This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_GaussianYBlurOperation.cpp
Sergey Sharybin a87fb34eda Use advantage of SSE2 instructions in gaussian blur node
This gives around 30% of speedup for gaussian blur node.

Pretty much straightforward implementation inside the node
itself, but needed to implement some additional things:

- Aligned malloc. It's needed to load data onto SSE registers
  faster. based on the aligned_malloc() from Libmv with
  some additional trickery going on to support arbitrary
  alignment (this magic is needed because of MemHead).

  In the practice only 16bit alignment is supported because
  of the lack of aligned malloc with arbitrary alignment
  for OSX. Not a bit deal for now because we need 16 bytes
  alignment at this moment only. Could be tweaked further
  later.

- Memory buffers in compositor are now aligned to 16 bytes.
  Should be harmless for non-SSE cases too. just mentioning.

Reviewers: campbellbarton, lukastoenne, jbakker

Reviewed By: campbellbarton

CC: lockal

Differential Revision: https://developer.blender.org/D564
2014-06-14 00:38:07 +06:00

178 lines
5.2 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include "COM_GaussianYBlurOperation.h"
#include "BLI_math.h"
#include "MEM_guardedalloc.h"
extern "C" {
# include "RE_pipeline.h"
}
GaussianYBlurOperation::GaussianYBlurOperation() : BlurBaseOperation(COM_DT_COLOR)
{
this->m_gausstab = NULL;
#ifdef __SSE2__
this->m_gausstab_sse = NULL;
#endif
this->m_filtersize = 0;
}
void *GaussianYBlurOperation::initializeTileData(rcti *rect)
{
lockMutex();
if (!this->m_sizeavailable) {
updateGauss();
}
void *buffer = getInputOperation(0)->initializeTileData(NULL);
unlockMutex();
return buffer;
}
void GaussianYBlurOperation::initExecution()
{
BlurBaseOperation::initExecution();
initMutex();
if (this->m_sizeavailable) {
float rad = max_ff(m_size * m_data.sizey, 0.0f);
m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
this->m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize);
#ifdef __SSE2__
this->m_gausstab_sse = BlurBaseOperation::convert_gausstab_sse(this->m_gausstab,
rad,
m_filtersize);
#endif
}
}
void GaussianYBlurOperation::updateGauss()
{
if (this->m_gausstab == NULL) {
updateSize();
float rad = max_ff(m_size * m_data.sizey, 0.0f);
m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
this->m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize);
#ifdef __SSE2__
this->m_gausstab_sse = BlurBaseOperation::convert_gausstab_sse(this->m_gausstab,
rad,
m_filtersize);
#endif
}
}
void GaussianYBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float multiplier_accum = 0.0f;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
rcti &rect = *inputBuffer->getRect();
int xmin = max_ii(x, rect.xmin);
int ymin = max_ii(y - m_filtersize, rect.ymin);
int ymax = min_ii(y + m_filtersize + 1, rect.ymax);
int index;
int step = getStep();
const int bufferIndexx = ((xmin - bufferstartx) * 4);
#ifdef __SSE2__
__m128 accum_r = _mm_load_ps(color_accum);
for (int ny = ymin; ny < ymax; ny += step) {
index = (ny - y) + this->m_filtersize;
int bufferindex = bufferIndexx + ((ny - bufferstarty) * 4 * bufferwidth);
const float multiplier = this->m_gausstab[index];
__m128 reg_a = _mm_load_ps(&buffer[bufferindex]);
reg_a = _mm_mul_ps(reg_a, this->m_gausstab_sse[index]);
accum_r = _mm_add_ps(accum_r, reg_a);
multiplier_accum += multiplier;
}
_mm_store_ps(color_accum, accum_r);
#else
for (int ny = ymin; ny < ymax; ny += step) {
index = (ny - y) + this->m_filtersize;
int bufferindex = bufferIndexx + ((ny - bufferstarty) * 4 * bufferwidth);
const float multiplier = this->m_gausstab[index];
madd_v4_v4fl(color_accum, &buffer[bufferindex], multiplier);
multiplier_accum += multiplier;
}
#endif
mul_v4_v4fl(output, color_accum, 1.0f / multiplier_accum);
}
void GaussianYBlurOperation::deinitExecution()
{
BlurBaseOperation::deinitExecution();
if (this->m_gausstab) {
MEM_freeN(this->m_gausstab);
this->m_gausstab = NULL;
}
#ifdef __SSE2__
if (this->m_gausstab_sse) {
MEM_freeN(this->m_gausstab_sse);
this->m_gausstab_sse = NULL;
}
#endif
deinitMutex();
}
bool GaussianYBlurOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
if (!m_sizeavailable) {
rcti sizeInput;
sizeInput.xmin = 0;
sizeInput.ymin = 0;
sizeInput.xmax = 5;
sizeInput.ymax = 5;
NodeOperation *operation = this->getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&sizeInput, readOperation, output)) {
return true;
}
}
{
if (this->m_sizeavailable && this->m_gausstab != NULL) {
newInput.xmax = input->xmax;
newInput.xmin = input->xmin;
newInput.ymax = input->ymax + this->m_filtersize + 1;
newInput.ymin = input->ymin - this->m_filtersize - 1;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
}