
#include "WM_api.h"
#include "BLF_api.h"
#include "GPU_extensions.h"
#include "view3d_intern.h" // own include
struct GPUTexture;
/* draw slices of smoke is adapted from c++ code authored by: Johannes Schmid and Ingemar Rask, 2006, johnny@grob.org */
static float cv[][3] = {
{1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, 1.0f}, {-1.0f, -1.0f, 1.0f}, {1.0f, -1.0f, 1.0f},
{1.0f, 1.0f, -1.0f}, {-1.0f, 1.0f, -1.0f}, {-1.0f, -1.0f, -1.0f}, {1.0f, -1.0f, -1.0f}
};
// edges have the form edges[n][0][xyz] + t*edges[n][1][xyz]
static float edges[12][2][3] = {
{{1.0f, 1.0f, -1.0f}, {0.0f, 0.0f, 1.0f}},
{{-1.0f, 1.0f, -1.0f}, {0.0f, 0.0f, 1.0f}},
{{-1.0f, -1.0f, -1.0f}, {0.0f, 0.0f, 1.0f}},
{{1.0f, -1.0f, -1.0f}, {0.0f, 0.0f, 1.0f}},
{{1.0f, -1.0f, 1.0f}, {0.0f, 1.0f, 0.0f}},
{{-1.0f, -1.0f, 1.0f}, {0.0f, 1.0f, 0.0f}},
{{-1.0f, -1.0f, -1.0f}, {0.0f, 1.0f, 0.0f}},
{{1.0f, -1.0f, -1.0f}, {0.0f, 1.0f, 0.0f}},
{{-1.0f, 1.0f, 1.0f}, {1.0f, 0.0f, 0.0f}},
{{-1.0f, -1.0f, 1.0f}, {1.0f, 0.0f, 0.0f}},
{{-1.0f, -1.0f, -1.0f}, {1.0f, 0.0f, 0.0f}},
{{-1.0f, 1.0f, -1.0f}, {1.0f, 0.0f, 0.0f}}
};
int intersect_edges(float *points, float a, float b, float c, float d)
{
int i;
float t;
int numpoints = 0;
for (i=0; i<12; i++) {
t = -(a*edges[i][0][0] + b*edges[i][0][1] + c*edges[i][0][2] + d)
/ (a*edges[i][1][0] + b*edges[i][1][1] + c*edges[i][1][2]);
if ((t>0)&&(t<2)) {
points[numpoints * 3 + 0] = edges[i][0][0] + edges[i][1][0]*t;
points[numpoints * 3 + 1] = edges[i][0][1] + edges[i][1][1]*t;
points[numpoints * 3 + 2] = edges[i][0][2] + edges[i][1][2]*t;
numpoints++;
}
}
return numpoints;
}
static int convex(float *p0, float *up, float *a, float *b)
{
// Vec3 va = a-p0, vb = b-p0;
float va[3], vb[3], tmp[3];
VECSUB(va, a, p0);
VECSUB(vb, b, p0);
Crossf(tmp, va, vb);
return INPR(up, tmp) >= 0;
}
// copied from gpu_extension.c
static int is_pow2(int n)
{
return ((n)&(n-1))==0;
}
static int larger_pow2(int n)
{
if (is_pow2(n))
return n;
while(!is_pow2(n))
n= n&(n-1);
return n*2;
}
void draw_volume(Scene *scene, ARegion *ar, View3D *v3d, Base *base, GPUTexture *tex, int res[3])
{
Object *ob = base->object;
RegionView3D *rv3d= ar->regiondata;
float viewnormal[3];
int i, j, n;
float d, d0, dd;
float *points = NULL;
int numpoints = 0;
float cor[3] = {1.,1.,1.};
int gl_depth = 0, gl_blend = 0;
glGetBooleanv(GL_BLEND, (GLboolean *)&gl_blend);
glGetBooleanv(GL_DEPTH_TEST, (GLboolean *)&gl_depth);
wmLoadMatrix(rv3d->viewmat);
wmMultMatrix(ob->obmat);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// get view vector
VECCOPY(viewnormal, rv3d->viewinv[2]);
Normalize(viewnormal);
// find cube vertex that is closest to the viewer
for (i=0; i<8; i++) {
float x,y,z;
x = cv[i][0] + viewnormal[0];
y = cv[i][1] + viewnormal[1];
z = cv[i][2] + viewnormal[2];
if ((x>=-1.0f)&&(x<=1.0f)
&&(y>=-1.0f)&&(y<=1.0f)
&&(z>=-1.0f)&&(z<=1.0f)) {
break;
}
}
GPU_texture_bind(tex, 0);
if (!GLEW_ARB_texture_non_power_of_two) {
cor[0] = (float)res[0]/(float)larger_pow2(res[0]);
cor[1] = (float)res[1]/(float)larger_pow2(res[1]);
cor[2] = (float)res[2]/(float)larger_pow2(res[2]);
}
// our slices are defined by the plane equation a*x + b*y +c*z + d = 0
// (a,b,c), the plane normal, are given by viewdir
// d is the parameter along the view direction. the first d is given by
// inserting previously found vertex into the plane equation
d0 = -(viewnormal[0]*cv[i][0] + viewnormal[1]*cv[i][1] + viewnormal[2]*cv[i][2]);
dd = 2.0*d0/64.0f;
n = 0;
// printf("d0: %f, dd: %f\n", d0, dd);
points = MEM_callocN(sizeof(float)*12*3, "smoke_points_preview");
for (d = d0; d > -d0; d -= dd) {
float p0[3];
// intersect_edges returns the intersection points of all cube edges with
// the given plane that lie within the cube
numpoints = intersect_edges(points, viewnormal[0], viewnormal[1], viewnormal[2], d);
if (numpoints > 2) {
VECCOPY(p0, points);
// sort points to get a convex polygon
for(i = 1; i < numpoints - 1; i++)
{
for(j = i + 1; j < numpoints; j++)
{
if(convex(p0, viewnormal, &points[j * 3], &points[i * 3]))
{
float tmp2[3];
VECCOPY(tmp2, &points[i * 3]);
VECCOPY(&points[i * 3], &points[j * 3]);
VECCOPY(&points[j * 3], tmp2);
}
}
}
glBegin(GL_POLYGON);
for (i = 0; i < numpoints; i++) {
glColor3f(1.0, 1.0, 1.0);
glTexCoord3d((points[i * 3 + 0] + 1.0)*cor[0]/2.0, (points[i * 3 + 1] + 1)*cor[1]/2.0, (points[i * 3 + 2] + 1.0)*cor[2]/2.0);
glVertex3f(points[i * 3 + 0], points[i * 3 + 1], points[i * 3 + 2]);
}
glEnd();
}
n++;
}
GPU_texture_unbind(tex);
MEM_freeN(points);
if(!gl_blend)
glDisable(GL_BLEND);
if(gl_depth)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
}
}