This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/iksolver/intern/IK_QJacobianSolver.cpp
Kent Mein 0fbadc8eb7 Yes I did it again ;)
added the following 3 lines to everything in the intern dir:
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

Kent
--
mein@cs.umn.edu
2002-11-25 09:53:07 +00:00

332 lines
6.7 KiB
C++

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "IK_QJacobianSolver.h"
#include "TNT/svd.h"
using namespace std;
IK_QJacobianSolver *
IK_QJacobianSolver::
New(
){
return new IK_QJacobianSolver();
}
bool
IK_QJacobianSolver::
Solve(
IK_QChain &chain,
const MT_Vector3 &g_position,
const MT_Vector3 &g_pose,
const MT_Scalar tolerance,
const int max_iterations,
const MT_Scalar max_angle_change
){
const vector<IK_QSegment> & segs = chain.Segments();
if (segs.size() == 0) return false;
// compute the goal direction from the base of the chain
// in global coordinates
MT_Vector3 goal_dir = g_position - segs[0].GlobalSegmentStart();
const MT_Scalar chain_max_extension = chain.MaxExtension();
bool do_parallel_check(false);
if (chain_max_extension < goal_dir.length()) {
do_parallel_check = true;
}
goal_dir.normalize();
ArmMatrices(chain.DoF());
for (int iterations = 0; iterations < max_iterations; iterations++) {
// check to see if the chain is pointing in the right direction
if (iterations%32 && do_parallel_check && ParallelCheck(chain,goal_dir)) {
return false;
}
MT_Vector3 end_effector = chain.EndEffector();
MT_Vector3 d_pos = g_position - end_effector;
const MT_Scalar x_length = d_pos.length();
if (x_length < tolerance) {
return true;
}
chain.ComputeJacobian();
try {
ComputeInverseJacobian(chain,x_length,max_angle_change);
}
catch(...) {
return false;
}
ComputeBetas(chain,d_pos);
UpdateChain(chain);
chain.UpdateGlobalTransformations();
}
return false;
};
IK_QJacobianSolver::
~IK_QJacobianSolver(
){
// nothing to do
}
IK_QJacobianSolver::
IK_QJacobianSolver(
){
// nothing to do
};
void
IK_QJacobianSolver::
ComputeBetas(
IK_QChain &chain,
const MT_Vector3 d_pos
){
m_beta = 0;
m_beta[0] = d_pos.x();
m_beta[1] = d_pos.y();
m_beta[2] = d_pos.z();
TNT::matmult(m_d_theta,m_svd_inverse,m_beta);
};
int
IK_QJacobianSolver::
ComputeInverseJacobian(
IK_QChain &chain,
const MT_Scalar x_length,
const MT_Scalar max_angle_change
) {
int dimension = 0;
m_svd_u = MT_Scalar(0);
// copy first 3 rows of jacobian into m_svd_u
int row, column;
for (row = 0; row < 3; row ++) {
for (column = 0; column < chain.Jacobian().num_cols(); column ++) {
m_svd_u[row][column] = chain.Jacobian()[row][column];
}
}
m_svd_w = MT_Scalar(0);
m_svd_v = MT_Scalar(0);
m_svd_work_space = MT_Scalar(0);
TNT::SVD(m_svd_u,m_svd_w,m_svd_v,m_svd_work_space);
// invert the SVD and compute inverse
TNT::transpose(m_svd_v,m_svd_v_t);
TNT::transpose(m_svd_u,m_svd_u_t);
// Compute damped least squares inverse of pseudo inverse
// Compute damping term lambda
// Note when lambda is zero this is equivalent to the
// least squares solution. This is fine when the m_jjt is
// of full rank. When m_jjt is near to singular the least squares
// inverse tries to minimize |J(dtheta) - dX)| and doesn't
// try to minimize dTheta. This results in eratic changes in angle.
// Damped least squares minimizes |dtheta| to try and reduce this
// erratic behaviour.
// We don't want to use the damped solution everywhere so we
// only increase lamda from zero as we approach a singularity.
// find the smallest non-zero m_svd_w value
int i = 0;
MT_Scalar w_min = MT_INFINITY;
// anything below epsilon is treated as zero
MT_Scalar epsilon = MT_Scalar(1e-10);
for ( i = 0; i <m_svd_w.size() ; i++) {
if (m_svd_w[i] > epsilon && m_svd_w[i] < w_min) {
w_min = m_svd_w[i];
}
}
MT_Scalar lambda(0);
MT_Scalar d = x_length/max_angle_change;
if (w_min <= d/2) {
lambda = d/2;
} else
if (w_min < d) {
lambda = sqrt(w_min*(d - w_min));
} else {
lambda = MT_Scalar(0);
}
lambda *= lambda;
for (i= 0; i < m_svd_w.size(); i++) {
if (m_svd_w[i] < epsilon) {
m_svd_w[i] = MT_Scalar(0);
} else {
m_svd_w[i] = m_svd_w[i] / (m_svd_w[i] * m_svd_w[i] + lambda);
}
}
TNT::matmultdiag(m_svd_temp1,m_svd_w,m_svd_u_t);
TNT::matmult(m_svd_inverse,m_svd_v,m_svd_temp1);
return dimension;
}
void
IK_QJacobianSolver::
UpdateChain(
IK_QChain &chain
){
// iterate through the set of angles and
// update their values from the d_thetas
vector<IK_QSegment> &segs = chain.Segments();
int seg_ind = 0;
for (seg_ind = 0;seg_ind < segs.size(); seg_ind++) {
MT_Vector3 dq;
dq[0] = m_d_theta[3*seg_ind];
dq[1] = m_d_theta[3*seg_ind + 1];
dq[2] = m_d_theta[3*seg_ind + 2];
segs[seg_ind].IncrementAngle(dq);
}
};
void
IK_QJacobianSolver::
ArmMatrices(
int dof
){
m_beta.newsize(dof);
m_d_theta.newsize(dof);
m_svd_u.newsize(dof,dof);
m_svd_v.newsize(dof,dof);
m_svd_w.newsize(dof);
m_svd_work_space.newsize(dof);
m_svd_u = MT_Scalar(0);
m_svd_v = MT_Scalar(0);
m_svd_w = MT_Scalar(0);
m_svd_u_t.newsize(dof,dof);
m_svd_v_t.newsize(dof,dof);
m_svd_w_diag.newsize(dof,dof);
m_svd_inverse.newsize(dof,dof);
m_svd_temp1.newsize(dof,dof);
};
bool
IK_QJacobianSolver::
ParallelCheck(
const IK_QChain &chain,
const MT_Vector3 goal_dir
) const {
// compute the start of the chain in global coordinates
const vector<IK_QSegment> &segs = chain.Segments();
int num_segs = segs.size();
if (num_segs == 0) {
return false;
}
MT_Scalar crossp_sum = 0;
int i;
for (i = 0; i < num_segs; i++) {
MT_Vector3 global_seg_direction = segs[i].GlobalSegmentEnd() -
segs[i].GlobalSegmentStart();
global_seg_direction.normalize();
MT_Scalar crossp = (global_seg_direction.cross(goal_dir)).length();
crossp_sum += MT_Scalar(fabs(crossp));
}
if (crossp_sum < MT_Scalar(0.01)) {
return true;
} else {
return false;
}
}