This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_codegen.c

2081 lines
58 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Convert material node-trees to GLSL.
*/
#include "MEM_guardedalloc.h"
#include "DNA_customdata_types.h"
#include "DNA_image_types.h"
#include "DNA_material_types.h"
#include "DNA_node_types.h"
#include "BLI_blenlib.h"
#include "BLI_hash_mm2a.h"
#include "BLI_link_utils.h"
#include "BLI_utildefines.h"
#include "BLI_dynstr.h"
#include "BLI_ghash.h"
#include "BLI_threads.h"
#include "PIL_time.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_texture.h"
#include "GPU_uniformbuffer.h"
#include "BLI_sys_types.h" /* for intptr_t support */
#include "gpu_codegen.h"
#include <string.h>
#include <stdarg.h>
extern char datatoc_gpu_shader_material_glsl[];
extern char datatoc_gpu_shader_geometry_glsl[];
static char *glsl_material_library = NULL;
/* -------------------- GPUPass Cache ------------------ */
/**
* Internal shader cache: This prevent the shader recompilation / stall when
* using undo/redo AND also allows for GPUPass reuse if the Shader code is the
* same for 2 different Materials. Unused GPUPasses are free by Garbage collection.
*/
/* Only use one linklist that contains the GPUPasses grouped by hash. */
static GPUPass *pass_cache = NULL;
static SpinLock pass_cache_spin;
static uint32_t gpu_pass_hash(const char *frag_gen, const char *defs, GPUVertAttrLayers *attrs)
{
BLI_HashMurmur2A hm2a;
BLI_hash_mm2a_init(&hm2a, 0);
BLI_hash_mm2a_add(&hm2a, (uchar *)frag_gen, strlen(frag_gen));
if (attrs) {
for (int att_idx = 0; att_idx < attrs->totlayer; att_idx++) {
char *name = attrs->layer[att_idx].name;
BLI_hash_mm2a_add(&hm2a, (uchar *)name, strlen(name));
}
}
if (defs)
BLI_hash_mm2a_add(&hm2a, (uchar *)defs, strlen(defs));
return BLI_hash_mm2a_end(&hm2a);
}
/* Search by hash only. Return first pass with the same hash.
* There is hash collision if (pass->next && pass->next->hash == hash) */
static GPUPass *gpu_pass_cache_lookup(uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Could be optimized with a Lookup table. */
for (GPUPass *pass = pass_cache; pass; pass = pass->next) {
if (pass->hash == hash) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* Check all possible passes with the same hash. */
static GPUPass *gpu_pass_cache_resolve_collision(
GPUPass *pass, const char *vert, const char *geom, const char *frag, const char *defs, uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Collision, need to strcmp the whole shader. */
for (; pass && (pass->hash == hash); pass = pass->next) {
if ((defs != NULL) && (strcmp(pass->defines, defs) != 0)) { /* Pass */ }
else if ((geom != NULL) && (strcmp(pass->geometrycode, geom) != 0)) { /* Pass */ }
else if ((strcmp(pass->fragmentcode, frag) == 0) &&
(strcmp(pass->vertexcode, vert) == 0))
{
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* -------------------- GPU Codegen ------------------ */
/* type definitions and constants */
#define MAX_FUNCTION_NAME 64
#define MAX_PARAMETER 32
typedef enum {
FUNCTION_QUAL_IN,
FUNCTION_QUAL_OUT,
FUNCTION_QUAL_INOUT
} GPUFunctionQual;
typedef struct GPUFunction {
char name[MAX_FUNCTION_NAME];
eGPUType paramtype[MAX_PARAMETER];
GPUFunctionQual paramqual[MAX_PARAMETER];
int totparam;
} GPUFunction;
/* Indices match the eGPUType enum */
static const char *GPU_DATATYPE_STR[17] = {
"", "float", "vec2", "vec3", "vec4",
NULL, NULL, NULL, NULL, "mat3", NULL, NULL, NULL, NULL, NULL, NULL, "mat4",
};
/* GLSL code parsing for finding function definitions.
* These are stored in a hash for lookup when creating a material. */
static GHash *FUNCTION_HASH = NULL;
#if 0
static char *FUNCTION_PROTOTYPES = NULL;
static GPUShader *FUNCTION_LIB = NULL;
#endif
static int gpu_str_prefix(const char *str, const char *prefix)
{
while (*str && *prefix) {
if (*str != *prefix)
return 0;
str++;
prefix++;
}
return (*prefix == '\0');
}
static char *gpu_str_skip_token(char *str, char *token, int max)
{
int len = 0;
/* skip a variable/function name */
while (*str) {
if (ELEM(*str, ' ', '(', ')', ',', ';', '\t', '\n', '\r'))
break;
else {
if (token && len < max - 1) {
*token = *str;
token++;
len++;
}
str++;
}
}
if (token)
*token = '\0';
/* skip the next special characters:
* note the missing ')' */
while (*str) {
if (ELEM(*str, ' ', '(', ',', ';', '\t', '\n', '\r'))
str++;
else
break;
}
return str;
}
static void gpu_parse_functions_string(GHash *hash, char *code)
{
GPUFunction *function;
eGPUType type;
GPUFunctionQual qual;
int i;
while ((code = strstr(code, "void "))) {
function = MEM_callocN(sizeof(GPUFunction), "GPUFunction");
code = gpu_str_skip_token(code, NULL, 0);
code = gpu_str_skip_token(code, function->name, MAX_FUNCTION_NAME);
/* get parameters */
while (*code && *code != ')') {
/* test if it's an input or output */
qual = FUNCTION_QUAL_IN;
if (gpu_str_prefix(code, "out "))
qual = FUNCTION_QUAL_OUT;
if (gpu_str_prefix(code, "inout "))
qual = FUNCTION_QUAL_INOUT;
if ((qual != FUNCTION_QUAL_IN) || gpu_str_prefix(code, "in "))
code = gpu_str_skip_token(code, NULL, 0);
/* test for type */
type = GPU_NONE;
for (i = 1; i < ARRAY_SIZE(GPU_DATATYPE_STR); i++) {
if (GPU_DATATYPE_STR[i] && gpu_str_prefix(code, GPU_DATATYPE_STR[i])) {
type = i;
break;
}
}
if (!type && gpu_str_prefix(code, "samplerCube")) {
type = GPU_TEXCUBE;
}
if (!type && gpu_str_prefix(code, "sampler2DShadow")) {
type = GPU_SHADOW2D;
}
if (!type && gpu_str_prefix(code, "sampler1DArray")) {
type = GPU_TEX1D_ARRAY;
}
if (!type && gpu_str_prefix(code, "sampler2D")) {
type = GPU_TEX2D;
}
if (!type && gpu_str_prefix(code, "sampler3D")) {
type = GPU_TEX3D;
}
if (!type && gpu_str_prefix(code, "Closure")) {
type = GPU_CLOSURE;
}
if (type) {
/* add parameter */
code = gpu_str_skip_token(code, NULL, 0);
code = gpu_str_skip_token(code, NULL, 0);
function->paramqual[function->totparam] = qual;
function->paramtype[function->totparam] = type;
function->totparam++;
}
else {
fprintf(stderr, "GPU invalid function parameter in %s.\n", function->name);
break;
}
}
if (function->name[0] == '\0' || function->totparam == 0) {
fprintf(stderr, "GPU functions parse error.\n");
MEM_freeN(function);
break;
}
BLI_ghash_insert(hash, function->name, function);
}
}
#if 0
static char *gpu_generate_function_prototyps(GHash *hash)
{
DynStr *ds = BLI_dynstr_new();
GHashIterator *ghi;
GPUFunction *function;
char *name, *prototypes;
int a;
/* automatically generate function prototypes to add to the top of the
* generated code, to avoid have to add the actual code & recompile all */
ghi = BLI_ghashIterator_new(hash);
for (; !BLI_ghashIterator_done(ghi); BLI_ghashIterator_step(ghi)) {
name = BLI_ghashIterator_getValue(ghi);
function = BLI_ghashIterator_getValue(ghi);
BLI_dynstr_appendf(ds, "void %s(", name);
for (a = 0; a < function->totparam; a++) {
if (function->paramqual[a] == FUNCTION_QUAL_OUT)
BLI_dynstr_append(ds, "out ");
else if (function->paramqual[a] == FUNCTION_QUAL_INOUT)
BLI_dynstr_append(ds, "inout ");
if (function->paramtype[a] == GPU_TEX2D)
BLI_dynstr_append(ds, "sampler2D");
else if (function->paramtype[a] == GPU_SHADOW2D)
BLI_dynstr_append(ds, "sampler2DShadow");
else
BLI_dynstr_append(ds, GPU_DATATYPE_STR[function->paramtype[a]]);
# if 0
BLI_dynstr_appendf(ds, " param%d", a);
# endif
if (a != function->totparam - 1)
BLI_dynstr_append(ds, ", ");
}
BLI_dynstr_append(ds, ");\n");
}
BLI_dynstr_append(ds, "\n");
prototypes = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return prototypes;
}
#endif
static GPUFunction *gpu_lookup_function(const char *name)
{
if (!FUNCTION_HASH) {
FUNCTION_HASH = BLI_ghash_str_new("GPU_lookup_function gh");
gpu_parse_functions_string(FUNCTION_HASH, glsl_material_library);
}
return BLI_ghash_lookup(FUNCTION_HASH, (const void *)name);
}
void gpu_codegen_init(void)
{
GPU_code_generate_glsl_lib();
}
void gpu_codegen_exit(void)
{
extern Material defmaterial; /* render module abuse... */
if (defmaterial.gpumaterial.first)
GPU_material_free(&defmaterial.gpumaterial);
if (FUNCTION_HASH) {
BLI_ghash_free(FUNCTION_HASH, NULL, MEM_freeN);
FUNCTION_HASH = NULL;
}
GPU_shader_free_builtin_shaders();
if (glsl_material_library) {
MEM_freeN(glsl_material_library);
glsl_material_library = NULL;
}
#if 0
if (FUNCTION_PROTOTYPES) {
MEM_freeN(FUNCTION_PROTOTYPES);
FUNCTION_PROTOTYPES = NULL;
}
if (FUNCTION_LIB) {
GPU_shader_free(FUNCTION_LIB);
FUNCTION_LIB = NULL;
}
#endif
}
/* GLSL code generation */
static void codegen_convert_datatype(DynStr *ds, int from, int to, const char *tmp, int id)
{
char name[1024];
BLI_snprintf(name, sizeof(name), "%s%d", tmp, id);
if (from == to) {
BLI_dynstr_append(ds, name);
}
else if (to == GPU_FLOAT) {
if (from == GPU_VEC4)
BLI_dynstr_appendf(ds, "convert_rgba_to_float(%s)", name);
else if (from == GPU_VEC3)
BLI_dynstr_appendf(ds, "(%s.r + %s.g + %s.b) / 3.0", name, name, name);
else if (from == GPU_VEC2)
BLI_dynstr_appendf(ds, "%s.r", name);
}
else if (to == GPU_VEC2) {
if (from == GPU_VEC4)
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, %s.a)", name, name, name, name);
else if (from == GPU_VEC3)
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, 1.0)", name, name, name);
else if (from == GPU_FLOAT)
BLI_dynstr_appendf(ds, "vec2(%s, 1.0)", name);
}
else if (to == GPU_VEC3) {
if (from == GPU_VEC4)
BLI_dynstr_appendf(ds, "%s.rgb", name);
else if (from == GPU_VEC2)
BLI_dynstr_appendf(ds, "vec3(%s.r, %s.r, %s.r)", name, name, name);
else if (from == GPU_FLOAT)
BLI_dynstr_appendf(ds, "vec3(%s, %s, %s)", name, name, name);
}
else if (to == GPU_VEC4) {
if (from == GPU_VEC3)
BLI_dynstr_appendf(ds, "vec4(%s, 1.0)", name);
else if (from == GPU_VEC2)
BLI_dynstr_appendf(ds, "vec4(%s.r, %s.r, %s.r, %s.g)", name, name, name, name);
else if (from == GPU_FLOAT)
BLI_dynstr_appendf(ds, "vec4(%s, %s, %s, 1.0)", name, name, name);
}
else if (to == GPU_CLOSURE) {
if (from == GPU_VEC4)
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
else if (from == GPU_VEC3)
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
else if (from == GPU_VEC2)
BLI_dynstr_appendf(ds, "closure_emission(%s.rrr)", name);
else if (from == GPU_FLOAT)
BLI_dynstr_appendf(ds, "closure_emission(vec3(%s, %s, %s))", name, name, name);
}
else {
BLI_dynstr_append(ds, name);
}
}
static void codegen_print_datatype(DynStr *ds, const eGPUType type, float *data)
{
int i;
BLI_dynstr_appendf(ds, "%s(", GPU_DATATYPE_STR[type]);
for (i = 0; i < type; i++) {
BLI_dynstr_appendf(ds, "%.12f", data[i]);
if (i == type - 1)
BLI_dynstr_append(ds, ")");
else
BLI_dynstr_append(ds, ", ");
}
}
static int codegen_input_has_texture(GPUInput *input)
{
if (input->link)
return 0;
else
return (input->source == GPU_SOURCE_TEX);
}
const char *GPU_builtin_name(eGPUBuiltin builtin)
{
if (builtin == GPU_VIEW_MATRIX)
return "unfviewmat";
else if (builtin == GPU_OBJECT_MATRIX)
return "unfobmat";
else if (builtin == GPU_INVERSE_VIEW_MATRIX)
return "unfinvviewmat";
else if (builtin == GPU_INVERSE_OBJECT_MATRIX)
return "unfinvobmat";
else if (builtin == GPU_INVERSE_NORMAL_MATRIX)
return "unfinvnormat";
else if (builtin == GPU_LOC_TO_VIEW_MATRIX)
return "unflocaltoviewmat";
else if (builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX)
return "unfinvlocaltoviewmat";
else if (builtin == GPU_VIEW_POSITION)
return "varposition";
else if (builtin == GPU_VIEW_NORMAL)
return "varnormal";
else if (builtin == GPU_OBCOLOR)
return "unfobcolor";
else if (builtin == GPU_AUTO_BUMPSCALE)
return "unfobautobumpscale";
else if (builtin == GPU_CAMERA_TEXCO_FACTORS)
return "unfcameratexfactors";
else if (builtin == GPU_PARTICLE_SCALAR_PROPS)
return "unfparticlescalarprops";
else if (builtin == GPU_PARTICLE_LOCATION)
return "unfparticleco";
else if (builtin == GPU_PARTICLE_VELOCITY)
return "unfparticlevel";
else if (builtin == GPU_PARTICLE_ANG_VELOCITY)
return "unfparticleangvel";
else if (builtin == GPU_OBJECT_INFO)
return "unfobjectinfo";
else if (builtin == GPU_VOLUME_DENSITY)
return "sampdensity";
else if (builtin == GPU_VOLUME_FLAME)
return "sampflame";
else if (builtin == GPU_VOLUME_TEMPERATURE)
return "unftemperature";
else if (builtin == GPU_BARYCENTRIC_TEXCO)
return "unfbarycentrictex";
else if (builtin == GPU_BARYCENTRIC_DIST)
return "unfbarycentricdist";
else
return "";
}
/* assign only one texid per buffer to avoid sampling the same texture twice */
static void codegen_set_texid(GHash *bindhash, GPUInput *input, int *texid, void *key)
{
if (BLI_ghash_haskey(bindhash, key)) {
/* Reuse existing texid */
input->texid = POINTER_AS_INT(BLI_ghash_lookup(bindhash, key));
}
else {
/* Allocate new texid */
input->texid = *texid;
(*texid)++;
input->bindtex = true;
BLI_ghash_insert(bindhash, key, POINTER_FROM_INT(input->texid));
}
}
static void codegen_set_unique_ids(ListBase *nodes)
{
GHash *bindhash;
GPUNode *node;
GPUInput *input;
GPUOutput *output;
int id = 1, texid = 0;
bindhash = BLI_ghash_ptr_new("codegen_set_unique_ids1 gh");
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
/* set id for unique names of uniform variables */
input->id = id++;
/* set texid used for settings texture slot */
if (codegen_input_has_texture(input)) {
input->bindtex = false;
if (input->ima) {
/* input is texture from image */
codegen_set_texid(bindhash, input, &texid, input->ima);
}
else if (input->coba) {
/* input is color band texture, check coba pointer */
codegen_set_texid(bindhash, input, &texid, input->coba);
}
else {
/* Either input->ima or input->coba should be non-NULL. */
BLI_assert(0);
}
}
}
for (output = node->outputs.first; output; output = output->next) {
/* set id for unique names of tmp variables storing output */
output->id = id++;
}
}
BLI_ghash_free(bindhash, NULL, NULL);
}
/**
* It will create an UBO for GPUMaterial if there is any GPU_DYNAMIC_UBO.
*/
static int codegen_process_uniforms_functions(GPUMaterial *material, DynStr *ds, ListBase *nodes)
{
GPUNode *node;
GPUInput *input;
const char *name;
int builtins = 0;
ListBase ubo_inputs = {NULL, NULL};
/* print uniforms */
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_TEX) {
/* create exactly one sampler for each texture */
if (codegen_input_has_texture(input) && input->bindtex) {
BLI_dynstr_appendf(
ds, "uniform %s samp%d;\n",
(input->coba) ? "sampler1DArray" : "sampler2D",
input->texid);
}
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* only define each builtin uniform/varying once */
if (!(builtins & input->builtin)) {
builtins |= input->builtin;
name = GPU_builtin_name(input->builtin);
if (gpu_str_prefix(name, "samp")) {
if ((input->builtin == GPU_VOLUME_DENSITY) ||
(input->builtin == GPU_VOLUME_FLAME))
{
BLI_dynstr_appendf(ds, "uniform sampler3D %s;\n", name);
}
}
else if (gpu_str_prefix(name, "unf")) {
BLI_dynstr_appendf(
ds, "uniform %s %s;\n",
GPU_DATATYPE_STR[input->type], name);
}
else {
BLI_dynstr_appendf(
ds, "in %s %s;\n",
GPU_DATATYPE_STR[input->type], name);
}
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
/* Add other struct here if needed. */
BLI_dynstr_appendf(ds, "Closure strct%d = CLOSURE_DEFAULT;\n", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
if (!input->link) {
/* We handle the UBOuniforms separately. */
BLI_addtail(&ubo_inputs, BLI_genericNodeN(input));
}
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(
ds, "const %s cons%d = ",
GPU_DATATYPE_STR[input->type], input->id);
codegen_print_datatype(ds, input->type, input->vec);
BLI_dynstr_append(ds, ";\n");
}
else if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
BLI_dynstr_appendf(
ds, "in %s var%d;\n",
GPU_DATATYPE_STR[input->type], input->attr_id);
}
}
}
/* Handle the UBO block separately. */
if ((material != NULL) && !BLI_listbase_is_empty(&ubo_inputs)) {
GPU_material_uniform_buffer_create(material, &ubo_inputs);
/* Inputs are sorted */
BLI_dynstr_appendf(ds, "\nlayout (std140) uniform %s {\n", GPU_UBO_BLOCK_NAME);
for (LinkData *link = ubo_inputs.first; link; link = link->next) {
input = link->data;
BLI_dynstr_appendf(
ds, "\t%s unf%d;\n",
GPU_DATATYPE_STR[input->type], input->id);
}
BLI_dynstr_append(ds, "};\n");
BLI_freelistN(&ubo_inputs);
}
BLI_dynstr_append(ds, "\n");
return builtins;
}
static void codegen_declare_tmps(DynStr *ds, ListBase *nodes)
{
GPUNode *node;
GPUOutput *output;
for (node = nodes->first; node; node = node->next) {
/* declare temporary variables for node output storage */
for (output = node->outputs.first; output; output = output->next) {
if (output->type == GPU_CLOSURE) {
BLI_dynstr_appendf(
ds, "\tClosure tmp%d;\n", output->id);
}
else {
BLI_dynstr_appendf(
ds, "\t%s tmp%d;\n",
GPU_DATATYPE_STR[output->type], output->id);
}
}
}
BLI_dynstr_append(ds, "\n");
}
static void codegen_call_functions(DynStr *ds, ListBase *nodes, GPUOutput *finaloutput)
{
GPUNode *node;
GPUInput *input;
GPUOutput *output;
for (node = nodes->first; node; node = node->next) {
BLI_dynstr_appendf(ds, "\t%s(", node->name);
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_TEX) {
BLI_dynstr_appendf(ds, "samp%d", input->texid);
}
else if (input->source == GPU_SOURCE_OUTPUT) {
codegen_convert_datatype(
ds, input->link->output->type, input->type,
"tmp", input->link->output->id);
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* TODO(fclem) get rid of that. */
if (input->builtin == GPU_INVERSE_VIEW_MATRIX)
BLI_dynstr_append(ds, "viewinv");
else if (input->builtin == GPU_VIEW_MATRIX)
BLI_dynstr_append(ds, "viewmat");
else if (input->builtin == GPU_CAMERA_TEXCO_FACTORS)
BLI_dynstr_append(ds, "camtexfac");
else if (input->builtin == GPU_LOC_TO_VIEW_MATRIX)
BLI_dynstr_append(ds, "localtoviewmat");
else if (input->builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX)
BLI_dynstr_append(ds, "invlocaltoviewmat");
else if (input->builtin == GPU_BARYCENTRIC_DIST)
BLI_dynstr_append(ds, "barycentricDist");
else if (input->builtin == GPU_BARYCENTRIC_TEXCO)
BLI_dynstr_append(ds, "barytexco");
else if (input->builtin == GPU_OBJECT_MATRIX)
BLI_dynstr_append(ds, "objmat");
else if (input->builtin == GPU_INVERSE_OBJECT_MATRIX)
BLI_dynstr_append(ds, "objinv");
else if (input->builtin == GPU_INVERSE_NORMAL_MATRIX)
BLI_dynstr_append(ds, "norinv");
else if (input->builtin == GPU_VIEW_POSITION)
BLI_dynstr_append(ds, "viewposition");
else if (input->builtin == GPU_VIEW_NORMAL)
BLI_dynstr_append(ds, "facingnormal");
else
BLI_dynstr_append(ds, GPU_builtin_name(input->builtin));
}
else if (input->source == GPU_SOURCE_STRUCT) {
BLI_dynstr_appendf(ds, "strct%d", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
BLI_dynstr_appendf(ds, "unf%d", input->id);
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(ds, "cons%d", input->id);
}
else if (input->source == GPU_SOURCE_ATTR) {
BLI_dynstr_appendf(ds, "var%d", input->attr_id);
}
BLI_dynstr_append(ds, ", ");
}
for (output = node->outputs.first; output; output = output->next) {
BLI_dynstr_appendf(ds, "tmp%d", output->id);
if (output->next)
BLI_dynstr_append(ds, ", ");
}
BLI_dynstr_append(ds, ");\n");
}
BLI_dynstr_appendf(ds, "\n\treturn tmp%d", finaloutput->id);
BLI_dynstr_append(ds, ";\n");
}
static char *code_generate_fragment(GPUMaterial *material, ListBase *nodes, GPUOutput *output, int *rbuiltins)
{
DynStr *ds = BLI_dynstr_new();
char *code;
int builtins;
#if 0
BLI_dynstr_append(ds, FUNCTION_PROTOTYPES);
#endif
codegen_set_unique_ids(nodes);
*rbuiltins = builtins = codegen_process_uniforms_functions(material, ds, nodes);
if (builtins & GPU_BARYCENTRIC_TEXCO)
BLI_dynstr_append(ds, "in vec2 barycentricTexCo;\n");
if (builtins & GPU_BARYCENTRIC_DIST)
BLI_dynstr_append(ds, "flat in vec3 barycentricDist;\n");
BLI_dynstr_append(ds, "Closure nodetree_exec(void)\n{\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tvec2 barytexco = vec2((fract(barycentricTexCo.y) != 0.0)\n"
"\t ? barycentricTexCo.x\n"
"\t : 1.0 - barycentricTexCo.x,\n"
"\t 0.0);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tvec2 barytexco = barycentricTexCo;\n");
BLI_dynstr_append(ds, "#endif\n");
}
/* TODO(fclem) get rid of that. */
if (builtins & GPU_VIEW_MATRIX)
BLI_dynstr_append(ds, "\t#define viewmat ViewMatrix\n");
if (builtins & GPU_CAMERA_TEXCO_FACTORS)
BLI_dynstr_append(ds, "\t#define camtexfac CameraTexCoFactors\n");
if (builtins & GPU_OBJECT_MATRIX)
BLI_dynstr_append(ds, "\t#define objmat ModelMatrix\n");
if (builtins & GPU_INVERSE_OBJECT_MATRIX)
BLI_dynstr_append(ds, "\t#define objinv ModelMatrixInverse\n");
if (builtins & GPU_INVERSE_NORMAL_MATRIX)
BLI_dynstr_append(ds, "\t#define norinv NormalMatrixInverse\n");
if (builtins & GPU_INVERSE_VIEW_MATRIX)
BLI_dynstr_append(ds, "\t#define viewinv ViewMatrixInverse\n");
if (builtins & GPU_LOC_TO_VIEW_MATRIX)
BLI_dynstr_append(ds, "\t#define localtoviewmat ModelViewMatrix\n");
if (builtins & GPU_INVERSE_LOC_TO_VIEW_MATRIX)
BLI_dynstr_append(ds, "\t#define invlocaltoviewmat ModelViewMatrixInverse\n");
if (builtins & GPU_VIEW_NORMAL)
BLI_dynstr_append(ds, "\tvec3 facingnormal = gl_FrontFacing? viewNormal: -viewNormal;\n");
if (builtins & GPU_VIEW_POSITION)
BLI_dynstr_append(ds, "\t#define viewposition viewPosition\n");
codegen_declare_tmps(ds, nodes);
codegen_call_functions(ds, nodes, output);
BLI_dynstr_append(ds, "}\n");
/* XXX This cannot go into gpu_shader_material.glsl because main() would be parsed and generate error */
/* Old glsl mode compat. */
BLI_dynstr_append(ds, "#ifndef NODETREE_EXEC\n");
BLI_dynstr_append(ds, "out vec4 fragColor;\n");
BLI_dynstr_append(ds, "void main()\n");
BLI_dynstr_append(ds, "{\n");
BLI_dynstr_append(ds, "\tClosure cl = nodetree_exec();\n");
BLI_dynstr_append(ds, "\tfragColor = vec4(cl.radiance, cl.opacity);\n");
BLI_dynstr_append(ds, "}\n");
BLI_dynstr_append(ds, "#endif\n\n");
/* create shader */
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) printf("%s\n", code);
#endif
return code;
}
static const char *attr_prefix_get(CustomDataType type)
{
switch (type) {
case CD_ORCO: return "orco";
case CD_MTFACE: return "u";
case CD_TANGENT: return "t";
case CD_MCOL: return "c";
case CD_AUTO_FROM_NAME: return "a";
default: BLI_assert(false && "GPUVertAttr Prefix type not found : This should not happen!"); return "";
}
}
static char *code_generate_vertex(ListBase *nodes, const char *vert_code, bool use_geom)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* Hairs uv and col attributes are passed by bufferTextures. */
BLI_dynstr_append(
ds,
"#ifdef HAIR_SHADER\n"
"#define DEFINE_ATTR(type, attr) uniform samplerBuffer attr\n"
"#else\n"
"#define DEFINE_ATTR(type, attr) in type attr\n"
"#endif\n"
);
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
/* XXX FIXME : see notes in mesh_render_data_create() */
/* NOTE : Replicate changes to mesh_render_data_create() in draw_cache_impl_mesh.c */
if (input->attr_type == CD_ORCO) {
/* OPTI : orco is computed from local positions, but only if no modifier is present. */
BLI_dynstr_append(ds, "uniform vec3 OrcoTexCoFactors[2];\n");
BLI_dynstr_append(ds, "DEFINE_ATTR(vec4, orco);\n");
}
else if (input->attr_name[0] == '\0') {
BLI_dynstr_appendf(ds, "DEFINE_ATTR(%s, %s);\n", GPU_DATATYPE_STR[input->type], attr_prefix_get(input->attr_type));
BLI_dynstr_appendf(ds, "#define att%d %s\n", input->attr_id, attr_prefix_get(input->attr_type));
}
else {
uint hash = BLI_ghashutil_strhash_p(input->attr_name);
BLI_dynstr_appendf(
ds, "DEFINE_ATTR(%s, %s%u);\n",
GPU_DATATYPE_STR[input->type], attr_prefix_get(input->attr_type), hash);
BLI_dynstr_appendf(
ds, "#define att%d %s%u\n",
input->attr_id, attr_prefix_get(input->attr_type), hash);
/* Auto attribute can be vertex color byte buffer.
* We need to know and convert them to linear space in VS. */
if (input->attr_type == CD_AUTO_FROM_NAME) {
BLI_dynstr_appendf(ds, "uniform bool ba%u;\n", hash);
BLI_dynstr_appendf(ds, "#define att%d_is_srgb ba%u\n", input->attr_id, hash);
}
}
BLI_dynstr_appendf(
ds, "out %s var%d%s;\n",
GPU_DATATYPE_STR[input->type], input->attr_id, use_geom ? "g" : "");
}
}
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_appendf(
ds, "out vec2 barycentricTexCo%s;\n",
use_geom ? "g" : "");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "out vec3 barycentricPosg;\n");
}
BLI_dynstr_append(ds, "\n");
BLI_dynstr_append(
ds,
"#define USE_ATTR\n"
"uniform mat3 NormalMatrix;\n"
"uniform mat4 ModelMatrixInverse;\n"
"uniform mat4 ModelMatrix;\n"
"vec3 srgb_to_linear_attr(vec3 c) {\n"
"\tc = max(c, vec3(0.0));\n"
"\tvec3 c1 = c * (1.0 / 12.92);\n"
"\tvec3 c2 = pow((c + 0.055) * (1.0 / 1.055), vec3(2.4));\n"
"\treturn mix(c1, c2, step(vec3(0.04045), c));\n"
"}\n\n"
);
/* Prototype because defined later. */
BLI_dynstr_append(
ds,
"vec2 hair_get_customdata_vec2(const samplerBuffer);\n"
"vec3 hair_get_customdata_vec3(const samplerBuffer);\n"
"vec4 hair_get_customdata_vec4(const samplerBuffer);\n"
"vec3 hair_get_strand_pos(void);\n"
"int hair_get_base_id(void);\n"
"\n"
);
BLI_dynstr_append(ds, "void pass_attr(in vec3 position) {\n");
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
/* To match cycles without breaking into individual segment we encode if we need to invert
* the first component into the second component. We invert if the barycentricTexCo.y
* is NOT 0.0 or 1.0. */
BLI_dynstr_append(
ds, "\tint _base_id = hair_get_base_id();\n");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.x = float((_base_id %% 2) == 1);\n",
use_geom ? "g" : "");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.y = float(((_base_id %% 4) %% 3) > 0);\n",
use_geom ? "g" : "");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = position;\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
if (input->attr_type == CD_TANGENT) {
/* Not supported by hairs */
BLI_dynstr_appendf(
ds, "\tvar%d%s = vec4(0.0);\n",
input->attr_id, use_geom ? "g" : "");
}
else if (input->attr_type == CD_ORCO) {
BLI_dynstr_appendf(
ds, "\tvar%d%s = OrcoTexCoFactors[0] + (ModelMatrixInverse * vec4(hair_get_strand_pos(), 1.0)).xyz * OrcoTexCoFactors[1];\n",
input->attr_id, use_geom ? "g" : "");
/* TODO: fix ORCO with modifiers. */
}
else {
BLI_dynstr_appendf(
ds, "\tvar%d%s = hair_get_customdata_%s(att%d);\n",
input->attr_id, use_geom ? "g" : "", GPU_DATATYPE_STR[input->type], input->attr_id);
}
}
}
}
BLI_dynstr_append(ds, "#else /* MESH_SHADER */\n");
/* GPU_BARYCENTRIC_TEXCO cannot be computed based on gl_VertexID
* for MESH_SHADER because of indexed drawing. In this case a
* geometry shader is needed. */
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = (ModelMatrix * vec4(position, 1.0)).xyz;\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
if (input->attr_type == CD_TANGENT) { /* silly exception */
BLI_dynstr_appendf(
ds, "\tvar%d%s.xyz = NormalMatrix * att%d.xyz;\n",
input->attr_id, use_geom ? "g" : "", input->attr_id);
BLI_dynstr_appendf(
ds, "\tvar%d%s.w = att%d.w;\n",
input->attr_id, use_geom ? "g" : "", input->attr_id);
/* Normalize only if vector is not null. */
BLI_dynstr_appendf(
ds, "\tfloat lvar%d = dot(var%d%s.xyz, var%d%s.xyz);\n",
input->attr_id, input->attr_id, use_geom ? "g" : "", input->attr_id, use_geom ? "g" : "");
BLI_dynstr_appendf(
ds, "\tvar%d%s.xyz *= (lvar%d > 0.0) ? inversesqrt(lvar%d) : 1.0;\n",
input->attr_id, use_geom ? "g" : "", input->attr_id, input->attr_id);
}
else if (input->attr_type == CD_ORCO) {
BLI_dynstr_appendf(
ds, "\tvar%d%s = OrcoTexCoFactors[0] + position * OrcoTexCoFactors[1];\n",
input->attr_id, use_geom ? "g" : "");
/* See mesh_create_loop_orco() for explanation. */
BLI_dynstr_appendf(
ds, "\tif (orco.w == 0.0) { var%d%s = orco.xyz * 0.5 + 0.5; }\n",
input->attr_id, use_geom ? "g" : "");
}
else if (input->attr_type == CD_MCOL) {
BLI_dynstr_appendf(
ds, "\tvar%d%s = srgb_to_linear_attr(att%d);\n",
input->attr_id, use_geom ? "g" : "", input->attr_id);
}
else if (input->attr_type == CD_AUTO_FROM_NAME) {
BLI_dynstr_appendf(
ds, "\tvar%d%s = (att%d_is_srgb) ? srgb_to_linear_attr(att%d) : att%d;\n",
input->attr_id, use_geom ? "g" : "",
input->attr_id, input->attr_id, input->attr_id);
}
else {
BLI_dynstr_appendf(
ds, "\tvar%d%s = att%d;\n",
input->attr_id, use_geom ? "g" : "", input->attr_id);
}
}
}
}
BLI_dynstr_append(ds, "#endif /* HAIR_SHADER */\n");
BLI_dynstr_append(ds, "}\n");
if (use_geom) {
/* XXX HACK: Eevee specific. */
char *vert_new, *vert_new2;
vert_new = BLI_str_replaceN(vert_code, "worldPosition", "worldPositiong");
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewPosition", "viewPositiong");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "worldNormal", "worldNormalg");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewNormal", "viewNormalg");
MEM_freeN(vert_new2);
BLI_dynstr_append(ds, vert_new);
MEM_freeN(vert_new);
}
else {
BLI_dynstr_append(ds, vert_code);
}
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) printf("%s\n", code);
#endif
return code;
}
static char *code_generate_geometry(ListBase *nodes, const char *geom_code, const char *defines)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* XXX we should not make specific eevee cases here. */
bool is_hair_shader = (strstr(defines, "HAIR_SHADER") != NULL);
/* Create prototype because attributes cannot be declared before layout. */
BLI_dynstr_append(ds, "void pass_attr(in int vert);\n");
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2);\n");
BLI_dynstr_append(ds, "#define USE_ATTR\n");
/* Generate varying declarations. */
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
BLI_dynstr_appendf(
ds, "in %s var%dg[];\n",
GPU_DATATYPE_STR[input->type],
input->attr_id);
BLI_dynstr_appendf(
ds, "out %s var%d;\n",
GPU_DATATYPE_STR[input->type],
input->attr_id);
}
}
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "in vec2 barycentricTexCog[];\n");
BLI_dynstr_append(ds, "#endif\n");
BLI_dynstr_append(ds, "out vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "in vec3 barycentricPosg[];\n");
BLI_dynstr_append(ds, "flat out vec3 barycentricDist;\n");
}
if (geom_code == NULL) {
/* Force geometry usage if GPU_BARYCENTRIC_DIST or GPU_BARYCENTRIC_TEXCO are used.
* Note: GPU_BARYCENTRIC_TEXCO only requires it if the shader is not drawing hairs. */
if ((builtins & (GPU_BARYCENTRIC_DIST | GPU_BARYCENTRIC_TEXCO)) == 0 || is_hair_shader) {
/* Early out */
BLI_dynstr_free(ds);
return NULL;
}
else {
/* Force geom shader usage */
/* TODO put in external file. */
BLI_dynstr_append(ds, "layout(triangles) in;\n");
BLI_dynstr_append(ds, "layout(triangle_strip, max_vertices=3) out;\n");
BLI_dynstr_append(ds, "in vec3 worldPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 viewPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 worldNormalg[];\n");
BLI_dynstr_append(ds, "in vec3 viewNormalg[];\n");
BLI_dynstr_append(ds, "out vec3 worldPosition;\n");
BLI_dynstr_append(ds, "out vec3 viewPosition;\n");
BLI_dynstr_append(ds, "out vec3 worldNormal;\n");
BLI_dynstr_append(ds, "out vec3 viewNormal;\n");
BLI_dynstr_append(ds, "void main(){\n");
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tcalc_barycentric_distances(barycentricPosg[0], barycentricPosg[1], barycentricPosg[2]);\n");
}
BLI_dynstr_append(ds, "\tgl_Position = gl_in[0].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(0);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "\tgl_Position = gl_in[1].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(1);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "\tgl_Position = gl_in[2].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(2);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "};\n");
}
}
else {
BLI_dynstr_append(ds, geom_code);
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2) {\n");
BLI_dynstr_append(ds, "\tvec3 edge21 = pos2 - pos1;\n");
BLI_dynstr_append(ds, "\tvec3 edge10 = pos1 - pos0;\n");
BLI_dynstr_append(ds, "\tvec3 edge02 = pos0 - pos2;\n");
BLI_dynstr_append(ds, "\tvec3 d21 = normalize(edge21);\n");
BLI_dynstr_append(ds, "\tvec3 d10 = normalize(edge10);\n");
BLI_dynstr_append(ds, "\tvec3 d02 = normalize(edge02);\n");
BLI_dynstr_append(ds, "\tfloat d = dot(d21, edge02);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.x = sqrt(dot(edge02, edge02) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d02, edge10);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.y = sqrt(dot(edge10, edge10) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d10, edge21);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.z = sqrt(dot(edge21, edge21) - d * d);\n");
BLI_dynstr_append(ds, "}\n");
}
/* Generate varying assignments. */
BLI_dynstr_append(ds, "void pass_attr(in int vert) {\n");
/* XXX HACK: Eevee specific. */
if (geom_code == NULL) {
BLI_dynstr_append(ds, "\tworldPosition = worldPositiong[vert];\n");
BLI_dynstr_append(ds, "\tviewPosition = viewPositiong[vert];\n");
BLI_dynstr_append(ds, "\tworldNormal = worldNormalg[vert];\n");
BLI_dynstr_append(ds, "\tviewNormal = viewNormalg[vert];\n");
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo = barycentricTexCog[vert];\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.x = float((vert % 3) == 0);\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.y = float((vert % 3) == 1);\n");
BLI_dynstr_append(ds, "#endif\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
/* TODO let shader choose what to do depending on what the attribute is. */
BLI_dynstr_appendf(ds, "\tvar%d = var%dg[vert];\n", input->attr_id, input->attr_id);
}
}
}
BLI_dynstr_append(ds, "}\n");
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return code;
}
void GPU_code_generate_glsl_lib(void)
{
DynStr *ds;
/* only initialize the library once */
if (glsl_material_library)
return;
ds = BLI_dynstr_new();
BLI_dynstr_append(ds, datatoc_gpu_shader_material_glsl);
glsl_material_library = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
}
/* GPU pass binding/unbinding */
GPUShader *GPU_pass_shader_get(GPUPass *pass)
{
return pass->shader;
}
void GPU_nodes_extract_dynamic_inputs(GPUShader *shader, ListBase *inputs, ListBase *nodes)
{
GPUNode *node;
GPUInput *next, *input;
BLI_listbase_clear(inputs);
if (!shader)
return;
for (node = nodes->first; node; node = node->next) {
int z = 0;
for (input = node->inputs.first; input; input = next, z++) {
next = input->next;
/* attributes don't need to be bound, they already have
* an id that the drawing functions will use. Builtins have
* constant names. */
if (ELEM(input->source, GPU_SOURCE_ATTR, GPU_SOURCE_BUILTIN)) {
continue;
}
if (input->source == GPU_SOURCE_TEX)
BLI_snprintf(input->shadername, sizeof(input->shadername), "samp%d", input->texid);
else {
BLI_snprintf(input->shadername, sizeof(input->shadername), "unf%d", input->id);
}
if (input->source == GPU_SOURCE_TEX) {
if (input->bindtex) {
input->shaderloc = GPU_shader_get_uniform_ensure(shader, input->shadername);
/* extract nodes */
BLI_remlink(&node->inputs, input);
BLI_addtail(inputs, input);
}
}
}
}
}
/* Node Link Functions */
static GPUNodeLink *GPU_node_link_create(void)
{
GPUNodeLink *link = MEM_callocN(sizeof(GPUNodeLink), "GPUNodeLink");
link->users++;
return link;
}
static void gpu_node_link_free(GPUNodeLink *link)
{
link->users--;
if (link->users < 0)
fprintf(stderr, "GPU_node_link_free: negative refcount\n");
if (link->users == 0) {
if (link->output)
link->output->link = NULL;
MEM_freeN(link);
}
}
/* Node Functions */
static GPUNode *GPU_node_begin(const char *name)
{
GPUNode *node = MEM_callocN(sizeof(GPUNode), "GPUNode");
node->name = name;
return node;
}
static void gpu_node_input_link(GPUNode *node, GPUNodeLink *link, const eGPUType type)
{
GPUInput *input;
GPUNode *outnode;
const char *name;
if (link->link_type == GPU_NODE_LINK_OUTPUT) {
outnode = link->output->node;
name = outnode->name;
input = outnode->inputs.first;
if ((STR_ELEM(name, "set_value", "set_rgb", "set_rgba")) &&
(input->type == type))
{
input = MEM_dupallocN(outnode->inputs.first);
if (input->link)
input->link->users++;
BLI_addtail(&node->inputs, input);
return;
}
}
input = MEM_callocN(sizeof(GPUInput), "GPUInput");
input->node = node;
input->type = type;
switch (link->link_type) {
case GPU_NODE_LINK_BUILTIN:
input->source = GPU_SOURCE_BUILTIN;
input->builtin = link->builtin;
break;
case GPU_NODE_LINK_OUTPUT:
input->source = GPU_SOURCE_OUTPUT;
input->link = link;
link->users++;
break;
case GPU_NODE_LINK_COLORBAND:
input->source = GPU_SOURCE_TEX;
input->coba = link->coba;
break;
case GPU_NODE_LINK_IMAGE_BLENDER:
input->source = GPU_SOURCE_TEX;
input->ima = link->ima;
input->iuser = link->iuser;
input->image_isdata = link->image_isdata;
break;
case GPU_NODE_LINK_ATTR:
input->source = GPU_SOURCE_ATTR;
input->attr_type = link->attr_type;
BLI_strncpy(input->attr_name, link->attr_name, sizeof(input->attr_name));
break;
case GPU_NODE_LINK_CONSTANT:
input->source = (type == GPU_CLOSURE) ? GPU_SOURCE_STRUCT : GPU_SOURCE_CONSTANT;
break;
case GPU_NODE_LINK_UNIFORM:
input->source = GPU_SOURCE_UNIFORM;
break;
default:
break;
}
if (ELEM(input->source, GPU_SOURCE_CONSTANT, GPU_SOURCE_UNIFORM)) {
memcpy(input->vec, link->data, type * sizeof(float));
}
if (link->link_type != GPU_NODE_LINK_OUTPUT) {
MEM_freeN(link);
}
BLI_addtail(&node->inputs, input);
}
static const char *gpu_uniform_set_function_from_type(eNodeSocketDatatype type)
{
switch (type) {
/* For now INT is supported as float. */
case SOCK_INT:
case SOCK_FLOAT:
return "set_value";
case SOCK_VECTOR:
return "set_rgb";
case SOCK_RGBA:
return "set_rgba";
default:
BLI_assert(!"No gpu function for non-supported eNodeSocketDatatype");
return NULL;
}
}
/**
* Link stack uniform buffer.
* This is called for the input/output sockets that are note connected.
*/
static GPUNodeLink *gpu_uniformbuffer_link(
GPUMaterial *mat, bNode *node, GPUNodeStack *stack, const int index, const eNodeSocketInOut in_out)
{
bNodeSocket *socket;
if (in_out == SOCK_IN) {
socket = BLI_findlink(&node->inputs, index);
}
else {
socket = BLI_findlink(&node->outputs, index);
}
BLI_assert(socket != NULL);
BLI_assert(socket->in_out == in_out);
if ((socket->flag & SOCK_HIDE_VALUE) == 0) {
GPUNodeLink *link;
switch (socket->type) {
case SOCK_FLOAT:
{
bNodeSocketValueFloat *socket_data = socket->default_value;
link = GPU_uniform(&socket_data->value);
break;
}
case SOCK_VECTOR:
{
bNodeSocketValueVector *socket_data = socket->default_value;
link = GPU_uniform(socket_data->value);
break;
}
case SOCK_RGBA:
{
bNodeSocketValueRGBA *socket_data = socket->default_value;
link = GPU_uniform(socket_data->value);
break;
}
default:
return NULL;
break;
}
if (in_out == SOCK_IN) {
GPU_link(mat, gpu_uniform_set_function_from_type(socket->type), link, &stack->link);
}
return link;
}
return NULL;
}
static void gpu_node_input_socket(GPUMaterial *material, bNode *bnode, GPUNode *node, GPUNodeStack *sock, const int index)
{
if (sock->link) {
gpu_node_input_link(node, sock->link, sock->type);
}
else if ((material != NULL) && (gpu_uniformbuffer_link(material, bnode, sock, index, SOCK_IN) != NULL)) {
gpu_node_input_link(node, sock->link, sock->type);
}
else {
gpu_node_input_link(node, GPU_constant(sock->vec), sock->type);
}
}
static void gpu_node_output(GPUNode *node, const eGPUType type, GPUNodeLink **link)
{
GPUOutput *output = MEM_callocN(sizeof(GPUOutput), "GPUOutput");
output->type = type;
output->node = node;
if (link) {
*link = output->link = GPU_node_link_create();
output->link->link_type = GPU_NODE_LINK_OUTPUT;
output->link->output = output;
/* note: the caller owns the reference to the link, GPUOutput
* merely points to it, and if the node is destroyed it will
* set that pointer to NULL */
}
BLI_addtail(&node->outputs, output);
}
void GPU_inputs_free(ListBase *inputs)
{
GPUInput *input;
for (input = inputs->first; input; input = input->next) {
if (input->link)
gpu_node_link_free(input->link);
}
BLI_freelistN(inputs);
}
static void gpu_node_free(GPUNode *node)
{
GPUOutput *output;
GPU_inputs_free(&node->inputs);
for (output = node->outputs.first; output; output = output->next)
if (output->link) {
output->link->output = NULL;
gpu_node_link_free(output->link);
}
BLI_freelistN(&node->outputs);
MEM_freeN(node);
}
static void gpu_nodes_free(ListBase *nodes)
{
GPUNode *node;
while ((node = BLI_pophead(nodes))) {
gpu_node_free(node);
}
}
/* vertex attributes */
void GPU_nodes_get_vertex_attrs(ListBase *nodes, GPUVertAttrLayers *attrs)
{
GPUNode *node;
GPUInput *input;
int a;
/* convert attributes requested by node inputs to an array of layers,
* checking for duplicates and assigning id's starting from zero. */
memset(attrs, 0, sizeof(*attrs));
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR) {
for (a = 0; a < attrs->totlayer; a++) {
if (attrs->layer[a].type == input->attr_type &&
STREQ(attrs->layer[a].name, input->attr_name))
{
break;
}
}
if (a < GPU_MAX_ATTR) {
if (a == attrs->totlayer) {
input->attr_id = attrs->totlayer++;
input->attr_first = true;
attrs->layer[a].type = input->attr_type;
attrs->layer[a].attr_id = input->attr_id;
BLI_strncpy(
attrs->layer[a].name, input->attr_name,
sizeof(attrs->layer[a].name));
}
else {
input->attr_id = attrs->layer[a].attr_id;
}
}
}
}
}
}
/* varargs linking */
GPUNodeLink *GPU_attribute(const CustomDataType type, const char *name)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_ATTR;
link->attr_name = name;
/* Fall back to the UV layer, which matches old behavior. */
if (type == CD_AUTO_FROM_NAME && name[0] == '\0') {
link->attr_type = CD_MTFACE;
}
else {
link->attr_type = type;
}
return link;
}
GPUNodeLink *GPU_constant(float *num)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_CONSTANT;
link->data = num;
return link;
}
GPUNodeLink *GPU_uniform(float *num)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_UNIFORM;
link->data = num;
return link;
}
GPUNodeLink *GPU_image(Image *ima, ImageUser *iuser, bool is_data)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_IMAGE_BLENDER;
link->ima = ima;
link->iuser = iuser;
link->image_isdata = is_data;
return link;
}
GPUNodeLink *GPU_color_band(GPUMaterial *mat, int size, float *pixels, float *row)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_COLORBAND;
link->coba = gpu_material_ramp_texture_row_set(mat, size, pixels, row);
MEM_freeN(pixels);
return link;
}
GPUNodeLink *GPU_builtin(eGPUBuiltin builtin)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_BUILTIN;
link->builtin = builtin;
return link;
}
bool GPU_link(GPUMaterial *mat, const char *name, ...)
{
GPUNode *node;
GPUFunction *function;
GPUNodeLink *link, **linkptr;
va_list params;
int i;
function = gpu_lookup_function(name);
if (!function) {
fprintf(stderr, "GPU failed to find function %s\n", name);
return false;
}
node = GPU_node_begin(name);
va_start(params, name);
for (i = 0; i < function->totparam; i++) {
if (function->paramqual[i] != FUNCTION_QUAL_IN) {
linkptr = va_arg(params, GPUNodeLink **);
gpu_node_output(node, function->paramtype[i], linkptr);
}
else {
link = va_arg(params, GPUNodeLink *);
gpu_node_input_link(node, link, function->paramtype[i]);
}
}
va_end(params);
gpu_material_add_node(mat, node);
return true;
}
bool GPU_stack_link(GPUMaterial *material, bNode *bnode, const char *name, GPUNodeStack *in, GPUNodeStack *out, ...)
{
GPUNode *node;
GPUFunction *function;
GPUNodeLink *link, **linkptr;
va_list params;
int i, totin, totout;
function = gpu_lookup_function(name);
if (!function) {
fprintf(stderr, "GPU failed to find function %s\n", name);
return false;
}
node = GPU_node_begin(name);
totin = 0;
totout = 0;
if (in) {
for (i = 0; !in[i].end; i++) {
if (in[i].type != GPU_NONE) {
gpu_node_input_socket(material, bnode, node, &in[i], i);
totin++;
}
}
}
if (out) {
for (i = 0; !out[i].end; i++) {
if (out[i].type != GPU_NONE) {
gpu_node_output(node, out[i].type, &out[i].link);
totout++;
}
}
}
va_start(params, out);
for (i = 0; i < function->totparam; i++) {
if (function->paramqual[i] != FUNCTION_QUAL_IN) {
if (totout == 0) {
linkptr = va_arg(params, GPUNodeLink **);
gpu_node_output(node, function->paramtype[i], linkptr);
}
else
totout--;
}
else {
if (totin == 0) {
link = va_arg(params, GPUNodeLink *);
if (link->socket)
gpu_node_input_socket(NULL, NULL, node, link->socket, -1);
else
gpu_node_input_link(node, link, function->paramtype[i]);
}
else
totin--;
}
}
va_end(params);
gpu_material_add_node(material, node);
return true;
}
GPUNodeLink *GPU_uniformbuffer_link_out(GPUMaterial *mat, bNode *node, GPUNodeStack *stack, const int index)
{
return gpu_uniformbuffer_link(mat, node, stack, index, SOCK_OUT);
}
/* Pass create/free */
static void gpu_nodes_tag(GPUNodeLink *link)
{
GPUNode *node;
GPUInput *input;
if (!link->output)
return;
node = link->output->node;
if (node->tag)
return;
node->tag = true;
for (input = node->inputs.first; input; input = input->next)
if (input->link)
gpu_nodes_tag(input->link);
}
void GPU_nodes_prune(ListBase *nodes, GPUNodeLink *outlink)
{
GPUNode *node, *next;
for (node = nodes->first; node; node = node->next)
node->tag = false;
gpu_nodes_tag(outlink);
for (node = nodes->first; node; node = next) {
next = node->next;
if (!node->tag) {
BLI_remlink(nodes, node);
gpu_node_free(node);
}
}
}
static bool gpu_pass_is_valid(GPUPass *pass)
{
/* Shader is not null if compilation is successful. */
return (pass->compiled == false || pass->shader != NULL);
}
GPUPass *GPU_generate_pass(
GPUMaterial *material,
GPUNodeLink *frag_outlink,
struct GPUVertAttrLayers *attrs,
ListBase *nodes,
int *builtins,
const char *vert_code,
const char *geom_code,
const char *frag_lib,
const char *defines)
{
char *vertexcode, *geometrycode, *fragmentcode;
GPUPass *pass = NULL, *pass_hash = NULL;
/* prune unused nodes */
GPU_nodes_prune(nodes, frag_outlink);
GPU_nodes_get_vertex_attrs(nodes, attrs);
/* generate code */
char *fragmentgen = code_generate_fragment(material, nodes, frag_outlink->output, builtins);
/* Cache lookup: Reuse shaders already compiled */
uint32_t hash = gpu_pass_hash(fragmentgen, defines, attrs);
pass_hash = gpu_pass_cache_lookup(hash);
if (pass_hash && (pass_hash->next == NULL || pass_hash->next->hash != hash)) {
/* No collision, just return the pass. */
MEM_freeN(fragmentgen);
if (!gpu_pass_is_valid(pass_hash)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass_hash->refcount += 1;
return pass_hash;
}
/* Either the shader is not compiled or there is a hash collision...
* continue generating the shader strings. */
char *tmp = BLI_strdupcat(frag_lib, glsl_material_library);
geometrycode = code_generate_geometry(nodes, geom_code, defines);
vertexcode = code_generate_vertex(nodes, vert_code, (geometrycode != NULL));
fragmentcode = BLI_strdupcat(tmp, fragmentgen);
MEM_freeN(fragmentgen);
MEM_freeN(tmp);
if (pass_hash) {
/* Cache lookup: Reuse shaders already compiled */
pass = gpu_pass_cache_resolve_collision(pass_hash, vertexcode, geometrycode, fragmentcode, defines, hash);
}
if (pass) {
/* Cache hit. Reuse the same GPUPass and GPUShader. */
if (!gpu_pass_is_valid(pass)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
MEM_SAFE_FREE(vertexcode);
MEM_SAFE_FREE(fragmentcode);
MEM_SAFE_FREE(geometrycode);
pass->refcount += 1;
}
else {
/* We still create a pass even if shader compilation
* fails to avoid trying to compile again and again. */
pass = MEM_callocN(sizeof(GPUPass), "GPUPass");
pass->shader = NULL;
pass->refcount = 1;
pass->hash = hash;
pass->vertexcode = vertexcode;
pass->fragmentcode = fragmentcode;
pass->geometrycode = geometrycode;
pass->defines = (defines) ? BLI_strdup(defines) : NULL;
pass->compiled = false;
BLI_spin_lock(&pass_cache_spin);
if (pass_hash != NULL) {
/* Add after the first pass having the same hash. */
pass->next = pass_hash->next;
pass_hash->next = pass;
}
else {
/* No other pass have same hash, just prepend to the list. */
BLI_LINKS_PREPEND(pass_cache, pass);
}
BLI_spin_unlock(&pass_cache_spin);
}
return pass;
}
static int count_active_texture_sampler(GPUShader *shader, char *source)
{
char *code = source;
int samplers_id[64]; /* Remember this is per stage. */
int sampler_len = 0;
while ((code = strstr(code, "uniform "))) {
/* Move past "uniform". */
code += 7;
/* Skip following spaces. */
while (*code == ' ') { code++; }
/* Skip "i" from potential isamplers. */
if (*code == 'i') { code++; }
/* Skip following spaces. */
if (gpu_str_prefix(code, "sampler")) {
/* Move past "uniform". */
code += 7;
/* Skip sampler type suffix. */
while (*code != ' ' && *code != '\0') { code++; }
/* Skip following spaces. */
while (*code == ' ') { code++; }
if (*code != '\0') {
char sampler_name[64];
code = gpu_str_skip_token(code, sampler_name, sizeof(sampler_name));
int id = GPU_shader_get_uniform_ensure(shader, sampler_name);
if (id == -1) {
continue;
}
/* Catch duplicates. */
bool is_duplicate = false;
for (int i = 0; i < sampler_len; ++i) {
if (samplers_id[i] == id) {
is_duplicate = true;
}
}
if (!is_duplicate) {
samplers_id[sampler_len] = id;
sampler_len++;
}
}
}
}
return sampler_len;
}
static bool gpu_pass_shader_validate(GPUPass *pass)
{
if (pass->shader == NULL) {
return false;
}
/* NOTE: The only drawback of this method is that it will count a sampler
* used in the fragment shader and only declared (but not used) in the vertex
* shader as used by both. But this corner case is not happening for now. */
int vert_samplers_len = count_active_texture_sampler(pass->shader, pass->vertexcode);
int frag_samplers_len = count_active_texture_sampler(pass->shader, pass->fragmentcode);
int total_samplers_len = vert_samplers_len + frag_samplers_len;
/* Validate against opengl limit. */
if ((frag_samplers_len > GPU_max_textures_frag()) ||
(vert_samplers_len > GPU_max_textures_vert()))
{
return false;
}
if (pass->geometrycode) {
int geom_samplers_len = count_active_texture_sampler(pass->shader, pass->geometrycode);
total_samplers_len += geom_samplers_len;
if (geom_samplers_len > GPU_max_textures_geom()) {
return false;
}
}
return (total_samplers_len <= GPU_max_textures());
}
void GPU_pass_compile(GPUPass *pass, const char *shname)
{
if (!pass->compiled) {
pass->shader = GPU_shader_create(
pass->vertexcode,
pass->fragmentcode,
pass->geometrycode,
NULL,
pass->defines,
shname);
/* NOTE: Some drivers / gpu allows more active samplers than the opengl limit.
* We need to make sure to count active samplers to avoid undefined behavior. */
if (!gpu_pass_shader_validate(pass)) {
if (pass->shader != NULL) {
fprintf(stderr, "GPUShader: error: too many samplers in shader.\n");
GPU_shader_free(pass->shader);
}
pass->shader = NULL;
}
else if (!BLI_thread_is_main()) {
/* For some Intel drivers, you must use the program at least once
* in the rendering context that it is linked. */
glUseProgram(GPU_shader_get_program(pass->shader));
glUseProgram(0);
}
pass->compiled = true;
}
}
void GPU_pass_release(GPUPass *pass)
{
BLI_assert(pass->refcount > 0);
pass->refcount--;
}
static void gpu_pass_free(GPUPass *pass)
{
BLI_assert(pass->refcount == 0);
if (pass->shader) {
GPU_shader_free(pass->shader);
}
MEM_SAFE_FREE(pass->fragmentcode);
MEM_SAFE_FREE(pass->geometrycode);
MEM_SAFE_FREE(pass->vertexcode);
MEM_SAFE_FREE(pass->defines);
MEM_freeN(pass);
}
void GPU_pass_free_nodes(ListBase *nodes)
{
gpu_nodes_free(nodes);
}
void GPU_pass_cache_garbage_collect(void)
{
static int lasttime = 0;
const int shadercollectrate = 60; /* hardcoded for now. */
int ctime = (int)PIL_check_seconds_timer();
if (ctime < shadercollectrate + lasttime)
return;
lasttime = ctime;
BLI_spin_lock(&pass_cache_spin);
GPUPass *next, **prev_pass = &pass_cache;
for (GPUPass *pass = pass_cache; pass; pass = next) {
next = pass->next;
if (pass->refcount == 0) {
/* Remove from list */
*prev_pass = next;
gpu_pass_free(pass);
}
else {
prev_pass = &pass->next;
}
}
BLI_spin_unlock(&pass_cache_spin);
}
void GPU_pass_cache_init(void)
{
BLI_spin_init(&pass_cache_spin);
}
void GPU_pass_cache_free(void)
{
BLI_spin_lock(&pass_cache_spin);
while (pass_cache) {
GPUPass *next = pass_cache->next;
gpu_pass_free(pass_cache);
pass_cache = next;
}
BLI_spin_unlock(&pass_cache_spin);
BLI_spin_end(&pass_cache_spin);
}