This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_utils.c
Campbell Barton f608b3c444 code cleanup:
- building without python works again
- rename maxi/mini to i_max/i_min (so thay are available for function names)
- some minor edits to IK stretch setting (no functional changes).
2012-07-29 17:49:14 +00:00

1325 lines
35 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_utils.c
* \ingroup bmesh
*
* utility bmesh operators, e.g. transform,
* translate, rotate, scale, etc.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_heap.h"
#include "BKE_customdata.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
void bmo_create_vert_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_slot_vec_get(op, "co", vec);
BMO_elem_flag_enable(bm, BM_vert_create(bm, vec, NULL), 1);
BMO_slot_buffer_from_enabled_flag(bm, op, "newvertout", BM_VERT, 1);
}
void bmo_transform_exec(BMesh *bm, BMOperator *op)
{
BMOIter iter;
BMVert *v;
float mat[4][4];
BMO_slot_mat4_get(op, "mat", mat);
BMO_ITER (v, &iter, bm, op, "verts", BM_VERT) {
mul_m4_v3(mat, v->co);
}
}
void bmo_translate_exec(BMesh *bm, BMOperator *op)
{
float mat[4][4], vec[3];
BMO_slot_vec_get(op, "vec", vec);
unit_m4(mat);
copy_v3_v3(mat[3], vec);
BMO_op_callf(bm, op->flag, "transform mat=%m4 verts=%s", mat, op, "verts");
}
void bmo_scale_exec(BMesh *bm, BMOperator *op)
{
float mat[3][3], vec[3];
BMO_slot_vec_get(op, "vec", vec);
unit_m3(mat);
mat[0][0] = vec[0];
mat[1][1] = vec[1];
mat[2][2] = vec[2];
BMO_op_callf(bm, op->flag, "transform mat=%m3 verts=%s", mat, op, "verts");
}
void bmo_rotate_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_slot_vec_get(op, "cent", vec);
/* there has to be a proper matrix way to do this, but
* this is how editmesh did it and I'm too tired to think
* through the math right now. */
mul_v3_fl(vec, -1.0f);
BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec);
BMO_op_callf(bm, op->flag, "transform mat=%s verts=%s", op, "mat", op, "verts");
mul_v3_fl(vec, -1.0f);
BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec);
}
void bmo_reverse_faces_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMFace *f;
BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) {
BM_face_normal_flip(bm, f);
}
}
void bmo_rotate_edges_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMEdge *e, *e2;
int ccw = BMO_slot_bool_get(op, "ccw");
int is_single = BMO_slot_buffer_count(bm, op, "edges") == 1;
short check_flag = is_single ?
BM_EDGEROT_CHECK_EXISTS :
BM_EDGEROT_CHECK_EXISTS | BM_EDGEROT_CHECK_DEGENERATE;
#define EDGE_OUT 1
#define FACE_TAINT 1
BMO_ITER (e, &siter, bm, op, "edges", BM_EDGE) {
/**
* this ends up being called twice, could add option to not to call check in
* #BM_edge_rotate to get some extra speed */
if (BM_edge_rotate_check(e)) {
BMFace *fa, *fb;
if (BM_edge_face_pair(e, &fa, &fb)) {
/* check we're untouched */
if (BMO_elem_flag_test(bm, fa, FACE_TAINT) == FALSE &&
BMO_elem_flag_test(bm, fb, FACE_TAINT) == FALSE)
{
if (!(e2 = BM_edge_rotate(bm, e, ccw, check_flag))) {
#if 0
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge");
return;
#endif
continue;
}
BMO_elem_flag_enable(bm, e2, EDGE_OUT);
/* don't touch again */
BMO_elem_flag_enable(bm, fa, FACE_TAINT);
BMO_elem_flag_enable(bm, fb, FACE_TAINT);
}
}
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_OUT);
#undef EDGE_OUT
#undef FACE_TAINT
}
#define SEL_FLAG 1
#define SEL_ORIG 2
static void bmo_region_extend_extend(BMesh *bm, BMOperator *op, int usefaces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!usefaces) {
BMO_ITER (v, &siter, bm, op, "geom", BM_VERT) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BMO_elem_flag_test(bm, e, SEL_ORIG))
break;
}
if (e) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
BMO_elem_flag_enable(bm, e, SEL_FLAG);
BMO_elem_flag_enable(bm, BM_edge_other_vert(e, v), SEL_FLAG);
}
}
}
}
else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER (f, &siter, bm, op, "geom", BM_FACE) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) {
if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) {
BMO_elem_flag_enable(bm, f2, SEL_FLAG);
}
}
}
}
}
}
static void bmo_region_extend_constrict(BMesh *bm, BMOperator *op, int usefaces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!usefaces) {
BMO_ITER (v, &siter, bm, op, "geom", BM_VERT) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BMO_elem_flag_test(bm, e, SEL_ORIG))
break;
}
if (e) {
BMO_elem_flag_enable(bm, v, SEL_FLAG);
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
BMO_elem_flag_enable(bm, e, SEL_FLAG);
}
}
}
}
else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER (f, &siter, bm, op, "geom", BM_FACE) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) {
if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) {
BMO_elem_flag_enable(bm, f, SEL_FLAG);
break;
}
}
}
}
}
}
void bmo_region_extend_exec(BMesh *bm, BMOperator *op)
{
int use_faces = BMO_slot_bool_get(op, "use_faces");
int constrict = BMO_slot_bool_get(op, "constrict");
BMO_slot_buffer_flag_enable(bm, op, "geom", BM_ALL, SEL_ORIG);
if (constrict)
bmo_region_extend_constrict(bm, op, use_faces);
else
bmo_region_extend_extend(bm, op, use_faces);
BMO_slot_buffer_from_enabled_flag(bm, op, "geomout", BM_ALL, SEL_FLAG);
}
/********* righthand faces implementation ****** */
#define FACE_VIS 1
#define FACE_FLAG 2
#define FACE_MARK 4
#define FACE_FLIP 8
/* NOTE: these are the original recalc_face_normals comment in editmesh_mods.c,
* copied here for reference. */
/* based at a select-connected to witness loose objects */
/* count per edge the amount of faces
* find the ultimate left, front, upper face (not manhattan dist!!)
* also evaluate both triangle cases in quad, since these can be non-flat
*
* put normal to the outside, and set the first direction flags in edges
*
* then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces
* this is in fact the 'select connected'
*
* in case (selected) faces were not done: start over with 'find the ultimate ...' */
/* NOTE: this function uses recursion, which is a little unusual for a bmop
* function, but acceptable I think. */
/* NOTE: BM_ELEM_TAG is used on faces to tell if they are flipped. */
void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op)
{
BMIter liter, liter2;
BMOIter siter;
BMFace *f, *startf, **fstack = NULL;
BLI_array_declare(fstack);
BMLoop *l, *l2;
float maxx, maxx_test, cent[3];
int i, i_max, flagflip = BMO_slot_bool_get(op, "do_flip");
startf = NULL;
maxx = -1.0e10;
BMO_slot_buffer_flag_enable(bm, op, "faces", BM_FACE, FACE_FLAG);
/* find a starting face */
BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) {
/* clear dirty flag */
BM_elem_flag_disable(f, BM_ELEM_TAG);
if (BMO_elem_flag_test(bm, f, FACE_VIS))
continue;
if (!startf) startf = f;
BM_face_calc_center_bounds(f, cent);
if ((maxx_test = dot_v3v3(cent, cent)) > maxx) {
maxx = maxx_test;
startf = f;
}
}
if (!startf) return;
BM_face_calc_center_bounds(startf, cent);
/* make sure the starting face has the correct winding */
if (dot_v3v3(cent, startf->no) < 0.0f) {
BM_face_normal_flip(bm, startf);
BMO_elem_flag_toggle(bm, startf, FACE_FLIP);
if (flagflip)
BM_elem_flag_toggle(startf, BM_ELEM_TAG);
}
/* now that we've found our starting face, make all connected faces
* have the same winding. this is done recursively, using a manual
* stack (if we use simple function recursion, we'd end up overloading
* the stack on large meshes). */
BLI_array_grow_one(fstack);
fstack[0] = startf;
BMO_elem_flag_enable(bm, startf, FACE_VIS);
i = 0;
i_max = 1;
while (i >= 0) {
f = fstack[i];
i--;
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (l2, &liter2, l, BM_LOOPS_OF_LOOP) {
if (!BMO_elem_flag_test(bm, l2->f, FACE_FLAG) || l2 == l)
continue;
if (!BMO_elem_flag_test(bm, l2->f, FACE_VIS)) {
BMO_elem_flag_enable(bm, l2->f, FACE_VIS);
i++;
if (l2->v == l->v) {
BM_face_normal_flip(bm, l2->f);
BMO_elem_flag_toggle(bm, l2->f, FACE_FLIP);
if (flagflip)
BM_elem_flag_toggle(l2->f, BM_ELEM_TAG);
}
else if (BM_elem_flag_test(l2->f, BM_ELEM_TAG) || BM_elem_flag_test(l->f, BM_ELEM_TAG)) {
if (flagflip) {
BM_elem_flag_disable(l->f, BM_ELEM_TAG);
BM_elem_flag_disable(l2->f, BM_ELEM_TAG);
}
}
if (i == i_max) {
BLI_array_grow_one(fstack);
i_max++;
}
fstack[i] = l2->f;
}
}
}
}
BLI_array_free(fstack);
/* check if we have faces yet to do. if so, recurse */
BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) {
if (!BMO_elem_flag_test(bm, f, FACE_VIS)) {
bmo_recalc_face_normals_exec(bm, op);
break;
}
}
}
void bmo_smooth_vert_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMIter iter;
BMVert *v;
BMEdge *e;
BLI_array_declare(cos);
float (*cos)[3] = NULL;
float *co, *co2, clipdist = BMO_slot_float_get(op, "clipdist");
int i, j, clipx, clipy, clipz;
int xaxis, yaxis, zaxis;
clipx = BMO_slot_bool_get(op, "mirror_clip_x");
clipy = BMO_slot_bool_get(op, "mirror_clip_y");
clipz = BMO_slot_bool_get(op, "mirror_clip_z");
xaxis = BMO_slot_bool_get(op, "use_axis_x");
yaxis = BMO_slot_bool_get(op, "use_axis_y");
zaxis = BMO_slot_bool_get(op, "use_axis_z");
i = 0;
BMO_ITER (v, &siter, bm, op, "verts", BM_VERT) {
BLI_array_grow_one(cos);
co = cos[i];
j = 0;
BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) {
co2 = BM_edge_other_vert(e, v)->co;
add_v3_v3v3(co, co, co2);
j += 1;
}
if (!j) {
copy_v3_v3(co, v->co);
i++;
continue;
}
mul_v3_fl(co, 1.0f / (float)j);
mid_v3_v3v3(co, co, v->co);
if (clipx && fabsf(v->co[0]) <= clipdist)
co[0] = 0.0f;
if (clipy && fabsf(v->co[1]) <= clipdist)
co[1] = 0.0f;
if (clipz && fabsf(v->co[2]) <= clipdist)
co[2] = 0.0f;
i++;
}
i = 0;
BMO_ITER (v, &siter, bm, op, "verts", BM_VERT) {
if (xaxis)
v->co[0] = cos[i][0];
if (yaxis)
v->co[1] = cos[i][1];
if (zaxis)
v->co[2] = cos[i][2];
i++;
}
BLI_array_free(cos);
}
/*
* compute the fake surface of an ngon
* This is done by decomposing the ngon into triangles who share the centroid of the ngon
* while this method is far from being exact, it should guarantee an invariance.
*
* NOTE: This should probably go to bmesh_polygon.c
*/
static float ngon_fake_area(BMFace *f)
{
BMIter liter;
BMLoop *l;
int num_verts = 0;
float v[3], sv[3], c[3];
float area = 0.0f;
BM_face_calc_center_mean(f, c);
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (num_verts == 0) {
copy_v3_v3(v, l->v->co);
copy_v3_v3(sv, l->v->co);
num_verts++;
}
else {
area += area_tri_v3(v, c, l->v->co);
copy_v3_v3(v, l->v->co);
num_verts++;
}
}
area += area_tri_v3(v, c, sv);
return area;
}
/*
* extra face data (computed data)
*/
typedef struct SimSel_FaceExt {
BMFace *f; /* the face */
float c[3]; /* center */
union {
float area; /* area */
float perim; /* perimeter */
float d; /* 4th component of plane (the first three being the normal) */
struct Image *t; /* image pointer */
};
} SimSel_FaceExt;
/*
* Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces
*/
void bmo_similar_faces_exec(BMesh *bm, BMOperator *op)
{
BMIter fm_iter;
BMFace *fs, *fm;
BMOIter fs_iter;
int num_sels = 0, num_total = 0, i = 0, idx = 0;
float angle = 0.0f;
SimSel_FaceExt *f_ext = NULL;
int *indices = NULL;
float t_no[3]; /* temporary normal */
int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
const float thresh_radians = thresh * (float)M_PI;
num_total = BM_mesh_elem_count(bm, BM_FACE);
/*
* The first thing to do is to iterate through all the the selected items and mark them since
* they will be in the selection anyway.
* This will increase performance, (especially when the number of originally selected faces is high)
* so the overall complexity will be less than $O(mn)$ where is the total number of selected faces,
* and n is the total number of faces
*/
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (!BMO_elem_flag_test(bm, fs, FACE_MARK)) { /* is this really needed ? */
BMO_elem_flag_enable(bm, fs, FACE_MARK);
num_sels++;
}
}
/* allocate memory for the selected faces indices and for all temporary faces */
indices = (int *)MEM_callocN(sizeof(int) * num_sels, "face indices util.c");
f_ext = (SimSel_FaceExt *)MEM_callocN(sizeof(SimSel_FaceExt) * num_total, "f_ext util.c");
/* loop through all the faces and fill the faces/indices structure */
BM_ITER_MESH (fm, &fm_iter, bm, BM_FACES_OF_MESH) {
f_ext[i].f = fm;
if (BMO_elem_flag_test(bm, fm, FACE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/*
* Save us some computation burden: In case of perimeter/area/coplanar selection we compute
* only once.
*/
if (type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE) {
for (i = 0; i < num_total; i++) {
switch (type) {
case SIMFACE_PERIMETER:
/* set the perimeter */
f_ext[i].perim = BM_face_calc_perimeter(f_ext[i].f);
break;
case SIMFACE_COPLANAR:
/* compute the center of the polygon */
BM_face_calc_center_mean(f_ext[i].f, f_ext[i].c);
/* normalize the polygon normal */
copy_v3_v3(t_no, f_ext[i].f->no);
normalize_v3(t_no);
/* compute the plane distance */
f_ext[i].d = dot_v3v3(t_no, f_ext[i].c);
break;
case SIMFACE_AREA:
f_ext[i].area = ngon_fake_area(f_ext[i].f);
break;
case SIMFACE_IMAGE:
f_ext[i].t = NULL;
if (CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY)) {
MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY);
f_ext[i].t = mtpoly->tpage;
}
break;
}
}
}
/* now select the rest (if any) */
for (i = 0; i < num_total; i++) {
fm = f_ext[i].f;
if (!BMO_elem_flag_test(bm, fm, FACE_MARK) && !BM_elem_flag_test(fm, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
fs = f_ext[indices[idx]].f;
switch (type) {
case SIMFACE_MATERIAL:
if (fm->mat_nr == fs->mat_nr) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_IMAGE:
if (f_ext[i].t == f_ext[indices[idx]].t) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_NORMAL:
angle = angle_normalized_v3v3(fs->no, fm->no); /* if the angle between the normals -> 0 */
if (angle <= thresh_radians) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_COPLANAR:
angle = angle_normalized_v3v3(fs->no, fm->no); /* angle -> 0 */
if (angle <= thresh_radians) { /* and dot product difference -> 0 */
if (fabsf(f_ext[i].d - f_ext[indices[idx]].d) <= thresh) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
}
break;
case SIMFACE_AREA:
if (fabsf(f_ext[i].area - f_ext[indices[idx]].area) <= thresh) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_PERIMETER:
if (fabsf(f_ext[i].perim - f_ext[indices[idx]].perim) <= thresh) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
}
}
}
}
MEM_freeN(f_ext);
MEM_freeN(indices);
/* transfer all marked faces to the output slot */
BMO_slot_buffer_from_enabled_flag(bm, op, "faceout", BM_FACE, FACE_MARK);
}
/**************************************************************************** *
* Similar Edges
**************************************************************************** */
#define EDGE_MARK 1
/*
* extra edge information
*/
typedef struct SimSel_EdgeExt {
BMEdge *e;
union {
float dir[3];
float angle; /* angle between the face */
};
union {
float length; /* edge length */
int faces; /* faces count */
};
} SimSel_EdgeExt;
/*
* select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* choices are length, direction, face, ...
*/
void bmo_similar_edges_exec(BMesh *bm, BMOperator *op)
{
BMOIter es_iter; /* selected edges iterator */
BMIter e_iter; /* mesh edges iterator */
BMEdge *es; /* selected edge */
BMEdge *e; /* mesh edge */
int idx = 0, i = 0 /* , f = 0 */;
int *indices = NULL;
SimSel_EdgeExt *e_ext = NULL;
// float *angles = NULL;
float angle;
int num_sels = 0, num_total = 0;
int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
/* sanity checks that the data we need is available */
switch (type) {
case SIMEDGE_CREASE:
if (!CustomData_has_layer(&bm->edata, CD_CREASE)) {
return;
}
break;
case SIMEDGE_BEVEL:
if (!CustomData_has_layer(&bm->edata, CD_BWEIGHT)) {
return;
}
break;
}
num_total = BM_mesh_elem_count(bm, BM_EDGE);
/* iterate through all selected edges and mark them */
BMO_ITER (es, &es_iter, bm, op, "edges", BM_EDGE) {
BMO_elem_flag_enable(bm, es, EDGE_MARK);
num_sels++;
}
/* allocate memory for the selected edges indices and for all temporary edges */
indices = (int *)MEM_callocN(sizeof(int) * num_sels, __func__);
e_ext = (SimSel_EdgeExt *)MEM_callocN(sizeof(SimSel_EdgeExt) * num_total, __func__);
/* loop through all the edges and fill the edges/indices structure */
BM_ITER_MESH (e, &e_iter, bm, BM_EDGES_OF_MESH) {
e_ext[i].e = e;
if (BMO_elem_flag_test(bm, e, EDGE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/* save us some computation time by doing heavy computation once */
if (type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR || type == SIMEDGE_FACE_ANGLE) {
for (i = 0; i < num_total; i++) {
switch (type) {
case SIMEDGE_LENGTH: /* compute the length of the edge */
e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co);
break;
case SIMEDGE_DIR: /* compute the direction */
sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co);
normalize_v3(e_ext[i].dir);
break;
case SIMEDGE_FACE: /* count the faces around the edge */
e_ext[i].faces = BM_edge_face_count(e_ext[i].e);
break;
case SIMEDGE_FACE_ANGLE:
e_ext[i].faces = BM_edge_face_count(e_ext[i].e);
if (e_ext[i].faces == 2)
e_ext[i].angle = BM_edge_calc_face_angle(e_ext[i].e);
break;
}
}
}
/* select the edges if any */
for (i = 0; i < num_total; i++) {
e = e_ext[i].e;
if (!BMO_elem_flag_test(bm, e, EDGE_MARK) && !BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
es = e_ext[indices[idx]].e;
switch (type) {
case SIMEDGE_LENGTH:
if (fabsf(e_ext[i].length - e_ext[indices[idx]].length) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_DIR:
/* compute the angle between the two edges */
angle = angle_normalized_v3v3(e_ext[i].dir, e_ext[indices[idx]].dir);
if (angle > (float)(M_PI / 2.0)) /* use the smallest angle between the edges */
angle = fabsf(angle - (float)M_PI);
if (angle / (float)(M_PI / 2.0) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_FACE:
if (e_ext[i].faces == e_ext[indices[idx]].faces) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_FACE_ANGLE:
if (e_ext[i].faces == 2) {
if (e_ext[indices[idx]].faces == 2) {
if (fabsf(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
}
else {
cont = FALSE;
}
break;
case SIMEDGE_CREASE:
{
float *c1, *c2;
c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE);
c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_CREASE);
if (fabsf(*c1 - *c2) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
break;
case SIMEDGE_BEVEL:
{
float *c1, *c2;
c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_BWEIGHT);
c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_BWEIGHT);
if (fabsf(*c1 - *c2) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
break;
case SIMEDGE_SEAM:
if (BM_elem_flag_test(e, BM_ELEM_SEAM) == BM_elem_flag_test(es, BM_ELEM_SEAM)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_SHARP:
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) == BM_elem_flag_test(es, BM_ELEM_SMOOTH)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
}
}
}
}
MEM_freeN(e_ext);
MEM_freeN(indices);
/* transfer all marked edges to the output slot */
BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_MARK);
}
/**************************************************************************** *
* Similar Vertices
**************************************************************************** */
#define VERT_MARK 1
typedef struct SimSel_VertExt {
BMVert *v;
union {
int num_faces; /* adjacent faces */
int num_edges; /* adjacent edges */
MDeformVert *dvert; /* deform vertex */
};
} SimSel_VertExt;
/*
* select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* choices are normal, face, vertex group...
*/
void bmo_similar_verts_exec(BMesh *bm, BMOperator *op)
{
BMOIter vs_iter; /* selected verts iterator */
BMIter v_iter; /* mesh verts iterator */
BMVert *vs; /* selected vertex */
BMVert *v; /* mesh vertex */
SimSel_VertExt *v_ext = NULL;
int *indices = NULL;
int num_total = 0, num_sels = 0, i = 0, idx = 0;
int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
const float thresh_radians = thresh * (float)M_PI;
num_total = BM_mesh_elem_count(bm, BM_VERT);
/* iterate through all selected edges and mark them */
BMO_ITER (vs, &vs_iter, bm, op, "verts", BM_VERT) {
BMO_elem_flag_enable(bm, vs, VERT_MARK);
num_sels++;
}
/* allocate memory for the selected vertices indices and for all temporary vertices */
indices = (int *)MEM_mallocN(sizeof(int) * num_sels, "vertex indices");
v_ext = (SimSel_VertExt *)MEM_mallocN(sizeof(SimSel_VertExt) * num_total, "vertex extra");
/* loop through all the vertices and fill the vertices/indices structure */
BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) {
v_ext[i].v = v;
if (BMO_elem_flag_test(bm, v, VERT_MARK)) {
indices[idx] = i;
idx++;
}
switch (type) {
case SIMVERT_FACE:
/* calling BM_vert_face_count every time is time consumming, so call it only once per vertex */
v_ext[i].num_faces = BM_vert_face_count(v);
break;
case SIMVERT_VGROUP:
if (CustomData_has_layer(&(bm->vdata), CD_MDEFORMVERT)) {
v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT);
}
else {
v_ext[i].dvert = NULL;
}
break;
case SIMVERT_EDGE:
v_ext[i].num_edges = BM_vert_edge_count(v);
break;
}
i++;
}
/* select the vertices if any */
for (i = 0; i < num_total; i++) {
v = v_ext[i].v;
if (!BMO_elem_flag_test(bm, v, VERT_MARK) && !BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
vs = v_ext[indices[idx]].v;
switch (type) {
case SIMVERT_NORMAL:
/* compare the angle between the normals */
if (angle_normalized_v3v3(v->no, vs->no) <= thresh_radians) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
case SIMVERT_FACE:
/* number of adjacent faces */
if (v_ext[i].num_faces == v_ext[indices[idx]].num_faces) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
case SIMVERT_VGROUP:
if (v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL) {
int v1, v2;
for (v1 = 0; v1 < v_ext[i].dvert->totweight && cont == 1; v1++) {
for (v2 = 0; v2 < v_ext[indices[idx]].dvert->totweight; v2++) {
if (v_ext[i].dvert->dw[v1].def_nr == v_ext[indices[idx]].dvert->dw[v2].def_nr) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
break;
}
}
}
}
break;
case SIMVERT_EDGE:
/* number of adjacent edges */
if (v_ext[i].num_edges == v_ext[indices[idx]].num_edges) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
}
}
}
}
MEM_freeN(indices);
MEM_freeN(v_ext);
BMO_slot_buffer_from_enabled_flag(bm, op, "vertout", BM_VERT, VERT_MARK);
}
/**************************************************************************** *
* Cycle UVs for a face
**************************************************************************** */
void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
// int n;
int dir = BMO_slot_int_get(op, "dir");
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) {
if (dir == DIRECTION_CW) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopUV *f_luv; /* first face loop uv */
float p_uv[2]; /* previous uvs */
float t_uv[2]; /* tmp uvs */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
if (n == 0) {
f_luv = luv;
copy_v2_v2(p_uv, luv->uv);
}
else {
copy_v2_v2(t_uv, luv->uv);
copy_v2_v2(luv->uv, p_uv);
copy_v2_v2(p_uv, t_uv);
}
n++;
}
copy_v2_v2(f_luv->uv, p_uv);
}
else if (dir == DIRECTION_CCW) { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopUV *p_luv; /* previous loop uv */
MLoopUV *luv;
float t_uv[2]; /* current uvs */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* previous loop uv is the current loop uv */
luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
if (n == 0) {
p_luv = luv;
copy_v2_v2(t_uv, luv->uv);
}
else {
copy_v2_v2(p_luv->uv, luv->uv);
p_luv = luv;
}
n++;
}
copy_v2_v2(luv->uv, t_uv);
}
}
}
}
/**************************************************************************** *
* Reverse UVs for a face
**************************************************************************** */
void bmo_reverse_uvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
BLI_array_declare(uvs);
float (*uvs)[2] = NULL;
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) {
BMLoop *lf; /* current face loops */
int i;
BLI_array_empty(uvs);
BLI_array_grow_items(uvs, fs->len);
BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) {
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
/* current loop uv is the previous loop uv */
copy_v2_v2(uvs[i], luv->uv);
}
/* now that we have the uvs in the array, reverse! */
i = 0;
BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
copy_v2_v2(luv->uv, uvs[(fs->len - i - 1)]);
}
}
}
BLI_array_free(uvs);
}
/**************************************************************************** *
* Cycle colors for a face
**************************************************************************** */
void bmo_rotate_colors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
// int n;
int dir = BMO_slot_int_get(op, "dir");
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) {
if (dir == DIRECTION_CW) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopCol *f_lcol; /* first face loop color */
MLoopCol p_col; /* previous color */
MLoopCol t_col; /* tmp color */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* current loop color is the previous loop color */
MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
if (n == 0) {
f_lcol = luv;
p_col = *luv;
}
else {
t_col = *luv;
*luv = p_col;
p_col = t_col;
}
n++;
}
*f_lcol = p_col;
}
else if (dir == DIRECTION_CCW) { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopCol *p_lcol; /* previous loop color */
MLoopCol *lcol;
MLoopCol t_col; /* current color */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* previous loop color is the current loop color */
lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
if (n == 0) {
p_lcol = lcol;
t_col = *lcol;
}
else {
*p_lcol = *lcol;
p_lcol = lcol;
}
n++;
}
*lcol = t_col;
}
}
}
}
/*************************************************************************** *
* Reverse colors for a face
*************************************************************************** */
void bmo_reverse_colors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
BLI_array_declare(cols);
MLoopCol *cols = NULL;
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) {
BMLoop *lf; /* current face loops */
int i;
BLI_array_empty(cols);
BLI_array_grow_items(cols, fs->len);
BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) {
cols[i] = *((MLoopCol *)CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL));
}
/* now that we have the uvs in the array, reverse! */
BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) {
/* current loop uv is the previous loop color */
MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
*lcol = cols[(fs->len - i - 1)];
}
}
}
BLI_array_free(cols);
}
/*************************************************************************** *
* shortest vertex path select
*************************************************************************** */
typedef struct ElemNode {
BMVert *v; /* vertex */
BMVert *parent; /* node parent id */
float weight; /* node weight */
HeapNode *hn; /* heap node */
} ElemNode;
void bmo_shortest_path_exec(BMesh *bm, BMOperator *op)
{
BMOIter vs_iter /* , vs2_iter */; /* selected verts iterator */
BMIter v_iter; /* mesh verts iterator */
BMVert *vs, *sv, *ev; /* starting vertex, ending vertex */
BMVert *v; /* mesh vertex */
Heap *h = NULL;
ElemNode *vert_list = NULL;
int num_total = 0 /*, num_sels = 0 */, i = 0;
int type = BMO_slot_int_get(op, "type");
BMO_ITER (vs, &vs_iter, bm, op, "startv", BM_VERT) {
sv = vs;
}
BMO_ITER (vs, &vs_iter, bm, op, "endv", BM_VERT) {
ev = vs;
}
num_total = BM_mesh_elem_count(bm, BM_VERT);
/* allocate memory for the nodes */
vert_list = (ElemNode *)MEM_mallocN(sizeof(ElemNode) * num_total, "vertex nodes");
/* iterate through all the mesh vertices */
/* loop through all the vertices and fill the vertices/indices structure */
i = 0;
BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) {
vert_list[i].v = v;
vert_list[i].parent = NULL;
vert_list[i].weight = FLT_MAX;
BM_elem_index_set(v, i); /* set_inline */
i++;
}
bm->elem_index_dirty &= ~BM_VERT;
/*
* we now have everything we need, start Dijkstra path finding algorithm
*/
/* set the distance/weight of the start vertex to 0 */
vert_list[BM_elem_index_get(sv)].weight = 0.0f;
h = BLI_heap_new();
for (i = 0; i < num_total; i++) {
vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v);
}
while (!BLI_heap_empty(h)) {
BMEdge *e;
BMIter e_i;
float v_weight;
/* take the vertex with the lowest weight out of the heap */
BMVert *v = (BMVert *)BLI_heap_popmin(h);
if (vert_list[BM_elem_index_get(v)].weight == FLT_MAX) /* this means that there is no path */
break;
v_weight = vert_list[BM_elem_index_get(v)].weight;
BM_ITER_ELEM (e, &e_i, v, BM_EDGES_OF_VERT) {
BMVert *u;
float e_weight = v_weight;
if (type == VPATH_SELECT_EDGE_LENGTH)
e_weight += len_v3v3(e->v1->co, e->v2->co);
else e_weight += 1.0f;
u = (e->v1 == v) ? e->v2 : e->v1;
if (e_weight < vert_list[BM_elem_index_get(u)].weight) { /* is this path shorter ? */
/* add it if so */
vert_list[BM_elem_index_get(u)].parent = v;
vert_list[BM_elem_index_get(u)].weight = e_weight;
/* we should do a heap update node function!!! :-/ */
BLI_heap_remove(h, vert_list[BM_elem_index_get(u)].hn);
BLI_heap_insert(h, e_weight, u);
}
}
}
/* now we trace the path (if it exists) */
v = ev;
while (vert_list[BM_elem_index_get(v)].parent != NULL) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
v = vert_list[BM_elem_index_get(v)].parent;
}
BLI_heap_free(h, NULL);
MEM_freeN(vert_list);
BMO_slot_buffer_from_enabled_flag(bm, op, "vertout", BM_VERT, VERT_MARK);
}