4231 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4231 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * The Original Code is: all of this file.
 | |
|  *
 | |
|  * Contributor(s): none yet.
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/blenkernel/intern/curve.c
 | |
|  *  \ingroup bke
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <math.h>  // floor
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "MEM_guardedalloc.h"
 | |
| 
 | |
| #include "BLI_blenlib.h"
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_ghash.h"
 | |
| 
 | |
| #include "DNA_curve_types.h"
 | |
| #include "DNA_material_types.h"
 | |
| 
 | |
| /* for dereferencing pointers */
 | |
| #include "DNA_key_types.h"
 | |
| #include "DNA_scene_types.h"
 | |
| #include "DNA_vfont_types.h"
 | |
| #include "DNA_object_types.h"
 | |
| 
 | |
| #include "BKE_animsys.h"
 | |
| #include "BKE_anim.h"
 | |
| #include "BKE_curve.h"
 | |
| #include "BKE_displist.h"
 | |
| #include "BKE_font.h"
 | |
| #include "BKE_global.h"
 | |
| #include "BKE_key.h"
 | |
| #include "BKE_library.h"
 | |
| #include "BKE_main.h"
 | |
| #include "BKE_object.h"
 | |
| #include "BKE_material.h"
 | |
| 
 | |
| /* globals */
 | |
| 
 | |
| /* local */
 | |
| static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
 | |
|                       short cox, short coy,
 | |
|                       float *lambda, float *mu, float vec[3]);
 | |
| 
 | |
| void BKE_curve_unlink(Curve *cu)
 | |
| {
 | |
| 	int a;
 | |
| 
 | |
| 	for (a = 0; a < cu->totcol; a++) {
 | |
| 		if (cu->mat[a]) cu->mat[a]->id.us--;
 | |
| 		cu->mat[a] = NULL;
 | |
| 	}
 | |
| 	if (cu->vfont)
 | |
| 		cu->vfont->id.us--;
 | |
| 	cu->vfont = NULL;
 | |
| 
 | |
| 	if (cu->vfontb)
 | |
| 		cu->vfontb->id.us--;
 | |
| 	cu->vfontb = NULL;
 | |
| 
 | |
| 	if (cu->vfonti)
 | |
| 		cu->vfonti->id.us--;
 | |
| 	cu->vfonti = NULL;
 | |
| 
 | |
| 	if (cu->vfontbi)
 | |
| 		cu->vfontbi->id.us--;
 | |
| 	cu->vfontbi = NULL;
 | |
| 
 | |
| 	if (cu->key)
 | |
| 		cu->key->id.us--;
 | |
| 	cu->key = NULL;
 | |
| }
 | |
| 
 | |
| /* frees editcurve entirely */
 | |
| void BKE_curve_editfont_free(Curve *cu)
 | |
| {
 | |
| 	if (cu->editfont) {
 | |
| 		EditFont *ef = cu->editfont;
 | |
| 
 | |
| 		if (ef->textbuf)
 | |
| 			MEM_freeN(ef->textbuf);
 | |
| 		if (ef->textbufinfo)
 | |
| 			MEM_freeN(ef->textbufinfo);
 | |
| 		if (ef->copybuf)
 | |
| 			MEM_freeN(ef->copybuf);
 | |
| 		if (ef->copybufinfo)
 | |
| 			MEM_freeN(ef->copybufinfo);
 | |
| 		if (ef->selboxes)
 | |
| 			MEM_freeN(ef->selboxes);
 | |
| 
 | |
| 		MEM_freeN(ef);
 | |
| 		cu->editfont = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_editNurb_keyIndex_free(EditNurb *editnurb)
 | |
| {
 | |
| 	if (!editnurb->keyindex) {
 | |
| 		return;
 | |
| 	}
 | |
| 	BLI_ghash_free(editnurb->keyindex, NULL, MEM_freeN);
 | |
| 	editnurb->keyindex = NULL;
 | |
| }
 | |
| 
 | |
| void BKE_curve_editNurb_free(Curve *cu)
 | |
| {
 | |
| 	if (cu->editnurb) {
 | |
| 		BKE_nurbList_free(&cu->editnurb->nurbs);
 | |
| 		BKE_curve_editNurb_keyIndex_free(cu->editnurb);
 | |
| 		MEM_freeN(cu->editnurb);
 | |
| 		cu->editnurb = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* don't free curve itself */
 | |
| void BKE_curve_free(Curve *cu)
 | |
| {
 | |
| 	BKE_nurbList_free(&cu->nurb);
 | |
| 	BKE_curve_editfont_free(cu);
 | |
| 
 | |
| 	BKE_curve_editNurb_free(cu);
 | |
| 	BKE_curve_unlink(cu);
 | |
| 	BKE_free_animdata((ID *)cu);
 | |
| 
 | |
| 	if (cu->mat)
 | |
| 		MEM_freeN(cu->mat);
 | |
| 	if (cu->str)
 | |
| 		MEM_freeN(cu->str);
 | |
| 	if (cu->strinfo)
 | |
| 		MEM_freeN(cu->strinfo);
 | |
| 	if (cu->bb)
 | |
| 		MEM_freeN(cu->bb);
 | |
| 	if (cu->tb)
 | |
| 		MEM_freeN(cu->tb);
 | |
| }
 | |
| 
 | |
| Curve *BKE_curve_add(Main *bmain, const char *name, int type)
 | |
| {
 | |
| 	Curve *cu;
 | |
| 
 | |
| 	cu = BKE_libblock_alloc(bmain, ID_CU, name);
 | |
| 	copy_v3_fl(cu->size, 1.0f);
 | |
| 	cu->flag = CU_FRONT | CU_BACK | CU_DEFORM_BOUNDS_OFF | CU_PATH_RADIUS;
 | |
| 	cu->pathlen = 100;
 | |
| 	cu->resolu = cu->resolv = (type == OB_SURF) ? 4 : 12;
 | |
| 	cu->width = 1.0;
 | |
| 	cu->wordspace = 1.0;
 | |
| 	cu->spacing = cu->linedist = 1.0;
 | |
| 	cu->fsize = 1.0;
 | |
| 	cu->ulheight = 0.05;
 | |
| 	cu->texflag = CU_AUTOSPACE;
 | |
| 	cu->smallcaps_scale = 0.75f;
 | |
| 	/* XXX: this one seems to be the best one in most cases, at least for curve deform... */
 | |
| 	cu->twist_mode = CU_TWIST_MINIMUM;
 | |
| 	cu->type = type;
 | |
| 	cu->bevfac1 = 0.0f;
 | |
| 	cu->bevfac2 = 1.0f;
 | |
| 	cu->bevfac1_mapping = CU_BEVFAC_MAP_RESOLU;
 | |
| 	cu->bevfac2_mapping = CU_BEVFAC_MAP_RESOLU;
 | |
| 
 | |
| 	cu->bb = BKE_boundbox_alloc_unit();
 | |
| 
 | |
| 	if (type == OB_FONT) {
 | |
| 		cu->vfont = cu->vfontb = cu->vfonti = cu->vfontbi = BKE_vfont_builtin_get();
 | |
| 		cu->vfont->id.us += 4;
 | |
| 		cu->str = MEM_mallocN(12, "str");
 | |
| 		BLI_strncpy(cu->str, "Text", 12);
 | |
| 		cu->len = cu->len_wchar = cu->pos = 4;
 | |
| 		cu->strinfo = MEM_callocN(12 * sizeof(CharInfo), "strinfo new");
 | |
| 		cu->totbox = cu->actbox = 1;
 | |
| 		cu->tb = MEM_callocN(MAXTEXTBOX * sizeof(TextBox), "textbox");
 | |
| 		cu->tb[0].w = cu->tb[0].h = 0.0;
 | |
| 	}
 | |
| 
 | |
| 	return cu;
 | |
| }
 | |
| 
 | |
| Curve *BKE_curve_copy(Curve *cu)
 | |
| {
 | |
| 	Curve *cun;
 | |
| 	int a;
 | |
| 
 | |
| 	cun = BKE_libblock_copy(&cu->id);
 | |
| 	BLI_listbase_clear(&cun->nurb);
 | |
| 	BKE_nurbList_duplicate(&(cun->nurb), &(cu->nurb));
 | |
| 
 | |
| 	cun->mat = MEM_dupallocN(cu->mat);
 | |
| 	for (a = 0; a < cun->totcol; a++) {
 | |
| 		id_us_plus((ID *)cun->mat[a]);
 | |
| 	}
 | |
| 
 | |
| 	cun->str = MEM_dupallocN(cu->str);
 | |
| 	cun->strinfo = MEM_dupallocN(cu->strinfo);
 | |
| 	cun->tb = MEM_dupallocN(cu->tb);
 | |
| 	cun->bb = MEM_dupallocN(cu->bb);
 | |
| 
 | |
| 	cun->key = BKE_key_copy(cu->key);
 | |
| 	if (cun->key) cun->key->from = (ID *)cun;
 | |
| 
 | |
| 	cun->editnurb = NULL;
 | |
| 	cun->editfont = NULL;
 | |
| 
 | |
| #if 0   // XXX old animation system
 | |
| 	/* single user ipo too */
 | |
| 	if (cun->ipo) cun->ipo = copy_ipo(cun->ipo);
 | |
| #endif // XXX old animation system
 | |
| 
 | |
| 	id_us_plus((ID *)cun->vfont);
 | |
| 	id_us_plus((ID *)cun->vfontb);
 | |
| 	id_us_plus((ID *)cun->vfonti);
 | |
| 	id_us_plus((ID *)cun->vfontbi);
 | |
| 
 | |
| 	return cun;
 | |
| }
 | |
| 
 | |
| static void extern_local_curve(Curve *cu)
 | |
| {
 | |
| 	id_lib_extern((ID *)cu->vfont);
 | |
| 	id_lib_extern((ID *)cu->vfontb);
 | |
| 	id_lib_extern((ID *)cu->vfonti);
 | |
| 	id_lib_extern((ID *)cu->vfontbi);
 | |
| 
 | |
| 	if (cu->mat) {
 | |
| 		extern_local_matarar(cu->mat, cu->totcol);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_make_local(Curve *cu)
 | |
| {
 | |
| 	Main *bmain = G.main;
 | |
| 	Object *ob;
 | |
| 	bool is_local = false, is_lib = false;
 | |
| 
 | |
| 	/* - when there are only lib users: don't do
 | |
| 	 * - when there are only local users: set flag
 | |
| 	 * - mixed: do a copy
 | |
| 	 */
 | |
| 
 | |
| 	if (cu->id.lib == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (cu->id.us == 1) {
 | |
| 		id_clear_lib_data(bmain, &cu->id);
 | |
| 		extern_local_curve(cu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
 | |
| 		if (ob->data == cu) {
 | |
| 			if (ob->id.lib) is_lib = true;
 | |
| 			else is_local = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_local && is_lib == false) {
 | |
| 		id_clear_lib_data(bmain, &cu->id);
 | |
| 		extern_local_curve(cu);
 | |
| 	}
 | |
| 	else if (is_local && is_lib) {
 | |
| 		Curve *cu_new = BKE_curve_copy(cu);
 | |
| 		cu_new->id.us = 0;
 | |
| 
 | |
| 		BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id);
 | |
| 
 | |
| 		for (ob = bmain->object.first; ob; ob = ob->id.next) {
 | |
| 			if (ob->data == cu) {
 | |
| 				if (ob->id.lib == NULL) {
 | |
| 					ob->data = cu_new;
 | |
| 					cu_new->id.us++;
 | |
| 					cu->id.us--;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Get list of nurbs from editnurbs structure */
 | |
| ListBase *BKE_curve_editNurbs_get(Curve *cu)
 | |
| {
 | |
| 	if (cu->editnurb) {
 | |
| 		return &cu->editnurb->nurbs;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| short BKE_curve_type_get(Curve *cu)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	int type = cu->type;
 | |
| 
 | |
| 	if (cu->vfont) {
 | |
| 		return OB_FONT;
 | |
| 	}
 | |
| 
 | |
| 	if (!cu->type) {
 | |
| 		type = OB_CURVE;
 | |
| 
 | |
| 		for (nu = cu->nurb.first; nu; nu = nu->next) {
 | |
| 			if (nu->pntsv > 1) {
 | |
| 				type = OB_SURF;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| void BKE_curve_curve_dimension_update(Curve *cu)
 | |
| {
 | |
| 	ListBase *nurbs = BKE_curve_nurbs_get(cu);
 | |
| 	Nurb *nu = nurbs->first;
 | |
| 
 | |
| 	if (cu->flag & CU_3D) {
 | |
| 		for (; nu; nu = nu->next) {
 | |
| 			nu->flag &= ~CU_2D;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		for (; nu; nu = nu->next) {
 | |
| 			nu->flag |= CU_2D;
 | |
| 			BKE_nurb_test2D(nu);
 | |
| 
 | |
| 			/* since the handles are moved they need to be auto-located again */
 | |
| 			if (nu->type == CU_BEZIER)
 | |
| 				BKE_nurb_handles_calc(nu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_type_test(Object *ob)
 | |
| {
 | |
| 	ob->type = BKE_curve_type_get(ob->data);
 | |
| 
 | |
| 	if (ob->type == OB_CURVE)
 | |
| 		BKE_curve_curve_dimension_update((Curve *)ob->data);
 | |
| }
 | |
| 
 | |
| void BKE_curve_boundbox_calc(Curve *cu, float r_loc[3], float r_size[3])
 | |
| {
 | |
| 	BoundBox *bb;
 | |
| 	float min[3], max[3];
 | |
| 	float mloc[3], msize[3];
 | |
| 
 | |
| 	if (cu->bb == NULL) cu->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
 | |
| 	bb = cu->bb;
 | |
| 
 | |
| 	if (!r_loc) r_loc = mloc;
 | |
| 	if (!r_size) r_size = msize;
 | |
| 
 | |
| 	INIT_MINMAX(min, max);
 | |
| 	if (!BKE_curve_minmax(cu, true, min, max)) {
 | |
| 		min[0] = min[1] = min[2] = -1.0f;
 | |
| 		max[0] = max[1] = max[2] = 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	mid_v3_v3v3(r_loc, min, max);
 | |
| 
 | |
| 	r_size[0] = (max[0] - min[0]) / 2.0f;
 | |
| 	r_size[1] = (max[1] - min[1]) / 2.0f;
 | |
| 	r_size[2] = (max[2] - min[2]) / 2.0f;
 | |
| 
 | |
| 	BKE_boundbox_init_from_minmax(bb, min, max);
 | |
| 
 | |
| 	bb->flag &= ~BOUNDBOX_DIRTY;
 | |
| }
 | |
| 
 | |
| BoundBox *BKE_curve_boundbox_get(Object *ob)
 | |
| {
 | |
| 	Curve *cu = ob->data;
 | |
| 
 | |
| 	if (ob->bb)
 | |
| 		return ob->bb;
 | |
| 
 | |
| 	if (cu->bb == NULL || (cu->bb->flag & BOUNDBOX_DIRTY)) {
 | |
| 		BKE_curve_texspace_calc(cu);
 | |
| 	}
 | |
| 
 | |
| 	return cu->bb;
 | |
| }
 | |
| 
 | |
| void BKE_curve_texspace_calc(Curve *cu)
 | |
| {
 | |
| 	float loc[3], size[3];
 | |
| 	int a;
 | |
| 
 | |
| 	BKE_curve_boundbox_calc(cu, loc, size);
 | |
| 
 | |
| 	if (cu->texflag & CU_AUTOSPACE) {
 | |
| 		for (a = 0; a < 3; a++) {
 | |
| 			if (size[a] == 0.0f) size[a] = 1.0f;
 | |
| 			else if (size[a] > 0.0f && size[a] < 0.00001f) size[a] = 0.00001f;
 | |
| 			else if (size[a] < 0.0f && size[a] > -0.00001f) size[a] = -0.00001f;
 | |
| 		}
 | |
| 
 | |
| 		copy_v3_v3(cu->loc, loc);
 | |
| 		copy_v3_v3(cu->size, size);
 | |
| 		zero_v3(cu->rot);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_texspace_get(Curve *cu, float r_loc[3], float r_rot[3], float r_size[3])
 | |
| {
 | |
| 	if (cu->bb == NULL || (cu->bb->flag & BOUNDBOX_DIRTY)) {
 | |
| 		BKE_curve_texspace_calc(cu);
 | |
| 	}
 | |
| 
 | |
| 	if (r_loc) copy_v3_v3(r_loc,  cu->loc);
 | |
| 	if (r_rot) copy_v3_v3(r_rot,  cu->rot);
 | |
| 	if (r_size) copy_v3_v3(r_size, cu->size);
 | |
| }
 | |
| 
 | |
| bool BKE_nurbList_index_get_co(ListBase *nurb, const int index, float r_co[3])
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	int tot = 0;
 | |
| 
 | |
| 	for (nu = nurb->first; nu; nu = nu->next) {
 | |
| 		int tot_nu;
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			tot_nu = nu->pntsu;
 | |
| 			if (index - tot < tot_nu) {
 | |
| 				copy_v3_v3(r_co, nu->bezt[index - tot].vec[1]);
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			tot_nu = nu->pntsu * nu->pntsv;
 | |
| 			if (index - tot < tot_nu) {
 | |
| 				copy_v3_v3(r_co, nu->bp[index - tot].vec);
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 		tot += tot_nu;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int BKE_nurbList_verts_count(ListBase *nurb)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	int tot = 0;
 | |
| 
 | |
| 	nu = nurb->first;
 | |
| 	while (nu) {
 | |
| 		if (nu->bezt)
 | |
| 			tot += 3 * nu->pntsu;
 | |
| 		else if (nu->bp)
 | |
| 			tot += nu->pntsu * nu->pntsv;
 | |
| 
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| 	return tot;
 | |
| }
 | |
| 
 | |
| int BKE_nurbList_verts_count_without_handles(ListBase *nurb)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	int tot = 0;
 | |
| 
 | |
| 	nu = nurb->first;
 | |
| 	while (nu) {
 | |
| 		if (nu->bezt)
 | |
| 			tot += nu->pntsu;
 | |
| 		else if (nu->bp)
 | |
| 			tot += nu->pntsu * nu->pntsv;
 | |
| 
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| 	return tot;
 | |
| }
 | |
| 
 | |
| /* **************** NURBS ROUTINES ******************** */
 | |
| 
 | |
| void BKE_nurb_free(Nurb *nu)
 | |
| {
 | |
| 
 | |
| 	if (nu == NULL) return;
 | |
| 
 | |
| 	if (nu->bezt)
 | |
| 		MEM_freeN(nu->bezt);
 | |
| 	nu->bezt = NULL;
 | |
| 	if (nu->bp)
 | |
| 		MEM_freeN(nu->bp);
 | |
| 	nu->bp = NULL;
 | |
| 	if (nu->knotsu)
 | |
| 		MEM_freeN(nu->knotsu);
 | |
| 	nu->knotsu = NULL;
 | |
| 	if (nu->knotsv)
 | |
| 		MEM_freeN(nu->knotsv);
 | |
| 	nu->knotsv = NULL;
 | |
| 	/* if (nu->trim.first) freeNurblist(&(nu->trim)); */
 | |
| 
 | |
| 	MEM_freeN(nu);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void BKE_nurbList_free(ListBase *lb)
 | |
| {
 | |
| 	Nurb *nu, *next;
 | |
| 
 | |
| 	if (lb == NULL) return;
 | |
| 
 | |
| 	nu = lb->first;
 | |
| 	while (nu) {
 | |
| 		next = nu->next;
 | |
| 		BKE_nurb_free(nu);
 | |
| 		nu = next;
 | |
| 	}
 | |
| 	BLI_listbase_clear(lb);
 | |
| }
 | |
| 
 | |
| Nurb *BKE_nurb_duplicate(Nurb *nu)
 | |
| {
 | |
| 	Nurb *newnu;
 | |
| 	int len;
 | |
| 
 | |
| 	newnu = (Nurb *)MEM_mallocN(sizeof(Nurb), "duplicateNurb");
 | |
| 	if (newnu == NULL) return NULL;
 | |
| 	memcpy(newnu, nu, sizeof(Nurb));
 | |
| 
 | |
| 	if (nu->bezt) {
 | |
| 		newnu->bezt =
 | |
| 		    (BezTriple *)MEM_mallocN((nu->pntsu) * sizeof(BezTriple), "duplicateNurb2");
 | |
| 		memcpy(newnu->bezt, nu->bezt, nu->pntsu * sizeof(BezTriple));
 | |
| 	}
 | |
| 	else {
 | |
| 		len = nu->pntsu * nu->pntsv;
 | |
| 		newnu->bp =
 | |
| 		    (BPoint *)MEM_mallocN((len) * sizeof(BPoint), "duplicateNurb3");
 | |
| 		memcpy(newnu->bp, nu->bp, len * sizeof(BPoint));
 | |
| 
 | |
| 		newnu->knotsu = newnu->knotsv = NULL;
 | |
| 
 | |
| 		if (nu->knotsu) {
 | |
| 			len = KNOTSU(nu);
 | |
| 			if (len) {
 | |
| 				newnu->knotsu = MEM_mallocN(len * sizeof(float), "duplicateNurb4");
 | |
| 				memcpy(newnu->knotsu, nu->knotsu, sizeof(float) * len);
 | |
| 			}
 | |
| 		}
 | |
| 		if (nu->pntsv > 1 && nu->knotsv) {
 | |
| 			len = KNOTSV(nu);
 | |
| 			if (len) {
 | |
| 				newnu->knotsv = MEM_mallocN(len * sizeof(float), "duplicateNurb5");
 | |
| 				memcpy(newnu->knotsv, nu->knotsv, sizeof(float) * len);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return newnu;
 | |
| }
 | |
| 
 | |
| /* copy the nurb but allow for different number of points (to be copied after this) */
 | |
| Nurb *BKE_nurb_copy(Nurb *src, int pntsu, int pntsv)
 | |
| {
 | |
| 	Nurb *newnu = (Nurb *)MEM_mallocN(sizeof(Nurb), "copyNurb");
 | |
| 	memcpy(newnu, src, sizeof(Nurb));
 | |
| 
 | |
| 	if (pntsu == 1) SWAP(int, pntsu, pntsv);
 | |
| 	newnu->pntsu = pntsu;
 | |
| 	newnu->pntsv = pntsv;
 | |
| 
 | |
| 	if (src->bezt) {
 | |
| 		newnu->bezt = (BezTriple *)MEM_mallocN(pntsu * pntsv * sizeof(BezTriple), "copyNurb2");
 | |
| 	}
 | |
| 	else {
 | |
| 		newnu->bp = (BPoint *)MEM_mallocN(pntsu * pntsv * sizeof(BPoint), "copyNurb3");
 | |
| 	}
 | |
| 
 | |
| 	return newnu;
 | |
| }
 | |
| 
 | |
| void BKE_nurbList_duplicate(ListBase *lb1, ListBase *lb2)
 | |
| {
 | |
| 	Nurb *nu, *nun;
 | |
| 
 | |
| 	BKE_nurbList_free(lb1);
 | |
| 
 | |
| 	nu = lb2->first;
 | |
| 	while (nu) {
 | |
| 		nun = BKE_nurb_duplicate(nu);
 | |
| 		BLI_addtail(lb1, nun);
 | |
| 
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurb_test2D(Nurb *nu)
 | |
| {
 | |
| 	BezTriple *bezt;
 | |
| 	BPoint *bp;
 | |
| 	int a;
 | |
| 
 | |
| 	if ((nu->flag & CU_2D) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (nu->type == CU_BEZIER) {
 | |
| 		a = nu->pntsu;
 | |
| 		bezt = nu->bezt;
 | |
| 		while (a--) {
 | |
| 			bezt->vec[0][2] = 0.0;
 | |
| 			bezt->vec[1][2] = 0.0;
 | |
| 			bezt->vec[2][2] = 0.0;
 | |
| 			bezt++;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		a = nu->pntsu * nu->pntsv;
 | |
| 		bp = nu->bp;
 | |
| 		while (a--) {
 | |
| 			bp->vec[2] = 0.0;
 | |
| 			bp++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* if use_radius is truth, minmax will take points' radius into account,
 | |
|  * which will make boundbox closer to bevelled curve.
 | |
|  */
 | |
| void BKE_nurb_minmax(Nurb *nu, bool use_radius, float min[3], float max[3])
 | |
| {
 | |
| 	BezTriple *bezt;
 | |
| 	BPoint *bp;
 | |
| 	int a;
 | |
| 	float point[3];
 | |
| 
 | |
| 	if (nu->type == CU_BEZIER) {
 | |
| 		a = nu->pntsu;
 | |
| 		bezt = nu->bezt;
 | |
| 		while (a--) {
 | |
| 			if (use_radius) {
 | |
| 				float radius_vector[3];
 | |
| 				radius_vector[0] = radius_vector[1] = radius_vector[2] = bezt->radius;
 | |
| 
 | |
| 				add_v3_v3v3(point, bezt->vec[1], radius_vector);
 | |
| 				minmax_v3v3_v3(min, max, point);
 | |
| 
 | |
| 				sub_v3_v3v3(point, bezt->vec[1], radius_vector);
 | |
| 				minmax_v3v3_v3(min, max, point);
 | |
| 			}
 | |
| 			else {
 | |
| 				minmax_v3v3_v3(min, max, bezt->vec[1]);
 | |
| 			}
 | |
| 			minmax_v3v3_v3(min, max, bezt->vec[0]);
 | |
| 			minmax_v3v3_v3(min, max, bezt->vec[2]);
 | |
| 			bezt++;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		a = nu->pntsu * nu->pntsv;
 | |
| 		bp = nu->bp;
 | |
| 		while (a--) {
 | |
| 			if (nu->pntsv == 1 && use_radius) {
 | |
| 				float radius_vector[3];
 | |
| 				radius_vector[0] = radius_vector[1] = radius_vector[2] = bp->radius;
 | |
| 
 | |
| 				add_v3_v3v3(point, bp->vec, radius_vector);
 | |
| 				minmax_v3v3_v3(min, max, point);
 | |
| 
 | |
| 				sub_v3_v3v3(point, bp->vec, radius_vector);
 | |
| 				minmax_v3v3_v3(min, max, point);
 | |
| 			}
 | |
| 			else {
 | |
| 				/* Surfaces doesn't use bevel, so no need to take radius into account. */
 | |
| 				minmax_v3v3_v3(min, max, bp->vec);
 | |
| 			}
 | |
| 			bp++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* be sure to call makeknots after this */
 | |
| void BKE_nurb_points_add(Nurb *nu, int number)
 | |
| {
 | |
| 	BPoint *bp;
 | |
| 	int i;
 | |
| 
 | |
| 	nu->bp = MEM_recallocN(nu->bp, (nu->pntsu + number) * sizeof(BPoint));
 | |
| 
 | |
| 	for (i = 0, bp = &nu->bp[nu->pntsu]; i < number; i++, bp++) {
 | |
| 		bp->radius = 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	nu->pntsu += number;
 | |
| }
 | |
| 
 | |
| void BKE_nurb_bezierPoints_add(Nurb *nu, int number)
 | |
| {
 | |
| 	BezTriple *bezt;
 | |
| 	int i;
 | |
| 
 | |
| 	nu->bezt = MEM_recallocN(nu->bp, (nu->pntsu + number) * sizeof(BezTriple));
 | |
| 
 | |
| 	for (i = 0, bezt = &nu->bezt[nu->pntsu]; i < number; i++, bezt++) {
 | |
| 		bezt->radius = 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	nu->pntsu += number;
 | |
| }
 | |
| 
 | |
| 
 | |
| BezTriple *BKE_nurb_bezt_get_next(Nurb *nu, BezTriple *bezt)
 | |
| {
 | |
| 	BezTriple *bezt_next;
 | |
| 
 | |
| 	BLI_assert(ARRAY_HAS_ITEM(bezt, nu->bezt, nu->pntsu));
 | |
| 
 | |
| 	if (bezt == &nu->bezt[nu->pntsu - 1]) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 			bezt_next = nu->bezt;
 | |
| 		}
 | |
| 		else {
 | |
| 			bezt_next = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		bezt_next = bezt + 1;
 | |
| 	}
 | |
| 
 | |
| 	return bezt_next;
 | |
| }
 | |
| 
 | |
| BPoint *BKE_nurb_bpoint_get_next(Nurb *nu, BPoint *bp)
 | |
| {
 | |
| 	BPoint *bp_next;
 | |
| 
 | |
| 	BLI_assert(ARRAY_HAS_ITEM(bp, nu->bp, nu->pntsu));
 | |
| 
 | |
| 	if (bp == &nu->bp[nu->pntsu - 1]) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 			bp_next = nu->bp;
 | |
| 		}
 | |
| 		else {
 | |
| 			bp_next = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		bp_next = bp + 1;
 | |
| 	}
 | |
| 
 | |
| 	return bp_next;
 | |
| }
 | |
| 
 | |
| BezTriple *BKE_nurb_bezt_get_prev(Nurb *nu, BezTriple *bezt)
 | |
| {
 | |
| 	BezTriple *bezt_prev;
 | |
| 
 | |
| 	BLI_assert(ARRAY_HAS_ITEM(bezt, nu->bezt, nu->pntsu));
 | |
| 
 | |
| 	if (bezt == nu->bezt) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 			bezt_prev = &nu->bezt[nu->pntsu - 1];
 | |
| 		}
 | |
| 		else {
 | |
| 			bezt_prev = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		bezt_prev = bezt - 1;
 | |
| 	}
 | |
| 
 | |
| 	return bezt_prev;
 | |
| }
 | |
| 
 | |
| BPoint *BKE_nurb_bpoint_get_prev(Nurb *nu, BPoint *bp)
 | |
| {
 | |
| 	BPoint *bp_prev;
 | |
| 
 | |
| 	BLI_assert(ARRAY_HAS_ITEM(bp, nu->bp, nu->pntsu));
 | |
| 
 | |
| 	if (bp == nu->bp) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 			bp_prev = &nu->bp[nu->pntsu - 1];
 | |
| 		}
 | |
| 		else {
 | |
| 			bp_prev = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		bp_prev = bp - 1;
 | |
| 	}
 | |
| 
 | |
| 	return bp_prev;
 | |
| }
 | |
| 
 | |
| void BKE_nurb_bezt_calc_normal(struct Nurb *UNUSED(nu), struct BezTriple *bezt, float r_normal[3])
 | |
| {
 | |
| 	/* calculate the axis matrix from the spline */
 | |
| 	float dir_prev[3], dir_next[3];
 | |
| 
 | |
| 	sub_v3_v3v3(dir_prev, bezt->vec[0], bezt->vec[1]);
 | |
| 	sub_v3_v3v3(dir_next, bezt->vec[1], bezt->vec[2]);
 | |
| 
 | |
| 	normalize_v3(dir_prev);
 | |
| 	normalize_v3(dir_next);
 | |
| 
 | |
| 	add_v3_v3v3(r_normal, dir_prev, dir_next);
 | |
| 	normalize_v3(r_normal);
 | |
| }
 | |
| 
 | |
| void BKE_nurb_bezt_calc_plane(struct Nurb *nu, struct BezTriple *bezt, float r_plane[3])
 | |
| {
 | |
| 	float dir_prev[3], dir_next[3];
 | |
| 
 | |
| 	sub_v3_v3v3(dir_prev, bezt->vec[0], bezt->vec[1]);
 | |
| 	sub_v3_v3v3(dir_next, bezt->vec[1], bezt->vec[2]);
 | |
| 
 | |
| 	normalize_v3(dir_prev);
 | |
| 	normalize_v3(dir_next);
 | |
| 
 | |
| 	cross_v3_v3v3(r_plane, dir_prev, dir_next);
 | |
| 	if (normalize_v3(r_plane) < FLT_EPSILON) {
 | |
| 		BezTriple *bezt_prev = BKE_nurb_bezt_get_prev(nu, bezt);
 | |
| 		BezTriple *bezt_next = BKE_nurb_bezt_get_next(nu, bezt);
 | |
| 
 | |
| 		if (bezt_prev) {
 | |
| 			sub_v3_v3v3(dir_prev, bezt_prev->vec[1], bezt->vec[1]);
 | |
| 			normalize_v3(dir_prev);
 | |
| 		}
 | |
| 		if (bezt_next) {
 | |
| 			sub_v3_v3v3(dir_next, bezt->vec[1], bezt_next->vec[1]);
 | |
| 			normalize_v3(dir_next);
 | |
| 		}
 | |
| 		cross_v3_v3v3(r_plane, dir_prev, dir_next);
 | |
| 	}
 | |
| 
 | |
| 	/* matches with bones more closely */
 | |
| 	{
 | |
| 		float dir_mid[3], tvec[3];
 | |
| 		add_v3_v3v3(dir_mid, dir_prev, dir_next);
 | |
| 		cross_v3_v3v3(tvec, r_plane, dir_mid);
 | |
| 		copy_v3_v3(r_plane, tvec);
 | |
| 	}
 | |
| 
 | |
| 	normalize_v3(r_plane);
 | |
| }
 | |
| 
 | |
| /* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
 | |
| 
 | |
| 
 | |
| static void calcknots(float *knots, const int pnts, const short order, const short flag)
 | |
| {
 | |
| 	/* knots: number of pnts NOT corrected for cyclic */
 | |
| 	const int pnts_order = pnts + order;
 | |
| 	float k;
 | |
| 	int a;
 | |
| 
 | |
| 	switch (flag & (CU_NURB_ENDPOINT | CU_NURB_BEZIER)) {
 | |
| 		case CU_NURB_ENDPOINT:
 | |
| 			k = 0.0;
 | |
| 			for (a = 1; a <= pnts_order; a++) {
 | |
| 				knots[a - 1] = k;
 | |
| 				if (a >= order && a <= pnts)
 | |
| 					k += 1.0f;
 | |
| 			}
 | |
| 			break;
 | |
| 		case CU_NURB_BEZIER:
 | |
| 			/* Warning, the order MUST be 2 or 4,
 | |
| 			 * if this is not enforced, the displist will be corrupt */
 | |
| 			if (order == 4) {
 | |
| 				k = 0.34;
 | |
| 				for (a = 0; a < pnts_order; a++) {
 | |
| 					knots[a] = floorf(k);
 | |
| 					k += (1.0f / 3.0f);
 | |
| 				}
 | |
| 			}
 | |
| 			else if (order == 3) {
 | |
| 				k = 0.6f;
 | |
| 				for (a = 0; a < pnts_order; a++) {
 | |
| 					if (a >= order && a <= pnts)
 | |
| 						k += 0.5f;
 | |
| 					knots[a] = floorf(k);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				printf("bez nurb curve order is not 3 or 4, should never happen\n");
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			for (a = 0; a < pnts_order; a++) {
 | |
| 				knots[a] = (float)a;
 | |
| 			}
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void makecyclicknots(float *knots, int pnts, short order)
 | |
| /* pnts, order: number of pnts NOT corrected for cyclic */
 | |
| {
 | |
| 	int a, b, order2, c;
 | |
| 
 | |
| 	if (knots == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	order2 = order - 1;
 | |
| 
 | |
| 	/* do first long rows (order -1), remove identical knots at endpoints */
 | |
| 	if (order > 2) {
 | |
| 		b = pnts + order2;
 | |
| 		for (a = 1; a < order2; a++) {
 | |
| 			if (knots[b] != knots[b - a])
 | |
| 				break;
 | |
| 		}
 | |
| 		if (a == order2)
 | |
| 			knots[pnts + order - 2] += 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	b = order;
 | |
| 	c = pnts + order + order2;
 | |
| 	for (a = pnts + order2; a < c; a++) {
 | |
| 		knots[a] = knots[a - 1] + (knots[b] - knots[b - 1]);
 | |
| 		b--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void makeknots(Nurb *nu, short uv)
 | |
| {
 | |
| 	if (nu->type == CU_NURBS) {
 | |
| 		if (uv == 1) {
 | |
| 			if (nu->knotsu)
 | |
| 				MEM_freeN(nu->knotsu);
 | |
| 			if (BKE_nurb_check_valid_u(nu)) {
 | |
| 				nu->knotsu = MEM_callocN(4 + sizeof(float) * KNOTSU(nu), "makeknots");
 | |
| 				if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 					calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0);  /* cyclic should be uniform */
 | |
| 					makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
 | |
| 				}
 | |
| 				else {
 | |
| 					calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu);
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 				nu->knotsu = NULL;
 | |
| 		}
 | |
| 		else if (uv == 2) {
 | |
| 			if (nu->knotsv)
 | |
| 				MEM_freeN(nu->knotsv);
 | |
| 			if (BKE_nurb_check_valid_v(nu)) {
 | |
| 				nu->knotsv = MEM_callocN(4 + sizeof(float) * KNOTSV(nu), "makeknots");
 | |
| 				if (nu->flagv & CU_NURB_CYCLIC) {
 | |
| 					calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0);  /* cyclic should be uniform */
 | |
| 					makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
 | |
| 				}
 | |
| 				else {
 | |
| 					calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				nu->knotsv = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurb_knot_calc_u(Nurb *nu)
 | |
| {
 | |
| 	makeknots(nu, 1);
 | |
| }
 | |
| 
 | |
| void BKE_nurb_knot_calc_v(Nurb *nu)
 | |
| {
 | |
| 	makeknots(nu, 2);
 | |
| }
 | |
| 
 | |
| static void basisNurb(float t, short order, int pnts, float *knots, float *basis, int *start, int *end)
 | |
| {
 | |
| 	float d, e;
 | |
| 	int i, i1 = 0, i2 = 0, j, orderpluspnts, opp2, o2;
 | |
| 
 | |
| 	orderpluspnts = order + pnts;
 | |
| 	opp2 = orderpluspnts - 1;
 | |
| 
 | |
| 	/* this is for float inaccuracy */
 | |
| 	if (t < knots[0])
 | |
| 		t = knots[0];
 | |
| 	else if (t > knots[opp2]) 
 | |
| 		t = knots[opp2];
 | |
| 
 | |
| 	/* this part is order '1' */
 | |
| 	o2 = order + 1;
 | |
| 	for (i = 0; i < opp2; i++) {
 | |
| 		if (knots[i] != knots[i + 1] && t >= knots[i] && t <= knots[i + 1]) {
 | |
| 			basis[i] = 1.0;
 | |
| 			i1 = i - o2;
 | |
| 			if (i1 < 0) i1 = 0;
 | |
| 			i2 = i;
 | |
| 			i++;
 | |
| 			while (i < opp2) {
 | |
| 				basis[i] = 0.0;
 | |
| 				i++;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		else
 | |
| 			basis[i] = 0.0;
 | |
| 	}
 | |
| 	basis[i] = 0.0;
 | |
| 
 | |
| 	/* this is order 2, 3, ... */
 | |
| 	for (j = 2; j <= order; j++) {
 | |
| 
 | |
| 		if (i2 + j >= orderpluspnts) i2 = opp2 - j;
 | |
| 
 | |
| 		for (i = i1; i <= i2; i++) {
 | |
| 			if (basis[i] != 0.0f)
 | |
| 				d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i]);
 | |
| 			else
 | |
| 				d = 0.0f;
 | |
| 
 | |
| 			if (basis[i + 1] != 0.0f)
 | |
| 				e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1]);
 | |
| 			else
 | |
| 				e = 0.0;
 | |
| 
 | |
| 			basis[i] = d + e;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*start = 1000;
 | |
| 	*end = 0;
 | |
| 
 | |
| 	for (i = i1; i <= i2; i++) {
 | |
| 		if (basis[i] > 0.0f) {
 | |
| 			*end = i;
 | |
| 			if (*start == 1000) *start = i;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void BKE_nurb_makeFaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
 | |
| /* coord_array  has to be (3 * 4 * resolu * resolv) in size, and zero-ed */
 | |
| {
 | |
| 	BPoint *bp;
 | |
| 	float *basisu, *basis, *basisv, *sum, *fp, *in;
 | |
| 	float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
 | |
| 	int i, j, iofs, jofs, cycl, len, curu, curv;
 | |
| 	int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
 | |
| 
 | |
| 	int totu = nu->pntsu * resolu, totv = nu->pntsv * resolv;
 | |
| 
 | |
| 	if (nu->knotsu == NULL || nu->knotsv == NULL)
 | |
| 		return;
 | |
| 	if (nu->orderu > nu->pntsu)
 | |
| 		return;
 | |
| 	if (nu->orderv > nu->pntsv)
 | |
| 		return;
 | |
| 	if (coord_array == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* allocate and initialize */
 | |
| 	len = totu * totv;
 | |
| 	if (len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbfaces1");
 | |
| 
 | |
| 	len = totu * totv;
 | |
| 	if (len == 0) {
 | |
| 		MEM_freeN(sum);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bp = nu->bp;
 | |
| 	i = nu->pntsu * nu->pntsv;
 | |
| 	ratcomp = 0;
 | |
| 	while (i--) {
 | |
| 		if (bp->vec[3] != 1.0f) {
 | |
| 			ratcomp = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		bp++;
 | |
| 	}
 | |
| 
 | |
| 	fp = nu->knotsu;
 | |
| 	ustart = fp[nu->orderu - 1];
 | |
| 	if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 		uend = fp[nu->pntsu + nu->orderu - 1];
 | |
| 	else
 | |
| 		uend = fp[nu->pntsu];
 | |
| 	ustep = (uend - ustart) / ((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
 | |
| 
 | |
| 	basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbfaces3");
 | |
| 
 | |
| 	fp = nu->knotsv;
 | |
| 	vstart = fp[nu->orderv - 1];
 | |
| 
 | |
| 	if (nu->flagv & CU_NURB_CYCLIC)
 | |
| 		vend = fp[nu->pntsv + nu->orderv - 1];
 | |
| 	else
 | |
| 		vend = fp[nu->pntsv];
 | |
| 	vstep = (vend - vstart) / ((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
 | |
| 
 | |
| 	len = KNOTSV(nu);
 | |
| 	basisv = (float *)MEM_mallocN(sizeof(float) * len * totv, "makeNurbfaces3");
 | |
| 	jstart = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces4");
 | |
| 	jend = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces5");
 | |
| 
 | |
| 	/* precalculation of basisv and jstart, jend */
 | |
| 	if (nu->flagv & CU_NURB_CYCLIC)
 | |
| 		cycl = nu->orderv - 1;
 | |
| 	else cycl = 0;
 | |
| 	v = vstart;
 | |
| 	basis = basisv;
 | |
| 	curv = totv;
 | |
| 	while (curv--) {
 | |
| 		basisNurb(v, nu->orderv, nu->pntsv + cycl, nu->knotsv, basis, jstart + curv, jend + curv);
 | |
| 		basis += KNOTSV(nu);
 | |
| 		v += vstep;
 | |
| 	}
 | |
| 
 | |
| 	if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 		cycl = nu->orderu - 1;
 | |
| 	else
 | |
| 		cycl = 0;
 | |
| 	in = coord_array;
 | |
| 	u = ustart;
 | |
| 	curu = totu;
 | |
| 	while (curu--) {
 | |
| 		basisNurb(u, nu->orderu, nu->pntsu + cycl, nu->knotsu, basisu, &istart, &iend);
 | |
| 
 | |
| 		basis = basisv;
 | |
| 		curv = totv;
 | |
| 		while (curv--) {
 | |
| 			jsta = jstart[curv];
 | |
| 			jen = jend[curv];
 | |
| 
 | |
| 			/* calculate sum */
 | |
| 			sumdiv = 0.0;
 | |
| 			fp = sum;
 | |
| 
 | |
| 			for (j = jsta; j <= jen; j++) {
 | |
| 
 | |
| 				if (j >= nu->pntsv)
 | |
| 					jofs = (j - nu->pntsv);
 | |
| 				else
 | |
| 					jofs = j;
 | |
| 				bp = nu->bp + nu->pntsu * jofs + istart - 1;
 | |
| 
 | |
| 				for (i = istart; i <= iend; i++, fp++) {
 | |
| 					if (i >= nu->pntsu) {
 | |
| 						iofs = i - nu->pntsu;
 | |
| 						bp = nu->bp + nu->pntsu * jofs + iofs;
 | |
| 					}
 | |
| 					else
 | |
| 						bp++;
 | |
| 
 | |
| 					if (ratcomp) {
 | |
| 						*fp = basisu[i] * basis[j] * bp->vec[3];
 | |
| 						sumdiv += *fp;
 | |
| 					}
 | |
| 					else
 | |
| 						*fp = basisu[i] * basis[j];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (ratcomp) {
 | |
| 				fp = sum;
 | |
| 				for (j = jsta; j <= jen; j++) {
 | |
| 					for (i = istart; i <= iend; i++, fp++) {
 | |
| 						*fp /= sumdiv;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* one! (1.0) real point now */
 | |
| 			fp = sum;
 | |
| 			for (j = jsta; j <= jen; j++) {
 | |
| 
 | |
| 				if (j >= nu->pntsv)
 | |
| 					jofs = (j - nu->pntsv);
 | |
| 				else
 | |
| 					jofs = j;
 | |
| 				bp = nu->bp + nu->pntsu * jofs + istart - 1;
 | |
| 
 | |
| 				for (i = istart; i <= iend; i++, fp++) {
 | |
| 					if (i >= nu->pntsu) {
 | |
| 						iofs = i - nu->pntsu;
 | |
| 						bp = nu->bp + nu->pntsu * jofs + iofs;
 | |
| 					}
 | |
| 					else
 | |
| 						bp++;
 | |
| 
 | |
| 					if (*fp != 0.0f) {
 | |
| 						madd_v3_v3fl(in, bp->vec, *fp);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			in += 3;
 | |
| 			basis += KNOTSV(nu);
 | |
| 		}
 | |
| 		u += ustep;
 | |
| 		if (rowstride != 0)
 | |
| 			in = (float *) (((unsigned char *) in) + (rowstride - 3 * totv * sizeof(*in)));
 | |
| 	}
 | |
| 
 | |
| 	/* free */
 | |
| 	MEM_freeN(sum);
 | |
| 	MEM_freeN(basisu);
 | |
| 	MEM_freeN(basisv);
 | |
| 	MEM_freeN(jstart);
 | |
| 	MEM_freeN(jend);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * \param coord_array Has to be 3 * 4 * pntsu * resolu in size and zero-ed
 | |
|  * \param tilt_array   set when non-NULL
 | |
|  * \param radius_array set when non-NULL
 | |
|  */
 | |
| void BKE_nurb_makeCurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array,
 | |
|                         int resolu, int stride)
 | |
| {
 | |
| 	BPoint *bp;
 | |
| 	float u, ustart, uend, ustep, sumdiv;
 | |
| 	float *basisu, *sum, *fp;
 | |
| 	float *coord_fp = coord_array, *tilt_fp = tilt_array, *radius_fp = radius_array, *weight_fp = weight_array;
 | |
| 	int i, len, istart, iend, cycl;
 | |
| 
 | |
| 	if (nu->knotsu == NULL)
 | |
| 		return;
 | |
| 	if (nu->orderu > nu->pntsu)
 | |
| 		return;
 | |
| 	if (coord_array == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* allocate and initialize */
 | |
| 	len = nu->pntsu;
 | |
| 	if (len == 0)
 | |
| 		return;
 | |
| 	sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbcurve1");
 | |
| 
 | |
| 	resolu = (resolu * SEGMENTSU(nu));
 | |
| 
 | |
| 	if (resolu == 0) {
 | |
| 		MEM_freeN(sum);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	fp = nu->knotsu;
 | |
| 	ustart = fp[nu->orderu - 1];
 | |
| 	if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 		uend = fp[nu->pntsu + nu->orderu - 1];
 | |
| 	else
 | |
| 		uend = fp[nu->pntsu];
 | |
| 	ustep = (uend - ustart) / (resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
 | |
| 
 | |
| 	basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbcurve3");
 | |
| 
 | |
| 	if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 		cycl = nu->orderu - 1;
 | |
| 	else
 | |
| 		cycl = 0;
 | |
| 
 | |
| 	u = ustart;
 | |
| 	while (resolu--) {
 | |
| 		basisNurb(u, nu->orderu, nu->pntsu + cycl, nu->knotsu, basisu, &istart, &iend);
 | |
| 
 | |
| 		/* calc sum */
 | |
| 		sumdiv = 0.0;
 | |
| 		fp = sum;
 | |
| 		bp = nu->bp + istart - 1;
 | |
| 		for (i = istart; i <= iend; i++, fp++) {
 | |
| 			if (i >= nu->pntsu)
 | |
| 				bp = nu->bp + (i - nu->pntsu);
 | |
| 			else
 | |
| 				bp++;
 | |
| 
 | |
| 			*fp = basisu[i] * bp->vec[3];
 | |
| 			sumdiv += *fp;
 | |
| 		}
 | |
| 		if ((sumdiv != 0.0f) && (sumdiv < 0.999f || sumdiv > 1.001f)) {
 | |
| 			/* is normalizing needed? */
 | |
| 			fp = sum;
 | |
| 			for (i = istart; i <= iend; i++, fp++) {
 | |
| 				*fp /= sumdiv;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* one! (1.0) real point */
 | |
| 		fp = sum;
 | |
| 		bp = nu->bp + istart - 1;
 | |
| 		for (i = istart; i <= iend; i++, fp++) {
 | |
| 			if (i >= nu->pntsu)
 | |
| 				bp = nu->bp + (i - nu->pntsu);
 | |
| 			else
 | |
| 				bp++;
 | |
| 
 | |
| 			if (*fp != 0.0f) {
 | |
| 				madd_v3_v3fl(coord_fp, bp->vec, *fp);
 | |
| 
 | |
| 				if (tilt_fp)
 | |
| 					(*tilt_fp) += (*fp) * bp->alfa;
 | |
| 
 | |
| 				if (radius_fp)
 | |
| 					(*radius_fp) += (*fp) * bp->radius;
 | |
| 
 | |
| 				if (weight_fp)
 | |
| 					(*weight_fp) += (*fp) * bp->weight;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		coord_fp = (float *)(((char *)coord_fp) + stride);
 | |
| 
 | |
| 		if (tilt_fp)
 | |
| 			tilt_fp = (float *)(((char *)tilt_fp) + stride);
 | |
| 		if (radius_fp)
 | |
| 			radius_fp = (float *)(((char *)radius_fp) + stride);
 | |
| 		if (weight_fp)
 | |
| 			weight_fp = (float *)(((char *)weight_fp) + stride);
 | |
| 
 | |
| 		u += ustep;
 | |
| 	}
 | |
| 
 | |
| 	/* free */
 | |
| 	MEM_freeN(sum);
 | |
| 	MEM_freeN(basisu);
 | |
| }
 | |
| 
 | |
| /* forward differencing method for bezier curve */
 | |
| void BKE_curve_forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
 | |
| {
 | |
| 	float rt0, rt1, rt2, rt3, f;
 | |
| 	int a;
 | |
| 
 | |
| 	f = (float)it;
 | |
| 	rt0 = q0;
 | |
| 	rt1 = 3.0f * (q1 - q0) / f;
 | |
| 	f *= f;
 | |
| 	rt2 = 3.0f * (q0 - 2.0f * q1 + q2) / f;
 | |
| 	f *= it;
 | |
| 	rt3 = (q3 - q0 + 3.0f * (q1 - q2)) / f;
 | |
| 
 | |
| 	q0 = rt0;
 | |
| 	q1 = rt1 + rt2 + rt3;
 | |
| 	q2 = 2 * rt2 + 6 * rt3;
 | |
| 	q3 = 6 * rt3;
 | |
| 
 | |
| 	for (a = 0; a <= it; a++) {
 | |
| 		*p = q0;
 | |
| 		p = (float *)(((char *)p) + stride);
 | |
| 		q0 += q1;
 | |
| 		q1 += q2;
 | |
| 		q2 += q3;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void forward_diff_bezier_cotangent(const float p0[3], const float p1[3], const float p2[3], const float p3[3],
 | |
|                                           float p[3], int it, int stride)
 | |
| {
 | |
| 	/* note that these are not perpendicular to the curve
 | |
| 	 * they need to be rotated for this,
 | |
| 	 *
 | |
| 	 * This could also be optimized like BKE_curve_forward_diff_bezier */
 | |
| 	int a;
 | |
| 	for (a = 0; a <= it; a++) {
 | |
| 		float t = (float)a / (float)it;
 | |
| 
 | |
| 		int i;
 | |
| 		for (i = 0; i < 3; i++) {
 | |
| 			p[i] = (-6.0f  * t +  6.0f) * p0[i] +
 | |
| 			       ( 18.0f * t - 12.0f) * p1[i] +
 | |
| 			       (-18.0f * t +  6.0f) * p2[i] +
 | |
| 			       ( 6.0f  * t)         * p3[i];
 | |
| 		}
 | |
| 		normalize_v3(p);
 | |
| 		p = (float *)(((char *)p) + stride);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
 | |
| 
 | |
| float *BKE_curve_surf_make_orco(Object *ob)
 | |
| {
 | |
| 	/* Note: this function is used in convertblender only atm, so
 | |
| 	 * suppose nonzero curve's render resolution should always be used */
 | |
| 	Curve *cu = ob->data;
 | |
| 	Nurb *nu;
 | |
| 	int a, b, tot = 0;
 | |
| 	int sizeu, sizev;
 | |
| 	int resolu, resolv;
 | |
| 	float *fp, *coord_array;
 | |
| 
 | |
| 	/* first calculate the size of the datablock */
 | |
| 	nu = cu->nurb.first;
 | |
| 	while (nu) {
 | |
| 		/* as we want to avoid the seam in a cyclic nurbs
 | |
| 		 * texture wrapping, reserve extra orco data space to save these extra needed
 | |
| 		 * vertex based UV coordinates for the meridian vertices.
 | |
| 		 * Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
 | |
| 		 * the renderface/vert construction.
 | |
| 		 *
 | |
| 		 * See also convertblender.c: init_render_surf()
 | |
| 		 */
 | |
| 
 | |
| 		resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
 | |
| 		resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
 | |
| 
 | |
| 		sizeu = nu->pntsu * resolu;
 | |
| 		sizev = nu->pntsv * resolv;
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
 | |
| 		if (nu->flagv & CU_NURB_CYCLIC) sizev++;
 | |
| 		if (nu->pntsv > 1) tot += sizeu * sizev;
 | |
| 
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| 	/* makeNurbfaces wants zeros */
 | |
| 	fp = coord_array = MEM_callocN(3 * sizeof(float) * tot, "make_orco");
 | |
| 
 | |
| 	nu = cu->nurb.first;
 | |
| 	while (nu) {
 | |
| 		resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
 | |
| 		resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
 | |
| 
 | |
| 		if (nu->pntsv > 1) {
 | |
| 			sizeu = nu->pntsu * resolu;
 | |
| 			sizev = nu->pntsv * resolv;
 | |
| 
 | |
| 			if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 				sizeu++;
 | |
| 			if (nu->flagv & CU_NURB_CYCLIC)
 | |
| 				sizev++;
 | |
| 
 | |
| 			if (cu->flag & CU_UV_ORCO) {
 | |
| 				for (b = 0; b < sizeu; b++) {
 | |
| 					for (a = 0; a < sizev; a++) {
 | |
| 
 | |
| 						if (sizev < 2)
 | |
| 							fp[0] = 0.0f;
 | |
| 						else
 | |
| 							fp[0] = -1.0f + 2.0f * ((float)a) / (sizev - 1);
 | |
| 
 | |
| 						if (sizeu < 2)
 | |
| 							fp[1] = 0.0f;
 | |
| 						else
 | |
| 							fp[1] = -1.0f + 2.0f * ((float)b) / (sizeu - 1);
 | |
| 
 | |
| 						fp[2] = 0.0;
 | |
| 
 | |
| 						fp += 3;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				int size = (nu->pntsu * resolu) * (nu->pntsv * resolv) * 3 * sizeof(float);
 | |
| 				float *_tdata = MEM_callocN(size, "temp data");
 | |
| 				float *tdata = _tdata;
 | |
| 
 | |
| 				BKE_nurb_makeFaces(nu, tdata, 0, resolu, resolv);
 | |
| 
 | |
| 				for (b = 0; b < sizeu; b++) {
 | |
| 					int use_b = b;
 | |
| 					if (b == sizeu - 1 && (nu->flagu & CU_NURB_CYCLIC))
 | |
| 						use_b = false;
 | |
| 
 | |
| 					for (a = 0; a < sizev; a++) {
 | |
| 						int use_a = a;
 | |
| 						if (a == sizev - 1 && (nu->flagv & CU_NURB_CYCLIC))
 | |
| 							use_a = false;
 | |
| 
 | |
| 						tdata = _tdata + 3 * (use_b * (nu->pntsv * resolv) + use_a);
 | |
| 
 | |
| 						fp[0] = (tdata[0] - cu->loc[0]) / cu->size[0];
 | |
| 						fp[1] = (tdata[1] - cu->loc[1]) / cu->size[1];
 | |
| 						fp[2] = (tdata[2] - cu->loc[2]) / cu->size[2];
 | |
| 						fp += 3;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				MEM_freeN(_tdata);
 | |
| 			}
 | |
| 		}
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| 
 | |
| 	return coord_array;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* NOTE: This routine is tied to the order of vertex
 | |
|  * built by displist and as passed to the renderer.
 | |
|  */
 | |
| float *BKE_curve_make_orco(Scene *scene, Object *ob, int *r_numVerts)
 | |
| {
 | |
| 	Curve *cu = ob->data;
 | |
| 	DispList *dl;
 | |
| 	int u, v, numVerts;
 | |
| 	float *fp, *coord_array;
 | |
| 	ListBase disp = {NULL, NULL};
 | |
| 
 | |
| 	BKE_displist_make_curveTypes_forOrco(scene, ob, &disp);
 | |
| 
 | |
| 	numVerts = 0;
 | |
| 	for (dl = disp.first; dl; dl = dl->next) {
 | |
| 		if (dl->type == DL_INDEX3) {
 | |
| 			numVerts += dl->nr;
 | |
| 		}
 | |
| 		else if (dl->type == DL_SURF) {
 | |
| 			/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only
 | |
| 			 * (closed circle beveling)
 | |
| 			 */
 | |
| 			if (dl->flag & DL_CYCL_U) {
 | |
| 				if (dl->flag & DL_CYCL_V)
 | |
| 					numVerts += (dl->parts + 1) * (dl->nr + 1);
 | |
| 				else
 | |
| 					numVerts += dl->parts * (dl->nr + 1);
 | |
| 			}
 | |
| 			else if (dl->flag & DL_CYCL_V) {
 | |
| 				numVerts += (dl->parts + 1) * dl->nr;
 | |
| 			}
 | |
| 			else
 | |
| 				numVerts += dl->parts * dl->nr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (r_numVerts)
 | |
| 		*r_numVerts = numVerts;
 | |
| 
 | |
| 	fp = coord_array = MEM_mallocN(3 * sizeof(float) * numVerts, "cu_orco");
 | |
| 	for (dl = disp.first; dl; dl = dl->next) {
 | |
| 		if (dl->type == DL_INDEX3) {
 | |
| 			for (u = 0; u < dl->nr; u++, fp += 3) {
 | |
| 				if (cu->flag & CU_UV_ORCO) {
 | |
| 					fp[0] = 2.0f * u / (dl->nr - 1) - 1.0f;
 | |
| 					fp[1] = 0.0;
 | |
| 					fp[2] = 0.0;
 | |
| 				}
 | |
| 				else {
 | |
| 					copy_v3_v3(fp, &dl->verts[u * 3]);
 | |
| 
 | |
| 					fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
 | |
| 					fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
 | |
| 					fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else if (dl->type == DL_SURF) {
 | |
| 			int sizeu = dl->nr, sizev = dl->parts;
 | |
| 
 | |
| 			/* exception as handled in convertblender.c too */
 | |
| 			if (dl->flag & DL_CYCL_U) {
 | |
| 				sizeu++;
 | |
| 				if (dl->flag & DL_CYCL_V)
 | |
| 					sizev++;
 | |
| 			}
 | |
| 			else  if (dl->flag & DL_CYCL_V) {
 | |
| 				sizev++;
 | |
| 			}
 | |
| 
 | |
| 			for (u = 0; u < sizev; u++) {
 | |
| 				for (v = 0; v < sizeu; v++, fp += 3) {
 | |
| 					if (cu->flag & CU_UV_ORCO) {
 | |
| 						fp[0] = 2.0f * u / (sizev - 1) - 1.0f;
 | |
| 						fp[1] = 2.0f * v / (sizeu - 1) - 1.0f;
 | |
| 						fp[2] = 0.0;
 | |
| 					}
 | |
| 					else {
 | |
| 						const float *vert;
 | |
| 						int realv = v % dl->nr;
 | |
| 						int realu = u % dl->parts;
 | |
| 
 | |
| 						vert = dl->verts + 3 * (dl->nr * realu + realv);
 | |
| 						copy_v3_v3(fp, vert);
 | |
| 
 | |
| 						fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
 | |
| 						fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
 | |
| 						fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BKE_displist_free(&disp);
 | |
| 
 | |
| 	return coord_array;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ***************** BEVEL ****************** */
 | |
| 
 | |
| void BKE_curve_bevel_make(Scene *scene, Object *ob, ListBase *disp,
 | |
|                           const bool for_render, const bool use_render_resolution)
 | |
| {
 | |
| 	DispList *dl, *dlnew;
 | |
| 	Curve *bevcu, *cu;
 | |
| 	float *fp, facx, facy, angle, dangle;
 | |
| 	int nr, a;
 | |
| 
 | |
| 	cu = ob->data;
 | |
| 	BLI_listbase_clear(disp);
 | |
| 
 | |
| 	/* if a font object is being edited, then do nothing */
 | |
| // XXX	if ( ob == obedit && ob->type == OB_FONT ) return;
 | |
| 
 | |
| 	if (cu->bevobj) {
 | |
| 		if (cu->bevobj->type != OB_CURVE)
 | |
| 			return;
 | |
| 
 | |
| 		bevcu = cu->bevobj->data;
 | |
| 		if (bevcu->ext1 == 0.0f && bevcu->ext2 == 0.0f) {
 | |
| 			ListBase bevdisp = {NULL, NULL};
 | |
| 			facx = cu->bevobj->size[0];
 | |
| 			facy = cu->bevobj->size[1];
 | |
| 
 | |
| 			if (for_render) {
 | |
| 				BKE_displist_make_curveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, false, use_render_resolution);
 | |
| 				dl = bevdisp.first;
 | |
| 			}
 | |
| 			else if (cu->bevobj->curve_cache) {
 | |
| 				dl = cu->bevobj->curve_cache->disp.first;
 | |
| 			}
 | |
| 			else {
 | |
| 				BLI_assert(cu->bevobj->curve_cache != NULL);
 | |
| 				dl = NULL;
 | |
| 			}
 | |
| 
 | |
| 			while (dl) {
 | |
| 				if (ELEM(dl->type, DL_POLY, DL_SEGM)) {
 | |
| 					dlnew = MEM_mallocN(sizeof(DispList), "makebevelcurve1");
 | |
| 					*dlnew = *dl;
 | |
| 					dlnew->verts = MEM_mallocN(3 * sizeof(float) * dl->parts * dl->nr, "makebevelcurve1");
 | |
| 					memcpy(dlnew->verts, dl->verts, 3 * sizeof(float) * dl->parts * dl->nr);
 | |
| 
 | |
| 					if (dlnew->type == DL_SEGM)
 | |
| 						dlnew->flag |= (DL_FRONT_CURVE | DL_BACK_CURVE);
 | |
| 
 | |
| 					BLI_addtail(disp, dlnew);
 | |
| 					fp = dlnew->verts;
 | |
| 					nr = dlnew->parts * dlnew->nr;
 | |
| 					while (nr--) {
 | |
| 						fp[2] = fp[1] * facy;
 | |
| 						fp[1] = -fp[0] * facx;
 | |
| 						fp[0] = 0.0;
 | |
| 						fp += 3;
 | |
| 					}
 | |
| 				}
 | |
| 				dl = dl->next;
 | |
| 			}
 | |
| 
 | |
| 			BKE_displist_free(&bevdisp);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (cu->ext1 == 0.0f && cu->ext2 == 0.0f) {
 | |
| 		/* pass */
 | |
| 	}
 | |
| 	else if (cu->ext2 == 0.0f) {
 | |
| 		dl = MEM_callocN(sizeof(DispList), "makebevelcurve2");
 | |
| 		dl->verts = MEM_mallocN(2 * 3 * sizeof(float), "makebevelcurve2");
 | |
| 		BLI_addtail(disp, dl);
 | |
| 		dl->type = DL_SEGM;
 | |
| 		dl->parts = 1;
 | |
| 		dl->flag = DL_FRONT_CURVE | DL_BACK_CURVE;
 | |
| 		dl->nr = 2;
 | |
| 
 | |
| 		fp = dl->verts;
 | |
| 		fp[0] = fp[1] = 0.0;
 | |
| 		fp[2] = -cu->ext1;
 | |
| 		fp[3] = fp[4] = 0.0;
 | |
| 		fp[5] = cu->ext1;
 | |
| 	}
 | |
| 	else if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0 && cu->ext1 == 0.0f) { // we make a full round bevel in that case
 | |
| 		nr = 4 + 2 * cu->bevresol;
 | |
| 
 | |
| 		dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | |
| 		dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
 | |
| 		BLI_addtail(disp, dl);
 | |
| 		dl->type = DL_POLY;
 | |
| 		dl->parts = 1;
 | |
| 		dl->flag = DL_BACK_CURVE;
 | |
| 		dl->nr = nr;
 | |
| 
 | |
| 		/* a circle */
 | |
| 		fp = dl->verts;
 | |
| 		dangle = (2.0f * (float)M_PI / (nr));
 | |
| 		angle = -(nr - 1) * dangle;
 | |
| 
 | |
| 		for (a = 0; a < nr; a++) {
 | |
| 			fp[0] = 0.0;
 | |
| 			fp[1] = (cosf(angle) * (cu->ext2));
 | |
| 			fp[2] = (sinf(angle) * (cu->ext2)) - cu->ext1;
 | |
| 			angle += dangle;
 | |
| 			fp += 3;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		short dnr;
 | |
| 
 | |
| 		/* bevel now in three parts, for proper vertex normals */
 | |
| 		/* part 1, back */
 | |
| 
 | |
| 		if ((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
 | |
| 			dnr = nr = 2 + cu->bevresol;
 | |
| 			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
 | |
| 				nr = 3 + 2 * cu->bevresol;
 | |
| 
 | |
| 			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | |
| 			dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
 | |
| 			BLI_addtail(disp, dl);
 | |
| 			dl->type = DL_SEGM;
 | |
| 			dl->parts = 1;
 | |
| 			dl->flag = DL_BACK_CURVE;
 | |
| 			dl->nr = nr;
 | |
| 
 | |
| 			/* half a circle */
 | |
| 			fp = dl->verts;
 | |
| 			dangle = (0.5 * M_PI / (dnr - 1));
 | |
| 			angle = -(nr - 1) * dangle;
 | |
| 
 | |
| 			for (a = 0; a < nr; a++) {
 | |
| 				fp[0] = 0.0;
 | |
| 				fp[1] = (float)(cosf(angle) * (cu->ext2));
 | |
| 				fp[2] = (float)(sinf(angle) * (cu->ext2)) - cu->ext1;
 | |
| 				angle += dangle;
 | |
| 				fp += 3;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* part 2, sidefaces */
 | |
| 		if (cu->ext1 != 0.0f) {
 | |
| 			nr = 2;
 | |
| 
 | |
| 			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p2");
 | |
| 			dl->verts = MEM_callocN(nr * 3 * sizeof(float), "makebevelcurve p2");
 | |
| 			BLI_addtail(disp, dl);
 | |
| 			dl->type = DL_SEGM;
 | |
| 			dl->parts = 1;
 | |
| 			dl->nr = nr;
 | |
| 
 | |
| 			fp = dl->verts;
 | |
| 			fp[1] = cu->ext2;
 | |
| 			fp[2] = -cu->ext1;
 | |
| 			fp[4] = cu->ext2;
 | |
| 			fp[5] = cu->ext1;
 | |
| 
 | |
| 			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0) {
 | |
| 				dl = MEM_dupallocN(dl);
 | |
| 				dl->verts = MEM_dupallocN(dl->verts);
 | |
| 				BLI_addtail(disp, dl);
 | |
| 
 | |
| 				fp = dl->verts;
 | |
| 				fp[1] = -fp[1];
 | |
| 				fp[2] = -fp[2];
 | |
| 				fp[4] = -fp[4];
 | |
| 				fp[5] = -fp[5];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* part 3, front */
 | |
| 		if ((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
 | |
| 			dnr = nr = 2 + cu->bevresol;
 | |
| 			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
 | |
| 				nr = 3 + 2 * cu->bevresol;
 | |
| 
 | |
| 			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p3");
 | |
| 			dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p3");
 | |
| 			BLI_addtail(disp, dl);
 | |
| 			dl->type = DL_SEGM;
 | |
| 			dl->flag = DL_FRONT_CURVE;
 | |
| 			dl->parts = 1;
 | |
| 			dl->nr = nr;
 | |
| 
 | |
| 			/* half a circle */
 | |
| 			fp = dl->verts;
 | |
| 			angle = 0.0;
 | |
| 			dangle = (0.5 * M_PI / (dnr - 1));
 | |
| 
 | |
| 			for (a = 0; a < nr; a++) {
 | |
| 				fp[0] = 0.0;
 | |
| 				fp[1] = (float)(cosf(angle) * (cu->ext2));
 | |
| 				fp[2] = (float)(sinf(angle) * (cu->ext2)) + cu->ext1;
 | |
| 				angle += dangle;
 | |
| 				fp += 3;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
 | |
|                       short cox, short coy,
 | |
|                       float *lambda, float *mu, float vec[3])
 | |
| {
 | |
| 	/* return:
 | |
| 	 * -1: collinear
 | |
| 	 *  0: no intersection of segments
 | |
| 	 *  1: exact intersection of segments
 | |
| 	 *  2: cross-intersection of segments
 | |
| 	 */
 | |
| 	float deler;
 | |
| 
 | |
| 	deler = (v1[cox] - v2[cox]) * (v3[coy] - v4[coy]) - (v3[cox] - v4[cox]) * (v1[coy] - v2[coy]);
 | |
| 	if (deler == 0.0f)
 | |
| 		return -1;
 | |
| 
 | |
| 	*lambda = (v1[coy] - v3[coy]) * (v3[cox] - v4[cox]) - (v1[cox] - v3[cox]) * (v3[coy] - v4[coy]);
 | |
| 	*lambda = -(*lambda / deler);
 | |
| 
 | |
| 	deler = v3[coy] - v4[coy];
 | |
| 	if (deler == 0) {
 | |
| 		deler = v3[cox] - v4[cox];
 | |
| 		*mu = -(*lambda * (v2[cox] - v1[cox]) + v1[cox] - v3[cox]) / deler;
 | |
| 	}
 | |
| 	else {
 | |
| 		*mu = -(*lambda * (v2[coy] - v1[coy]) + v1[coy] - v3[coy]) / deler;
 | |
| 	}
 | |
| 	vec[cox] = *lambda * (v2[cox] - v1[cox]) + v1[cox];
 | |
| 	vec[coy] = *lambda * (v2[coy] - v1[coy]) + v1[coy];
 | |
| 
 | |
| 	if (*lambda >= 0.0f && *lambda <= 1.0f && *mu >= 0.0f && *mu <= 1.0f) {
 | |
| 		if (*lambda == 0.0f || *lambda == 1.0f || *mu == 0.0f || *mu == 1.0f)
 | |
| 			return 1;
 | |
| 		return 2;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool bevelinside(BevList *bl1, BevList *bl2)
 | |
| {
 | |
| 	/* is bl2 INSIDE bl1 ? with left-right method and "lambda's" */
 | |
| 	/* returns '1' if correct hole  */
 | |
| 	BevPoint *bevp, *prevbevp;
 | |
| 	float min, max, vec[3], hvec1[3], hvec2[3], lab, mu;
 | |
| 	int nr, links = 0, rechts = 0, mode;
 | |
| 
 | |
| 	/* take first vertex of possible hole */
 | |
| 
 | |
| 	bevp = (BevPoint *)(bl2 + 1);
 | |
| 	hvec1[0] = bevp->vec[0];
 | |
| 	hvec1[1] = bevp->vec[1];
 | |
| 	hvec1[2] = 0.0;
 | |
| 	copy_v3_v3(hvec2, hvec1);
 | |
| 	hvec2[0] += 1000;
 | |
| 
 | |
| 	/* test it with all edges of potential surounding poly */
 | |
| 	/* count number of transitions left-right  */
 | |
| 
 | |
| 	bevp = (BevPoint *)(bl1 + 1);
 | |
| 	nr = bl1->nr;
 | |
| 	prevbevp = bevp + (nr - 1);
 | |
| 
 | |
| 	while (nr--) {
 | |
| 		min = prevbevp->vec[1];
 | |
| 		max = bevp->vec[1];
 | |
| 		if (max < min) {
 | |
| 			min = max;
 | |
| 			max = prevbevp->vec[1];
 | |
| 		}
 | |
| 		if (min != max) {
 | |
| 			if (min <= hvec1[1] && max >= hvec1[1]) {
 | |
| 				/* there's a transition, calc intersection point */
 | |
| 				mode = cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
 | |
| 				/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
 | |
| 				 * only allow for one situation: we choose lab= 1.0
 | |
| 				 */
 | |
| 				if (mode >= 0 && lab != 0.0f) {
 | |
| 					if (vec[0] < hvec1[0]) links++;
 | |
| 					else rechts++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		prevbevp = bevp;
 | |
| 		bevp++;
 | |
| 	}
 | |
| 
 | |
| 	return (links & 1) && (rechts & 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct BevelSort {
 | |
| 	BevList *bl;
 | |
| 	float left;
 | |
| 	int dir;
 | |
| };
 | |
| 
 | |
| static int vergxcobev(const void *a1, const void *a2)
 | |
| {
 | |
| 	const struct BevelSort *x1 = a1, *x2 = a2;
 | |
| 
 | |
| 	if (x1->left > x2->left)
 | |
| 		return 1;
 | |
| 	else if (x1->left < x2->left)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* this function cannot be replaced with atan2, but why? */
 | |
| 
 | |
| static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2,
 | |
|                                float *r_sina, float *r_cosa)
 | |
| {
 | |
| 	float t01, t02, x3, y3;
 | |
| 
 | |
| 	t01 = sqrtf(x1 * x1 + y1 * y1);
 | |
| 	t02 = sqrtf(x2 * x2 + y2 * y2);
 | |
| 	if (t01 == 0.0f)
 | |
| 		t01 = 1.0f;
 | |
| 	if (t02 == 0.0f)
 | |
| 		t02 = 1.0f;
 | |
| 
 | |
| 	x1 /= t01;
 | |
| 	y1 /= t01;
 | |
| 	x2 /= t02;
 | |
| 	y2 /= t02;
 | |
| 
 | |
| 	t02 = x1 * x2 + y1 * y2;
 | |
| 	if (fabsf(t02) >= 1.0f)
 | |
| 		t02 = 0.5 * M_PI;
 | |
| 	else
 | |
| 		t02 = (saacos(t02)) / 2.0f;
 | |
| 
 | |
| 	t02 = sinf(t02);
 | |
| 	if (t02 == 0.0f)
 | |
| 		t02 = 1.0f;
 | |
| 
 | |
| 	x3 = x1 - x2;
 | |
| 	y3 = y1 - y2;
 | |
| 	if (x3 == 0 && y3 == 0) {
 | |
| 		x3 = y1;
 | |
| 		y3 = -x1;
 | |
| 	}
 | |
| 	else {
 | |
| 		t01 = sqrtf(x3 * x3 + y3 * y3);
 | |
| 		x3 /= t01;
 | |
| 		y3 /= t01;
 | |
| 	}
 | |
| 
 | |
| 	*r_sina = -y3 / t02;
 | |
| 	*r_cosa =  x3 / t02;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array,
 | |
|                          float *weight_array, int resolu, int stride)
 | |
| {
 | |
| 	BezTriple *pprev, *next, *last;
 | |
| 	float fac, dfac, t[4];
 | |
| 	int a;
 | |
| 
 | |
| 	if (tilt_array == NULL && radius_array == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	last = nu->bezt + (nu->pntsu - 1);
 | |
| 
 | |
| 	/* returns a point */
 | |
| 	if (prevbezt == nu->bezt) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 			pprev = last;
 | |
| 		else
 | |
| 			pprev = prevbezt;
 | |
| 	}
 | |
| 	else
 | |
| 		pprev = prevbezt - 1;
 | |
| 
 | |
| 	/* next point */
 | |
| 	if (bezt == last) {
 | |
| 		if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 			next = nu->bezt;
 | |
| 		else
 | |
| 			next = bezt;
 | |
| 	}
 | |
| 	else
 | |
| 		next = bezt + 1;
 | |
| 
 | |
| 	fac = 0.0;
 | |
| 	dfac = 1.0f / (float)resolu;
 | |
| 
 | |
| 	for (a = 0; a < resolu; a++, fac += dfac) {
 | |
| 		if (tilt_array) {
 | |
| 			if (nu->tilt_interp == KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
 | |
| 				*tilt_array = prevbezt->alfa +
 | |
| 					(bezt->alfa - prevbezt->alfa) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | |
| 			}
 | |
| 			else {
 | |
| 				key_curve_position_weights(fac, t, nu->tilt_interp);
 | |
| 				*tilt_array = t[0] * pprev->alfa + t[1] * prevbezt->alfa + t[2] * bezt->alfa + t[3] * next->alfa;
 | |
| 			}
 | |
| 
 | |
| 			tilt_array = (float *)(((char *)tilt_array) + stride);
 | |
| 		}
 | |
| 
 | |
| 		if (radius_array) {
 | |
| 			if (nu->radius_interp == KEY_CU_EASE) {
 | |
| 				/* Support 2.47 ease interp
 | |
| 				 * Note! - this only takes the 2 points into account,
 | |
| 				 * giving much more localized results to changes in radius, sometimes you want that */
 | |
| 				*radius_array = prevbezt->radius +
 | |
| 					(bezt->radius - prevbezt->radius) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | |
| 			}
 | |
| 			else {
 | |
| 
 | |
| 				/* reuse interpolation from tilt if we can */
 | |
| 				if (tilt_array == NULL || nu->tilt_interp != nu->radius_interp) {
 | |
| 					key_curve_position_weights(fac, t, nu->radius_interp);
 | |
| 				}
 | |
| 				*radius_array = t[0] * pprev->radius + t[1] * prevbezt->radius +
 | |
| 					t[2] * bezt->radius + t[3] * next->radius;
 | |
| 			}
 | |
| 
 | |
| 			radius_array = (float *)(((char *)radius_array) + stride);
 | |
| 		}
 | |
| 
 | |
| 		if (weight_array) {
 | |
| 			/* basic interpolation for now, could copy tilt interp too  */
 | |
| 			*weight_array = prevbezt->weight +
 | |
| 				(bezt->weight - prevbezt->weight) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | |
| 
 | |
| 			weight_array = (float *)(((char *)weight_array) + stride);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* make_bevel_list_3D_* funcs, at a minimum these must
 | |
|  * fill in the bezp->quat and bezp->dir values */
 | |
| 
 | |
| /* utility for make_bevel_list_3D_* funcs */
 | |
| static void bevel_list_calc_bisect(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1, *bevp0;
 | |
| 	int nr;
 | |
| 	bool is_cyclic = bl->poly != -1;
 | |
| 
 | |
| 	if (is_cyclic) {
 | |
| 		bevp2 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp2 + (bl->nr - 1);
 | |
| 		bevp0 = bevp1 - 1;
 | |
| 		nr = bl->nr;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* If spline is not cyclic, direction of first and
 | |
| 		 * last bevel points matches direction of CV handle.
 | |
| 		 *
 | |
| 		 * This is getting calculated earlier when we know
 | |
| 		 * CV's handles and here we might simply skip evaluation
 | |
| 		 * of direction for this guys.
 | |
| 		 */
 | |
| 
 | |
| 		bevp0 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp0 + 1;
 | |
| 		bevp2 = bevp1 + 1;
 | |
| 
 | |
| 		nr = bl->nr - 2;
 | |
| 	}
 | |
| 
 | |
| 	while (nr--) {
 | |
| 		/* totally simple */
 | |
| 		bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
 | |
| 
 | |
| 		bevp0 = bevp1;
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| }
 | |
| static void bevel_list_flip_tangents(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1, *bevp0;
 | |
| 	int nr;
 | |
| 
 | |
| 	bevp2 = (BevPoint *)(bl + 1);
 | |
| 	bevp1 = bevp2 + (bl->nr - 1);
 | |
| 	bevp0 = bevp1 - 1;
 | |
| 
 | |
| 	nr = bl->nr;
 | |
| 	while (nr--) {
 | |
| 		if (angle_normalized_v3v3(bevp0->tan, bevp1->tan) > DEG2RADF(90.0f))
 | |
| 			negate_v3(bevp1->tan);
 | |
| 
 | |
| 		bevp0 = bevp1;
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| }
 | |
| /* apply user tilt */
 | |
| static void bevel_list_apply_tilt(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1;
 | |
| 	int nr;
 | |
| 	float q[4];
 | |
| 
 | |
| 	bevp2 = (BevPoint *)(bl + 1);
 | |
| 	bevp1 = bevp2 + (bl->nr - 1);
 | |
| 
 | |
| 	nr = bl->nr;
 | |
| 	while (nr--) {
 | |
| 		axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
 | |
| 		mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | |
| 		normalize_qt(bevp1->quat);
 | |
| 
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| }
 | |
| /* smooth quats, this function should be optimized, it can get slow with many iterations. */
 | |
| static void bevel_list_smooth(BevList *bl, int smooth_iter)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1, *bevp0;
 | |
| 	int nr;
 | |
| 
 | |
| 	float q[4];
 | |
| 	float bevp0_quat[4];
 | |
| 	int a;
 | |
| 
 | |
| 	for (a = 0; a < smooth_iter; a++) {
 | |
| 		bevp2 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp2 + (bl->nr - 1);
 | |
| 		bevp0 = bevp1 - 1;
 | |
| 
 | |
| 		nr = bl->nr;
 | |
| 
 | |
| 		if (bl->poly == -1) { /* check its not cyclic */
 | |
| 			/* skip the first point */
 | |
| 			/* bevp0 = bevp1; */
 | |
| 			bevp1 = bevp2;
 | |
| 			bevp2++;
 | |
| 			nr--;
 | |
| 
 | |
| 			bevp0 = bevp1;
 | |
| 			bevp1 = bevp2;
 | |
| 			bevp2++;
 | |
| 			nr--;
 | |
| 		}
 | |
| 
 | |
| 		copy_qt_qt(bevp0_quat, bevp0->quat);
 | |
| 
 | |
| 		while (nr--) {
 | |
| 			/* interpolate quats */
 | |
| 			float zaxis[3] = {0, 0, 1}, cross[3], q2[4];
 | |
| 			interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
 | |
| 			normalize_qt(q);
 | |
| 
 | |
| 			mul_qt_v3(q, zaxis);
 | |
| 			cross_v3_v3v3(cross, zaxis, bevp1->dir);
 | |
| 			axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
 | |
| 			normalize_qt(q2);
 | |
| 
 | |
| 			copy_qt_qt(bevp0_quat, bevp1->quat);
 | |
| 			mul_qt_qtqt(q, q2, q);
 | |
| 			interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
 | |
| 			normalize_qt(bevp1->quat);
 | |
| 
 | |
| 			/* bevp0 = bevp1; */ /* UNUSED */
 | |
| 			bevp1 = bevp2;
 | |
| 			bevp2++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void make_bevel_list_3D_zup(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp = (BevPoint *)(bl + 1);
 | |
| 	int nr = bl->nr;
 | |
| 
 | |
| 	bevel_list_calc_bisect(bl);
 | |
| 
 | |
| 	while (nr--) {
 | |
| 		vec_to_quat(bevp->quat, bevp->dir, 5, 1);
 | |
| 		bevp++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void minimum_twist_between_two_points(BevPoint *current_point, BevPoint *previous_point)
 | |
| {
 | |
| 	float angle = angle_normalized_v3v3(previous_point->dir, current_point->dir);
 | |
| 	float q[4];
 | |
| 
 | |
| 	if (angle > 0.0f) { /* otherwise we can keep as is */
 | |
| 		float cross_tmp[3];
 | |
| 		cross_v3_v3v3(cross_tmp, previous_point->dir, current_point->dir);
 | |
| 		axis_angle_to_quat(q, cross_tmp, angle);
 | |
| 		mul_qt_qtqt(current_point->quat, q, previous_point->quat);
 | |
| 	}
 | |
| 	else {
 | |
| 		copy_qt_qt(current_point->quat, previous_point->quat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void make_bevel_list_3D_minimum_twist(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
 | |
| 	int nr;
 | |
| 	float q[4];
 | |
| 
 | |
| 	bevel_list_calc_bisect(bl);
 | |
| 
 | |
| 	bevp2 = (BevPoint *)(bl + 1);
 | |
| 	bevp1 = bevp2 + (bl->nr - 1);
 | |
| 	bevp0 = bevp1 - 1;
 | |
| 
 | |
| 	nr = bl->nr;
 | |
| 	while (nr--) {
 | |
| 
 | |
| 		if (nr + 4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
 | |
| 			vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | |
| 		}
 | |
| 		else {
 | |
| 			minimum_twist_between_two_points(bevp1, bevp0);
 | |
| 		}
 | |
| 
 | |
| 		bevp0 = bevp1;
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| 
 | |
| 	if (bl->poly != -1) { /* check for cyclic */
 | |
| 
 | |
| 		/* Need to correct for the start/end points not matching
 | |
| 		 * do this by calculating the tilt angle difference, then apply
 | |
| 		 * the rotation gradually over the entire curve
 | |
| 		 *
 | |
| 		 * note that the split is between last and second last, rather than first/last as youd expect.
 | |
| 		 *
 | |
| 		 * real order is like this
 | |
| 		 * 0,1,2,3,4 --> 1,2,3,4,0
 | |
| 		 *
 | |
| 		 * this is why we compare last with second last
 | |
| 		 * */
 | |
| 		float vec_1[3] = {0, 1, 0}, vec_2[3] = {0, 1, 0}, angle, ang_fac, cross_tmp[3];
 | |
| 
 | |
| 		BevPoint *bevp_first;
 | |
| 		BevPoint *bevp_last;
 | |
| 
 | |
| 
 | |
| 		bevp_first = (BevPoint *)(bl + 1);
 | |
| 		bevp_first += bl->nr - 1;
 | |
| 		bevp_last = bevp_first;
 | |
| 		bevp_last--;
 | |
| 
 | |
| 		/* quats and vec's are normalized, should not need to re-normalize */
 | |
| 		mul_qt_v3(bevp_first->quat, vec_1);
 | |
| 		mul_qt_v3(bevp_last->quat, vec_2);
 | |
| 		normalize_v3(vec_1);
 | |
| 		normalize_v3(vec_2);
 | |
| 
 | |
| 		/* align the vector, can avoid this and it looks 98% OK but
 | |
| 		 * better to align the angle quat roll's before comparing */
 | |
| 		{
 | |
| 			cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
 | |
| 			angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
 | |
| 			axis_angle_to_quat(q, cross_tmp, angle);
 | |
| 			mul_qt_v3(q, vec_2);
 | |
| 		}
 | |
| 
 | |
| 		angle = angle_normalized_v3v3(vec_1, vec_2);
 | |
| 
 | |
| 		/* flip rotation if needs be */
 | |
| 		cross_v3_v3v3(cross_tmp, vec_1, vec_2);
 | |
| 		normalize_v3(cross_tmp);
 | |
| 		if (angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f))
 | |
| 			angle = -angle;
 | |
| 
 | |
| 		bevp2 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp2 + (bl->nr - 1);
 | |
| 		bevp0 = bevp1 - 1;
 | |
| 
 | |
| 		nr = bl->nr;
 | |
| 		while (nr--) {
 | |
| 			ang_fac = angle * (1.0f - ((float)nr / bl->nr)); /* also works */
 | |
| 
 | |
| 			axis_angle_to_quat(q, bevp1->dir, ang_fac);
 | |
| 			mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | |
| 
 | |
| 			bevp0 = bevp1;
 | |
| 			bevp1 = bevp2;
 | |
| 			bevp2++;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Need to correct quat for the first/last point,
 | |
| 		 * this is so because previously it was only calculated
 | |
| 		 * using it's own direction, which might not correspond
 | |
| 		 * the twist of neighbor point.
 | |
| 		 */
 | |
| 		bevp1 = (BevPoint *)(bl + 1);
 | |
| 		bevp0 = bevp1 + 1;
 | |
| 		minimum_twist_between_two_points(bevp1, bevp0);
 | |
| 
 | |
| 		bevp2 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp2 + (bl->nr - 1);
 | |
| 		bevp0 = bevp1 - 1;
 | |
| 		minimum_twist_between_two_points(bevp1, bevp0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void make_bevel_list_3D_tangent(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
 | |
| 	int nr;
 | |
| 
 | |
| 	float bevp0_tan[3];
 | |
| 
 | |
| 	bevel_list_calc_bisect(bl);
 | |
| 	bevel_list_flip_tangents(bl);
 | |
| 
 | |
| 	/* correct the tangents */
 | |
| 	bevp2 = (BevPoint *)(bl + 1);
 | |
| 	bevp1 = bevp2 + (bl->nr - 1);
 | |
| 	bevp0 = bevp1 - 1;
 | |
| 
 | |
| 	nr = bl->nr;
 | |
| 	while (nr--) {
 | |
| 		float cross_tmp[3];
 | |
| 		cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
 | |
| 		cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
 | |
| 		normalize_v3(bevp1->tan);
 | |
| 
 | |
| 		bevp0 = bevp1;
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* now for the real twist calc */
 | |
| 	bevp2 = (BevPoint *)(bl + 1);
 | |
| 	bevp1 = bevp2 + (bl->nr - 1);
 | |
| 	bevp0 = bevp1 - 1;
 | |
| 
 | |
| 	copy_v3_v3(bevp0_tan, bevp0->tan);
 | |
| 
 | |
| 	nr = bl->nr;
 | |
| 	while (nr--) {
 | |
| 		/* make perpendicular, modify tan in place, is ok */
 | |
| 		float cross_tmp[3];
 | |
| 		float zero[3] = {0, 0, 0};
 | |
| 
 | |
| 		cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
 | |
| 		normalize_v3(cross_tmp);
 | |
| 		tri_to_quat(bevp1->quat, zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
 | |
| 
 | |
| 		/* bevp0 = bevp1; */ /* UNUSED */
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
 | |
| {
 | |
| 	switch (twist_mode) {
 | |
| 		case CU_TWIST_TANGENT:
 | |
| 			make_bevel_list_3D_tangent(bl);
 | |
| 			break;
 | |
| 		case CU_TWIST_MINIMUM:
 | |
| 			make_bevel_list_3D_minimum_twist(bl);
 | |
| 			break;
 | |
| 		default: /* CU_TWIST_Z_UP default, pre 2.49c */
 | |
| 			make_bevel_list_3D_zup(bl);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (smooth_iter)
 | |
| 		bevel_list_smooth(bl, smooth_iter);
 | |
| 
 | |
| 	bevel_list_apply_tilt(bl);
 | |
| }
 | |
| 
 | |
| /* only for 2 points */
 | |
| static void make_bevel_list_segment_3D(BevList *bl)
 | |
| {
 | |
| 	float q[4];
 | |
| 
 | |
| 	BevPoint *bevp2 = (BevPoint *)(bl + 1);
 | |
| 	BevPoint *bevp1 = bevp2 + 1;
 | |
| 
 | |
| 	/* simple quat/dir */
 | |
| 	sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
 | |
| 	normalize_v3(bevp1->dir);
 | |
| 
 | |
| 	vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | |
| 
 | |
| 	axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
 | |
| 	mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | |
| 	normalize_qt(bevp1->quat);
 | |
| 	copy_v3_v3(bevp2->dir, bevp1->dir);
 | |
| 	copy_qt_qt(bevp2->quat, bevp1->quat);
 | |
| }
 | |
| 
 | |
| /* only for 2 points */
 | |
| static void make_bevel_list_segment_2D(BevList *bl)
 | |
| {
 | |
| 	BevPoint *bevp2 = (BevPoint *)(bl + 1);
 | |
| 	BevPoint *bevp1 = bevp2 + 1;
 | |
| 
 | |
| 	const float x1 = bevp1->vec[0] - bevp2->vec[0];
 | |
| 	const float y1 = bevp1->vec[1] - bevp2->vec[1];
 | |
| 
 | |
| 	calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
 | |
| 	bevp2->sina = bevp1->sina;
 | |
| 	bevp2->cosa = bevp1->cosa;
 | |
| 
 | |
| 	/* fill in dir & quat */
 | |
| 	make_bevel_list_segment_3D(bl);
 | |
| }
 | |
| 
 | |
| static void make_bevel_list_2D(BevList *bl)
 | |
| {
 | |
| 	/* note: bevp->dir and bevp->quat are not needed for beveling but are
 | |
| 	 * used when making a path from a 2D curve, therefor they need to be set - Campbell */
 | |
| 
 | |
| 	BevPoint *bevp0, *bevp1, *bevp2;
 | |
| 	int nr;
 | |
| 
 | |
| 	if (bl->poly != -1) {
 | |
| 		bevp2 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp2 + (bl->nr - 1);
 | |
| 		bevp0 = bevp1 - 1;
 | |
| 		nr = bl->nr;
 | |
| 	}
 | |
| 	else {
 | |
| 		bevp0 = (BevPoint *)(bl + 1);
 | |
| 		bevp1 = bevp0 + 1;
 | |
| 		bevp2 = bevp1 + 1;
 | |
| 
 | |
| 		nr = bl->nr - 2;
 | |
| 	}
 | |
| 
 | |
| 	while (nr--) {
 | |
| 		const float x1 = bevp1->vec[0] - bevp0->vec[0];
 | |
| 		const float x2 = bevp1->vec[0] - bevp2->vec[0];
 | |
| 		const float y1 = bevp1->vec[1] - bevp0->vec[1];
 | |
| 		const float y2 = bevp1->vec[1] - bevp2->vec[1];
 | |
| 
 | |
| 		calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
 | |
| 
 | |
| 		/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
 | |
| 		 * no need for tricky tilt calculation as with 3D curves */
 | |
| 		bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
 | |
| 		vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | |
| 		/* done with inline make_bevel_list_3D_zup */
 | |
| 
 | |
| 		bevp0 = bevp1;
 | |
| 		bevp1 = bevp2;
 | |
| 		bevp2++;
 | |
| 	}
 | |
| 
 | |
| 	/* correct non-cyclic cases */
 | |
| 	if (bl->poly == -1) {
 | |
| 		BevPoint *bevp;
 | |
| 		float angle;
 | |
| 
 | |
| 		/* first */
 | |
| 		bevp = (BevPoint *)(bl + 1);
 | |
| 		angle = atan2(bevp->dir[0], bevp->dir[1]) - M_PI / 2.0;
 | |
| 		bevp->sina = sinf(angle);
 | |
| 		bevp->cosa = cosf(angle);
 | |
| 		vec_to_quat(bevp->quat, bevp->dir, 5, 1);
 | |
| 
 | |
| 		/* last */
 | |
| 		bevp = (BevPoint *)(bl + 1);
 | |
| 		bevp += (bl->nr - 1);
 | |
| 		angle = atan2(bevp->dir[0], bevp->dir[1]) - M_PI / 2.0;
 | |
| 		bevp->sina = sinf(angle);
 | |
| 		bevp->cosa = cosf(angle);
 | |
| 		vec_to_quat(bevp->quat, bevp->dir, 5, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bevlist_firstlast_direction_calc_from_bpoint(Nurb *nu, BevList *bl)
 | |
| {
 | |
| 	if (nu->pntsu > 1) {
 | |
| 		BPoint *first_bp = nu->bp, *last_bp = nu->bp + (nu->pntsu - 1);
 | |
| 		BevPoint *first_bevp, *last_bevp;
 | |
| 
 | |
| 		first_bevp = (BevPoint *)(bl + 1);
 | |
| 		last_bevp = first_bevp + (bl->nr - 1);
 | |
| 
 | |
| 		sub_v3_v3v3(first_bevp->dir, (first_bp + 1)->vec, first_bp->vec);
 | |
| 		normalize_v3(first_bevp->dir);
 | |
| 
 | |
| 		sub_v3_v3v3(last_bevp->dir, last_bp->vec, (last_bp - 1)->vec);
 | |
| 		normalize_v3(last_bevp->dir);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_bevelList_make(Object *ob, ListBase *nurbs, bool for_render)
 | |
| {
 | |
| 	/*
 | |
| 	 * - convert all curves to polys, with indication of resol and flags for double-vertices
 | |
| 	 * - possibly; do a smart vertice removal (in case Nurb)
 | |
| 	 * - separate in individual blicks with BoundBox
 | |
| 	 * - AutoHole detection
 | |
| 	 */
 | |
| 	Curve *cu;
 | |
| 	Nurb *nu;
 | |
| 	BezTriple *bezt, *prevbezt;
 | |
| 	BPoint *bp;
 | |
| 	BevList *bl, *blnew, *blnext;
 | |
| 	BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
 | |
| 	float min, inp;
 | |
| 	struct BevelSort *sortdata, *sd, *sd1;
 | |
| 	int a, b, nr, poly, resolu = 0, len = 0;
 | |
| 	bool do_tilt, do_radius, do_weight;
 | |
| 	bool is_editmode = false;
 | |
| 	ListBase *bev;
 | |
| 
 | |
| 	/* this function needs an object, because of tflag and upflag */
 | |
| 	cu = ob->data;
 | |
| 
 | |
| 	bev = &ob->curve_cache->bev;
 | |
| 
 | |
| 	/* do we need to calculate the radius for each point? */
 | |
| 	/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
 | |
| 
 | |
| 	/* STEP 1: MAKE POLYS  */
 | |
| 
 | |
| 	BLI_freelistN(&(ob->curve_cache->bev));
 | |
| 	nu = nurbs->first;
 | |
| 	if (cu->editnurb && ob->type != OB_FONT) {
 | |
| 		is_editmode = 1;
 | |
| 	}
 | |
| 
 | |
| 	for (; nu; nu = nu->next) {
 | |
| 		
 | |
| 		if (nu->hide && is_editmode)
 | |
| 			continue;
 | |
| 		
 | |
| 		/* check if we will calculate tilt data */
 | |
| 		do_tilt = CU_DO_TILT(cu, nu);
 | |
| 		do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
 | |
| 		do_weight = true;
 | |
| 
 | |
| 		/* check we are a single point? also check we are not a surface and that the orderu is sane,
 | |
| 		 * enforced in the UI but can go wrong possibly */
 | |
| 		if (!BKE_nurb_check_valid_u(nu)) {
 | |
| 			bl = MEM_callocN(sizeof(BevList) + 1 * sizeof(BevPoint), "makeBevelList1");
 | |
| 			BLI_addtail(bev, bl);
 | |
| 			bl->nr = 0;
 | |
| 			bl->charidx = nu->charidx;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (for_render && cu->resolu_ren != 0)
 | |
| 				resolu = cu->resolu_ren;
 | |
| 			else
 | |
| 				resolu = nu->resolu;
 | |
| 
 | |
| 			if (nu->type == CU_POLY) {
 | |
| 				len = nu->pntsu;
 | |
| 				bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList2");
 | |
| 				BLI_addtail(bev, bl);
 | |
| 
 | |
| 				bl->poly = (nu->flagu & CU_NURB_CYCLIC) ? 0 : -1;
 | |
| 				bl->nr = len;
 | |
| 				bl->dupe_nr = 0;
 | |
| 				bl->charidx = nu->charidx;
 | |
| 				bevp = (BevPoint *)(bl + 1);
 | |
| 				bp = nu->bp;
 | |
| 
 | |
| 				while (len--) {
 | |
| 					copy_v3_v3(bevp->vec, bp->vec);
 | |
| 					bevp->alfa = bp->alfa;
 | |
| 					bevp->radius = bp->radius;
 | |
| 					bevp->weight = bp->weight;
 | |
| 					bevp->split_tag = true;
 | |
| 					bevp++;
 | |
| 					bp++;
 | |
| 				}
 | |
| 
 | |
| 				if ((nu->flagu & CU_NURB_CYCLIC) == 0) {
 | |
| 					bevlist_firstlast_direction_calc_from_bpoint(nu, bl);
 | |
| 				}
 | |
| 			}
 | |
| 			else if (nu->type == CU_BEZIER) {
 | |
| 				/* in case last point is not cyclic */
 | |
| 				len = resolu * (nu->pntsu + (nu->flagu & CU_NURB_CYCLIC) - 1) + 1;
 | |
| 				bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelBPoints");
 | |
| 				BLI_addtail(bev, bl);
 | |
| 
 | |
| 				bl->poly = (nu->flagu & CU_NURB_CYCLIC) ? 0 : -1;
 | |
| 				bl->charidx = nu->charidx;
 | |
| 				bevp = (BevPoint *)(bl + 1);
 | |
| 
 | |
| 				a = nu->pntsu - 1;
 | |
| 				bezt = nu->bezt;
 | |
| 				if (nu->flagu & CU_NURB_CYCLIC) {
 | |
| 					a++;
 | |
| 					prevbezt = nu->bezt + (nu->pntsu - 1);
 | |
| 				}
 | |
| 				else {
 | |
| 					prevbezt = bezt;
 | |
| 					bezt++;
 | |
| 				}
 | |
| 
 | |
| 				sub_v3_v3v3(bevp->dir, prevbezt->vec[2], prevbezt->vec[1]);
 | |
| 				normalize_v3(bevp->dir);
 | |
| 
 | |
| 				while (a--) {
 | |
| 					if (prevbezt->h2 == HD_VECT && bezt->h1 == HD_VECT) {
 | |
| 
 | |
| 						copy_v3_v3(bevp->vec, prevbezt->vec[1]);
 | |
| 						bevp->alfa = prevbezt->alfa;
 | |
| 						bevp->radius = prevbezt->radius;
 | |
| 						bevp->weight = prevbezt->weight;
 | |
| 						bevp->split_tag = true;
 | |
| 						bevp->dupe_tag = false;
 | |
| 						bevp++;
 | |
| 						bl->nr++;
 | |
| 						bl->dupe_nr = 1;
 | |
| 					}
 | |
| 					else {
 | |
| 						/* always do all three, to prevent data hanging around */
 | |
| 						int j;
 | |
| 
 | |
| 						/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
 | |
| 						for (j = 0; j < 3; j++) {
 | |
| 							BKE_curve_forward_diff_bezier(prevbezt->vec[1][j],  prevbezt->vec[2][j],
 | |
| 							                              bezt->vec[0][j],      bezt->vec[1][j],
 | |
| 							                              &(bevp->vec[j]), resolu, sizeof(BevPoint));
 | |
| 						}
 | |
| 
 | |
| 						/* if both arrays are NULL do nothiong */
 | |
| 						alfa_bezpart(prevbezt, bezt, nu,
 | |
| 						             do_tilt    ? &bevp->alfa : NULL,
 | |
| 						             do_radius  ? &bevp->radius : NULL,
 | |
| 						             do_weight  ? &bevp->weight : NULL,
 | |
| 						             resolu, sizeof(BevPoint));
 | |
| 
 | |
| 
 | |
| 						if (cu->twist_mode == CU_TWIST_TANGENT) {
 | |
| 							forward_diff_bezier_cotangent(prevbezt->vec[1], prevbezt->vec[2],
 | |
| 							                              bezt->vec[0],     bezt->vec[1],
 | |
| 							                              bevp->tan, resolu, sizeof(BevPoint));
 | |
| 						}
 | |
| 
 | |
| 						/* indicate with handlecodes double points */
 | |
| 						if (prevbezt->h1 == prevbezt->h2) {
 | |
| 							if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
 | |
| 								bevp->split_tag = true;
 | |
| 						}
 | |
| 						else {
 | |
| 							if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
 | |
| 								bevp->split_tag = true;
 | |
| 							else if (prevbezt->h2 == 0 || prevbezt->h2 == HD_VECT)
 | |
| 								bevp->split_tag = true;
 | |
| 						}
 | |
| 						bl->nr += resolu;
 | |
| 						bevp += resolu;
 | |
| 					}
 | |
| 					prevbezt = bezt;
 | |
| 					bezt++;
 | |
| 				}
 | |
| 
 | |
| 				if ((nu->flagu & CU_NURB_CYCLIC) == 0) {      /* not cyclic: endpoint */
 | |
| 					copy_v3_v3(bevp->vec, prevbezt->vec[1]);
 | |
| 					bevp->alfa = prevbezt->alfa;
 | |
| 					bevp->radius = prevbezt->radius;
 | |
| 					bevp->weight = prevbezt->weight;
 | |
| 
 | |
| 					sub_v3_v3v3(bevp->dir, prevbezt->vec[1], prevbezt->vec[0]);
 | |
| 					normalize_v3(bevp->dir);
 | |
| 
 | |
| 					bl->nr++;
 | |
| 				}
 | |
| 			}
 | |
| 			else if (nu->type == CU_NURBS) {
 | |
| 				if (nu->pntsv == 1) {
 | |
| 					len = (resolu * SEGMENTSU(nu));
 | |
| 
 | |
| 					bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList3");
 | |
| 					BLI_addtail(bev, bl);
 | |
| 					bl->nr = len;
 | |
| 					bl->dupe_nr = 0;
 | |
| 					bl->poly = (nu->flagu & CU_NURB_CYCLIC) ? 0 : -1;
 | |
| 					bl->charidx = nu->charidx;
 | |
| 					bevp = (BevPoint *)(bl + 1);
 | |
| 
 | |
| 					BKE_nurb_makeCurve(nu, &bevp->vec[0],
 | |
| 					                   do_tilt      ? &bevp->alfa : NULL,
 | |
| 					                   do_radius    ? &bevp->radius : NULL,
 | |
| 					                   do_weight    ? &bevp->weight : NULL,
 | |
| 					                   resolu, sizeof(BevPoint));
 | |
| 
 | |
| 					if ((nu->flagu & CU_NURB_CYCLIC) == 0) {
 | |
| 						bevlist_firstlast_direction_calc_from_bpoint(nu, bl);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
 | |
| 	bl = bev->first;
 | |
| 	while (bl) {
 | |
| 		if (bl->nr) { /* null bevel items come from single points */
 | |
| 			bool is_cyclic = bl->poly != -1;
 | |
| 			nr = bl->nr;
 | |
| 			if (is_cyclic) {
 | |
| 				bevp1 = (BevPoint *)(bl + 1);
 | |
| 				bevp0 = bevp1 + (nr - 1);
 | |
| 			}
 | |
| 			else {
 | |
| 				bevp0 = (BevPoint *)(bl + 1);
 | |
| 				bevp1 = bevp0 + 1;
 | |
| 			}
 | |
| 			nr--;
 | |
| 			while (nr--) {
 | |
| 				if (fabsf(bevp0->vec[0] - bevp1->vec[0]) < 0.00001f) {
 | |
| 					if (fabsf(bevp0->vec[1] - bevp1->vec[1]) < 0.00001f) {
 | |
| 						if (fabsf(bevp0->vec[2] - bevp1->vec[2]) < 0.00001f) {
 | |
| 							bevp0->dupe_tag = true;
 | |
| 							bl->dupe_nr++;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				bevp0 = bevp1;
 | |
| 				bevp1++;
 | |
| 			}
 | |
| 		}
 | |
| 		bl = bl->next;
 | |
| 	}
 | |
| 	bl = bev->first;
 | |
| 	while (bl) {
 | |
| 		blnext = bl->next;
 | |
| 		if (bl->nr && bl->dupe_nr) {
 | |
| 			nr = bl->nr - bl->dupe_nr + 1;  /* +1 because vectorbezier sets flag too */
 | |
| 			blnew = MEM_mallocN(sizeof(BevList) + nr * sizeof(BevPoint), "makeBevelList4");
 | |
| 			memcpy(blnew, bl, sizeof(BevList));
 | |
| 			blnew->nr = 0;
 | |
| 			BLI_remlink(bev, bl);
 | |
| 			BLI_insertlinkbefore(bev, blnext, blnew);    /* to make sure bevlijst is tuned with nurblist */
 | |
| 			bevp0 = (BevPoint *)(bl + 1);
 | |
| 			bevp1 = (BevPoint *)(blnew + 1);
 | |
| 			nr = bl->nr;
 | |
| 			while (nr--) {
 | |
| 				if (bevp0->dupe_tag == 0) {
 | |
| 					memcpy(bevp1, bevp0, sizeof(BevPoint));
 | |
| 					bevp1++;
 | |
| 					blnew->nr++;
 | |
| 				}
 | |
| 				bevp0++;
 | |
| 			}
 | |
| 			MEM_freeN(bl);
 | |
| 			blnew->dupe_nr = 0;
 | |
| 		}
 | |
| 		bl = blnext;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 3: POLYS COUNT AND AUTOHOLE */
 | |
| 	bl = bev->first;
 | |
| 	poly = 0;
 | |
| 	while (bl) {
 | |
| 		if (bl->nr && bl->poly >= 0) {
 | |
| 			poly++;
 | |
| 			bl->poly = poly;
 | |
| 			bl->hole = 0;
 | |
| 		}
 | |
| 		bl = bl->next;
 | |
| 	}
 | |
| 
 | |
| 	/* find extreme left points, also test (turning) direction */
 | |
| 	if (poly > 0) {
 | |
| 		sd = sortdata = MEM_mallocN(sizeof(struct BevelSort) * poly, "makeBevelList5");
 | |
| 		bl = bev->first;
 | |
| 		while (bl) {
 | |
| 			if (bl->poly > 0) {
 | |
| 
 | |
| 				min = 300000.0;
 | |
| 				bevp = (BevPoint *)(bl + 1);
 | |
| 				nr = bl->nr;
 | |
| 				while (nr--) {
 | |
| 					if (min > bevp->vec[0]) {
 | |
| 						min = bevp->vec[0];
 | |
| 						bevp1 = bevp;
 | |
| 					}
 | |
| 					bevp++;
 | |
| 				}
 | |
| 				sd->bl = bl;
 | |
| 				sd->left = min;
 | |
| 
 | |
| 				bevp = (BevPoint *)(bl + 1);
 | |
| 				if (bevp1 == bevp)
 | |
| 					bevp0 = bevp + (bl->nr - 1);
 | |
| 				else
 | |
| 					bevp0 = bevp1 - 1;
 | |
| 				bevp = bevp + (bl->nr - 1);
 | |
| 				if (bevp1 == bevp)
 | |
| 					bevp2 = (BevPoint *)(bl + 1);
 | |
| 				else
 | |
| 					bevp2 = bevp1 + 1;
 | |
| 
 | |
| 				inp = ((bevp1->vec[0] - bevp0->vec[0]) * (bevp0->vec[1] - bevp2->vec[1]) +
 | |
| 				       (bevp0->vec[1] - bevp1->vec[1]) * (bevp0->vec[0] - bevp2->vec[0]));
 | |
| 
 | |
| 				if (inp > 0.0f)
 | |
| 					sd->dir = 1;
 | |
| 				else
 | |
| 					sd->dir = 0;
 | |
| 
 | |
| 				sd++;
 | |
| 			}
 | |
| 
 | |
| 			bl = bl->next;
 | |
| 		}
 | |
| 		qsort(sortdata, poly, sizeof(struct BevelSort), vergxcobev);
 | |
| 
 | |
| 		sd = sortdata + 1;
 | |
| 		for (a = 1; a < poly; a++, sd++) {
 | |
| 			bl = sd->bl;     /* is bl a hole? */
 | |
| 			sd1 = sortdata + (a - 1);
 | |
| 			for (b = a - 1; b >= 0; b--, sd1--) { /* all polys to the left */
 | |
| 				if (sd1->bl->charidx == bl->charidx) { /* for text, only check matching char */
 | |
| 					if (bevelinside(sd1->bl, bl)) {
 | |
| 						bl->hole = 1 - sd1->bl->hole;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* turning direction */
 | |
| 		if ((cu->flag & CU_3D) == 0) {
 | |
| 			sd = sortdata;
 | |
| 			for (a = 0; a < poly; a++, sd++) {
 | |
| 				if (sd->bl->hole == sd->dir) {
 | |
| 					bl = sd->bl;
 | |
| 					bevp1 = (BevPoint *)(bl + 1);
 | |
| 					bevp2 = bevp1 + (bl->nr - 1);
 | |
| 					nr = bl->nr / 2;
 | |
| 					while (nr--) {
 | |
| 						SWAP(BevPoint, *bevp1, *bevp2);
 | |
| 						bevp1++;
 | |
| 						bevp2--;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		MEM_freeN(sortdata);
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 4: 2D-COSINES or 3D ORIENTATION */
 | |
| 	if ((cu->flag & CU_3D) == 0) {
 | |
| 		/* 2D Curves */
 | |
| 		for (bl = bev->first; bl; bl = bl->next) {
 | |
| 			if (bl->nr < 2) {
 | |
| 				BevPoint *bevp = (BevPoint *)(bl + 1);
 | |
| 				unit_qt(bevp->quat);
 | |
| 			}
 | |
| 			else if (bl->nr == 2) {   /* 2 pnt, treat separate */
 | |
| 				make_bevel_list_segment_2D(bl);
 | |
| 			}
 | |
| 			else {
 | |
| 				make_bevel_list_2D(bl);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* 3D Curves */
 | |
| 		for (bl = bev->first; bl; bl = bl->next) {
 | |
| 			if (bl->nr < 2) {
 | |
| 				BevPoint *bevp = (BevPoint *)(bl + 1);
 | |
| 				unit_qt(bevp->quat);
 | |
| 			}
 | |
| 			else if (bl->nr == 2) {   /* 2 pnt, treat separate */
 | |
| 				make_bevel_list_segment_3D(bl);
 | |
| 			}
 | |
| 			else {
 | |
| 				make_bevel_list_3D(bl, (int)(resolu * cu->twist_smooth), cu->twist_mode);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ****************** HANDLES ************** */
 | |
| 
 | |
| static void calchandleNurb_intern(BezTriple *bezt, BezTriple *prev, BezTriple *next,
 | |
|                                   bool is_fcurve, bool skip_align)
 | |
| {
 | |
| 	/* defines to avoid confusion */
 | |
| #define p2_h1 (p2 - 3)
 | |
| #define p2_h2 (p2 + 3)
 | |
| 
 | |
| 	float *p1, *p2, *p3, pt[3];
 | |
| 	float dvec_a[3], dvec_b[3];
 | |
| 	float len, len_a, len_b;
 | |
| 	float orig_len_ratio;
 | |
| 	const float eps = 1e-5;
 | |
| 
 | |
| 	if (bezt->h1 == 0 && bezt->h2 == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	p2 = bezt->vec[1];
 | |
| 
 | |
| 	if (prev == NULL) {
 | |
| 		p3 = next->vec[1];
 | |
| 		pt[0] = 2.0f * p2[0] - p3[0];
 | |
| 		pt[1] = 2.0f * p2[1] - p3[1];
 | |
| 		pt[2] = 2.0f * p2[2] - p3[2];
 | |
| 		p1 = pt;
 | |
| 	}
 | |
| 	else {
 | |
| 		p1 = prev->vec[1];
 | |
| 	}
 | |
| 
 | |
| 	if (next == NULL) {
 | |
| 		pt[0] = 2.0f * p2[0] - p1[0];
 | |
| 		pt[1] = 2.0f * p2[1] - p1[1];
 | |
| 		pt[2] = 2.0f * p2[2] - p1[2];
 | |
| 		p3 = pt;
 | |
| 	}
 | |
| 	else {
 | |
| 		p3 = next->vec[1];
 | |
| 	}
 | |
| 
 | |
| 	sub_v3_v3v3(dvec_a, p2, p1);
 | |
| 	sub_v3_v3v3(dvec_b, p3, p2);
 | |
| 
 | |
| 	if (is_fcurve) {
 | |
| 		len_a = dvec_a[0];
 | |
| 		len_b = dvec_b[0];
 | |
| 	}
 | |
| 	else {
 | |
| 		len_a = len_v3(dvec_a);
 | |
| 		len_b = len_v3(dvec_b);
 | |
| 	}
 | |
| 
 | |
| 	if (len_a == 0.0f) len_a = 1.0f;
 | |
| 	if (len_b == 0.0f) len_b = 1.0f;
 | |
| 
 | |
| 	orig_len_ratio = len_a / len_b;
 | |
| 
 | |
| 	if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM) || ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {    /* auto */
 | |
| 		float tvec[3];
 | |
| 		tvec[0] = dvec_b[0] / len_b + dvec_a[0] / len_a;
 | |
| 		tvec[1] = dvec_b[1] / len_b + dvec_a[1] / len_a;
 | |
| 		tvec[2] = dvec_b[2] / len_b + dvec_a[2] / len_a;
 | |
| 
 | |
| 		if (is_fcurve) {
 | |
| 			len = tvec[0];
 | |
| 		}
 | |
| 		else {
 | |
| 			len = len_v3(tvec);
 | |
| 		}
 | |
| 		len *=  2.5614f;
 | |
| 
 | |
| 		if (len != 0.0f) {
 | |
| 			/* only for fcurves */
 | |
| 			bool leftviolate = false, rightviolate = false;
 | |
| 
 | |
| 			if (len_a > 5.0f * len_b)
 | |
| 				len_a = 5.0f * len_b;
 | |
| 			if (len_b > 5.0f * len_a)
 | |
| 				len_b = 5.0f * len_a;
 | |
| 
 | |
| 			if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) {
 | |
| 				len_a /= len;
 | |
| 				madd_v3_v3v3fl(p2_h1, p2, tvec, -len_a);
 | |
| 
 | |
| 				if ((bezt->h1 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
 | |
| 					float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
 | |
| 					float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
 | |
| 					if ((ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f)) {
 | |
| 						bezt->vec[0][1] = bezt->vec[1][1];
 | |
| 					}
 | |
| 					else { /* handles should not be beyond y coord of two others */
 | |
| 						if (ydiff1 <= 0.0f) {
 | |
| 							if (prev->vec[1][1] > bezt->vec[0][1]) {
 | |
| 								bezt->vec[0][1] = prev->vec[1][1];
 | |
| 								leftviolate = 1;
 | |
| 							}
 | |
| 						}
 | |
| 						else {
 | |
| 							if (prev->vec[1][1] < bezt->vec[0][1]) {
 | |
| 								bezt->vec[0][1] = prev->vec[1][1];
 | |
| 								leftviolate = 1;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {
 | |
| 				len_b /= len;
 | |
| 				madd_v3_v3v3fl(p2_h2, p2, tvec,  len_b);
 | |
| 
 | |
| 				if ((bezt->h2 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
 | |
| 					float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
 | |
| 					float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
 | |
| 					if ( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
 | |
| 						bezt->vec[2][1] = bezt->vec[1][1];
 | |
| 					}
 | |
| 					else { /* handles should not be beyond y coord of two others */
 | |
| 						if (ydiff1 <= 0.0f) {
 | |
| 							if (next->vec[1][1] < bezt->vec[2][1]) {
 | |
| 								bezt->vec[2][1] = next->vec[1][1];
 | |
| 								rightviolate = 1;
 | |
| 							}
 | |
| 						}
 | |
| 						else {
 | |
| 							if (next->vec[1][1] > bezt->vec[2][1]) {
 | |
| 								bezt->vec[2][1] = next->vec[1][1];
 | |
| 								rightviolate = 1;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (leftviolate || rightviolate) { /* align left handle */
 | |
| 				BLI_assert(is_fcurve);
 | |
| #if 0
 | |
| 				if (is_fcurve)
 | |
| #endif
 | |
| 				{
 | |
| 					/* simple 2d calculation */
 | |
| 					float h1_x = p2_h1[0] - p2[0];
 | |
| 					float h2_x = p2[0] - p2_h2[0];
 | |
| 
 | |
| 					if (leftviolate) {
 | |
| 						p2_h2[1] = p2[1] + ((p2[1] - p2_h1[1]) / h1_x) * h2_x;
 | |
| 					}
 | |
| 					else {
 | |
| 						p2_h1[1] = p2[1] + ((p2[1] - p2_h2[1]) / h2_x) * h1_x;
 | |
| 					}
 | |
| 				}
 | |
| #if 0
 | |
| 				else {
 | |
| 					float h1[3], h2[3];
 | |
| 					float dot;
 | |
| 
 | |
| 					sub_v3_v3v3(h1, p2_h1, p2);
 | |
| 					sub_v3_v3v3(h2, p2, p2_h2);
 | |
| 
 | |
| 					len_a = normalize_v3(h1);
 | |
| 					len_b = normalize_v3(h2);
 | |
| 
 | |
| 					dot = dot_v3v3(h1, h2);
 | |
| 
 | |
| 					if (leftviolate) {
 | |
| 						mul_v3_fl(h1, dot * len_b);
 | |
| 						sub_v3_v3v3(p2_h2, p2, h1);
 | |
| 					}
 | |
| 					else {
 | |
| 						mul_v3_fl(h2, dot * len_a);
 | |
| 						add_v3_v3v3(p2_h1, p2, h2);
 | |
| 					}
 | |
| 				}
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bezt->h1 == HD_VECT) {    /* vector */
 | |
| 		madd_v3_v3v3fl(p2_h1, p2, dvec_a, -1.0f / 3.0f);
 | |
| 	}
 | |
| 	if (bezt->h2 == HD_VECT) {
 | |
| 		madd_v3_v3v3fl(p2_h2, p2, dvec_b,  1.0f / 3.0f);
 | |
| 	}
 | |
| 
 | |
| 	if (skip_align || (!ELEM(HD_ALIGN, bezt->h1, bezt->h2) && !ELEM(HD_ALIGN_DOUBLESIDE, bezt->h1, bezt->h2))) {
 | |
| 		/* handles need to be updated during animation and applying stuff like hooks,
 | |
| 		 * but in such situations it's quite difficult to distinguish in which order
 | |
| 		 * align handles should be aligned so skip them for now */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	len_a = len_v3v3(p2, p2_h1);
 | |
| 	len_b = len_v3v3(p2, p2_h2);
 | |
| 
 | |
| 	if (bezt->f1 & SELECT) { /* order of calculation */
 | |
| 		if (ELEM(bezt->h2, HD_ALIGN, HD_ALIGN_DOUBLESIDE)) { /* aligned */
 | |
| 			if (len_a > eps) {
 | |
| 				len = 1.0f / orig_len_ratio;
 | |
| 				p2_h2[0] = p2[0] + len * (p2[0] - p2_h1[0]);
 | |
| 				p2_h2[1] = p2[1] + len * (p2[1] - p2_h1[1]);
 | |
| 				p2_h2[2] = p2[2] + len * (p2[2] - p2_h1[2]);
 | |
| 			}
 | |
| 		}
 | |
| 		if (ELEM(bezt->h1, HD_ALIGN, HD_ALIGN_DOUBLESIDE)) {
 | |
| 			if (len_b > eps) {
 | |
| 				len = orig_len_ratio;
 | |
| 				p2_h1[0] = p2[0] + len * (p2[0] - p2_h2[0]);
 | |
| 				p2_h1[1] = p2[1] + len * (p2[1] - p2_h2[1]);
 | |
| 				p2_h1[2] = p2[2] + len * (p2[2] - p2_h2[2]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (ELEM(bezt->h1, HD_ALIGN, HD_ALIGN_DOUBLESIDE)) {
 | |
| 			if (len_b > eps) {
 | |
| 				len = 1.0f / orig_len_ratio;
 | |
| 				p2_h1[0] = p2[0] + len * (p2[0] - p2_h2[0]);
 | |
| 				p2_h1[1] = p2[1] + len * (p2[1] - p2_h2[1]);
 | |
| 				p2_h1[2] = p2[2] + len * (p2[2] - p2_h2[2]);
 | |
| 			}
 | |
| 		}
 | |
| 		if (ELEM(bezt->h2, HD_ALIGN, HD_ALIGN_DOUBLESIDE)) {   /* aligned */
 | |
| 			if (len_a > eps) {
 | |
| 				len = orig_len_ratio;
 | |
| 				p2_h2[0] = p2[0] + len * (p2[0] - p2_h1[0]);
 | |
| 				p2_h2[1] = p2[1] + len * (p2[1] - p2_h1[1]);
 | |
| 				p2_h2[2] = p2[2] + len * (p2[2] - p2_h1[2]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #undef p2_h1
 | |
| #undef p2_h2
 | |
| }
 | |
| 
 | |
| static void calchandlesNurb_intern(Nurb *nu, bool skip_align)
 | |
| {
 | |
| 	BezTriple *bezt, *prev, *next;
 | |
| 	int a;
 | |
| 
 | |
| 	if (nu->type != CU_BEZIER)
 | |
| 		return;
 | |
| 	if (nu->pntsu < 2)
 | |
| 		return;
 | |
| 
 | |
| 	a = nu->pntsu;
 | |
| 	bezt = nu->bezt;
 | |
| 	if (nu->flagu & CU_NURB_CYCLIC) prev = bezt + (a - 1);
 | |
| 	else prev = NULL;
 | |
| 	next = bezt + 1;
 | |
| 
 | |
| 	while (a--) {
 | |
| 		calchandleNurb_intern(bezt, prev, next, 0, skip_align);
 | |
| 		prev = bezt;
 | |
| 		if (a == 1) {
 | |
| 			if (nu->flagu & CU_NURB_CYCLIC)
 | |
| 				next = nu->bezt;
 | |
| 			else
 | |
| 				next = NULL;
 | |
| 		}
 | |
| 		else
 | |
| 			next++;
 | |
| 
 | |
| 		bezt++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurb_handle_calc(BezTriple *bezt, BezTriple *prev, BezTriple *next, const bool is_fcurve)
 | |
| {
 | |
| 	calchandleNurb_intern(bezt, prev, next, is_fcurve, false);
 | |
| }
 | |
| 
 | |
| void BKE_nurb_handles_calc(Nurb *nu) /* first, if needed, set handle flags */
 | |
| {
 | |
| 	calchandlesNurb_intern(nu, false);
 | |
| }
 | |
| 
 | |
| /* similar to BKE_nurb_handle_calc but for curves and
 | |
|  * figures out the previous and next for us */
 | |
| void BKE_nurb_handle_calc_simple(Nurb *nu, BezTriple *bezt)
 | |
| {
 | |
| 	if (nu->pntsu > 1) {
 | |
| 		BezTriple *prev = BKE_nurb_bezt_get_prev(nu, bezt);
 | |
| 		BezTriple *next = BKE_nurb_bezt_get_next(nu, bezt);
 | |
| 		BKE_nurb_handle_calc(bezt, prev, next, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Use when something has changed handle positions.
 | |
|  *
 | |
|  * The caller needs to recalculate handles.
 | |
|  */
 | |
| void BKE_nurb_bezt_handle_test(BezTriple *bezt, const bool use_handle)
 | |
| {
 | |
| 	short flag = 0;
 | |
| 
 | |
| #define SEL_F1 (1 << 0)
 | |
| #define SEL_F2 (1 << 1)
 | |
| #define SEL_F3 (1 << 2)
 | |
| 
 | |
| 	if (use_handle) {
 | |
| 		if (bezt->f1 & SELECT) flag |= SEL_F1;
 | |
| 		if (bezt->f2 & SELECT) flag |= SEL_F2;
 | |
| 		if (bezt->f3 & SELECT) flag |= SEL_F3;
 | |
| 	}
 | |
| 	else {
 | |
| 		flag = (bezt->f2 & SELECT) ? (SEL_F1 | SEL_F2 | SEL_F3) : 0;
 | |
| 	}
 | |
| 
 | |
| 	/* check for partial selection */
 | |
| 	if (!ELEM(flag, 0, SEL_F1 | SEL_F2 | SEL_F3)) {
 | |
| 		if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) {
 | |
| 			bezt->h1 = HD_ALIGN;
 | |
| 		}
 | |
| 		if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {
 | |
| 			bezt->h2 = HD_ALIGN;
 | |
| 		}
 | |
| 
 | |
| 		if (bezt->h1 == HD_VECT) {
 | |
| 			if ((!(flag & SEL_F1)) != (!(flag & SEL_F2))) {
 | |
| 				bezt->h1 = HD_FREE;
 | |
| 			}
 | |
| 		}
 | |
| 		if (bezt->h2 == HD_VECT) {
 | |
| 			if ((!(flag & SEL_F3)) != (!(flag & SEL_F2))) {
 | |
| 				bezt->h2 = HD_FREE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #undef SEL_F1
 | |
| #undef SEL_F2
 | |
| #undef SEL_F3
 | |
| 
 | |
| }
 | |
| 
 | |
| void BKE_nurb_handles_test(Nurb *nu, const bool use_handle)
 | |
| {
 | |
| 	BezTriple *bezt;
 | |
| 	int a;
 | |
| 
 | |
| 	if (nu->type != CU_BEZIER)
 | |
| 		return;
 | |
| 
 | |
| 	bezt = nu->bezt;
 | |
| 	a = nu->pntsu;
 | |
| 	while (a--) {
 | |
| 		BKE_nurb_bezt_handle_test(bezt, use_handle);
 | |
| 		bezt++;
 | |
| 	}
 | |
| 
 | |
| 	BKE_nurb_handles_calc(nu);
 | |
| }
 | |
| 
 | |
| void BKE_nurb_handles_autocalc(Nurb *nu, int flag)
 | |
| {
 | |
| 	/* checks handle coordinates and calculates type */
 | |
| 	const float eps = 0.0001f;
 | |
| 	const float eps_sq = eps * eps;
 | |
| 
 | |
| 	BezTriple *bezt2, *bezt1, *bezt0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (nu == NULL || nu->bezt == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	bezt2 = nu->bezt;
 | |
| 	bezt1 = bezt2 + (nu->pntsu - 1);
 | |
| 	bezt0 = bezt1 - 1;
 | |
| 	i = nu->pntsu;
 | |
| 
 | |
| 	while (i--) {
 | |
| 		bool align = false, leftsmall = false, rightsmall = false;
 | |
| 
 | |
| 		/* left handle: */
 | |
| 		if (flag == 0 || (bezt1->f1 & flag) ) {
 | |
| 			bezt1->h1 = HD_FREE;
 | |
| 			/* distance too short: vectorhandle */
 | |
| 			if (len_squared_v3v3(bezt1->vec[1], bezt0->vec[1]) < eps_sq) {
 | |
| 				bezt1->h1 = HD_VECT;
 | |
| 				leftsmall = true;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* aligned handle? */
 | |
| 				if (dist_squared_to_line_v3(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < eps_sq) {
 | |
| 					align = true;
 | |
| 					bezt1->h1 = HD_ALIGN;
 | |
| 				}
 | |
| 				/* or vector handle? */
 | |
| 				if (dist_squared_to_line_v3(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < eps_sq)
 | |
| 					bezt1->h1 = HD_VECT;
 | |
| 			}
 | |
| 		}
 | |
| 		/* right handle: */
 | |
| 		if (flag == 0 || (bezt1->f3 & flag) ) {
 | |
| 			bezt1->h2 = HD_FREE;
 | |
| 			/* distance too short: vectorhandle */
 | |
| 			if (len_squared_v3v3(bezt1->vec[1], bezt2->vec[1]) < eps_sq) {
 | |
| 				bezt1->h2 = HD_VECT;
 | |
| 				rightsmall = true;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* aligned handle? */
 | |
| 				if (align) bezt1->h2 = HD_ALIGN;
 | |
| 
 | |
| 				/* or vector handle? */
 | |
| 				if (dist_squared_to_line_v3(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < eps_sq)
 | |
| 					bezt1->h2 = HD_VECT;
 | |
| 			}
 | |
| 		}
 | |
| 		if (leftsmall && bezt1->h2 == HD_ALIGN)
 | |
| 			bezt1->h2 = HD_FREE;
 | |
| 		if (rightsmall && bezt1->h1 == HD_ALIGN)
 | |
| 			bezt1->h1 = HD_FREE;
 | |
| 
 | |
| 		/* undesired combination: */
 | |
| 		if (bezt1->h1 == HD_ALIGN && bezt1->h2 == HD_VECT)
 | |
| 			bezt1->h1 = HD_FREE;
 | |
| 		if (bezt1->h2 == HD_ALIGN && bezt1->h1 == HD_VECT)
 | |
| 			bezt1->h2 = HD_FREE;
 | |
| 
 | |
| 		bezt0 = bezt1;
 | |
| 		bezt1 = bezt2;
 | |
| 		bezt2++;
 | |
| 	}
 | |
| 
 | |
| 	BKE_nurb_handles_calc(nu);
 | |
| }
 | |
| 
 | |
| void BKE_nurbList_handles_autocalc(ListBase *editnurb, int flag)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 
 | |
| 	nu = editnurb->first;
 | |
| 	while (nu) {
 | |
| 		BKE_nurb_handles_autocalc(nu, flag);
 | |
| 		nu = nu->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurbList_handles_set(ListBase *editnurb, const char code)
 | |
| {
 | |
| 	/* code==1: set autohandle */
 | |
| 	/* code==2: set vectorhandle */
 | |
| 	/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
 | |
| 	/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
 | |
| 	/* code==5: Set align, like 3 but no toggle */
 | |
| 	/* code==6: Clear align, like 3 but no toggle */
 | |
| 	Nurb *nu;
 | |
| 	BezTriple *bezt;
 | |
| 	int a;
 | |
| 
 | |
| 	if (ELEM(code, HD_AUTO, HD_VECT)) {
 | |
| 		nu = editnurb->first;
 | |
| 		while (nu) {
 | |
| 			if (nu->type == CU_BEZIER) {
 | |
| 				bezt = nu->bezt;
 | |
| 				a = nu->pntsu;
 | |
| 				while (a--) {
 | |
| 					if ((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
 | |
| 						if (bezt->f1 & SELECT)
 | |
| 							bezt->h1 = code;
 | |
| 						if (bezt->f3 & SELECT)
 | |
| 							bezt->h2 = code;
 | |
| 						if (bezt->h1 != bezt->h2) {
 | |
| 							if (ELEM(bezt->h1, HD_ALIGN, HD_AUTO))
 | |
| 								bezt->h1 = HD_FREE;
 | |
| 							if (ELEM(bezt->h2, HD_ALIGN, HD_AUTO))
 | |
| 								bezt->h2 = HD_FREE;
 | |
| 						}
 | |
| 					}
 | |
| 					bezt++;
 | |
| 				}
 | |
| 				BKE_nurb_handles_calc(nu);
 | |
| 			}
 | |
| 			nu = nu->next;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		char h_new = HD_FREE;
 | |
| 
 | |
| 		/* there is 1 handle not FREE: FREE it all, else make ALIGNED  */
 | |
| 		if (code == 5) {
 | |
| 			h_new = HD_ALIGN;
 | |
| 		}
 | |
| 		else if (code == 6) {
 | |
| 			h_new = HD_FREE;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* Toggle */
 | |
| 			for (nu = editnurb->first; nu; nu = nu->next) {
 | |
| 				if (nu->type == CU_BEZIER) {
 | |
| 					bezt = nu->bezt;
 | |
| 					a = nu->pntsu;
 | |
| 					while (a--) {
 | |
| 						if (((bezt->f1 & SELECT) && bezt->h1 != HD_FREE) ||
 | |
| 						    ((bezt->f3 & SELECT) && bezt->h2 != HD_FREE))
 | |
| 						{
 | |
| 							h_new = HD_AUTO;
 | |
| 							break;
 | |
| 						}
 | |
| 						bezt++;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			h_new = (h_new == HD_FREE) ? HD_ALIGN : HD_FREE;
 | |
| 		}
 | |
| 		for (nu = editnurb->first; nu; nu = nu->next) {
 | |
| 			if (nu->type == CU_BEZIER) {
 | |
| 				bezt = nu->bezt;
 | |
| 				a = nu->pntsu;
 | |
| 				while (a--) {
 | |
| 					if (bezt->f1 & SELECT) bezt->h1 = h_new;
 | |
| 					if (bezt->f3 & SELECT) bezt->h2 = h_new;
 | |
| 
 | |
| 					bezt++;
 | |
| 				}
 | |
| 				BKE_nurb_handles_calc(nu);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurbList_handles_recalculate(ListBase *editnurb, const bool calc_length, const char flag)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	BezTriple *bezt;
 | |
| 	int a;
 | |
| 
 | |
| 	for (nu = editnurb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			bool changed = false;
 | |
| 
 | |
| 			for (a = nu->pntsu, bezt = nu->bezt; a--; bezt++) {
 | |
| 
 | |
| 				const bool h1_select = (bezt->f1 & flag) == flag;
 | |
| 				const bool h2_select = (bezt->f3 & flag) == flag;
 | |
| 
 | |
| 				if (h1_select || h2_select) {
 | |
| 
 | |
| 					/* Override handle types to HD_AUTO and recalculate */
 | |
| 
 | |
| 					char h1_back, h2_back;
 | |
| 					float co1_back[3], co2_back[3];
 | |
| 
 | |
| 					h1_back = bezt->h1;
 | |
| 					h2_back = bezt->h2;
 | |
| 
 | |
| 					bezt->h1 = HD_AUTO;
 | |
| 					bezt->h2 = HD_AUTO;
 | |
| 
 | |
| 					copy_v3_v3(co1_back, bezt->vec[0]);
 | |
| 					copy_v3_v3(co2_back, bezt->vec[2]);
 | |
| 
 | |
| 					BKE_nurb_handle_calc_simple(nu, bezt);
 | |
| 
 | |
| 					bezt->h1 = h1_back;
 | |
| 					bezt->h2 = h2_back;
 | |
| 
 | |
| 					if (h1_select) {
 | |
| 						if (!calc_length) {
 | |
| 							dist_ensure_v3_v3fl(bezt->vec[0], bezt->vec[1], len_v3v3(co1_back, bezt->vec[1]));
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						copy_v3_v3(bezt->vec[0], co1_back);
 | |
| 					}
 | |
| 
 | |
| 					if (h2_select) {
 | |
| 						if (!calc_length) {
 | |
| 							dist_ensure_v3_v3fl(bezt->vec[2], bezt->vec[1], len_v3v3(co2_back, bezt->vec[1]));
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						copy_v3_v3(bezt->vec[2], co2_back);
 | |
| 					}
 | |
| 
 | |
| 					changed = true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (changed) {
 | |
| 				/* Recalculate the whole curve */
 | |
| 				BKE_nurb_handles_calc(nu);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurbList_flag_set(ListBase *editnurb, short flag)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	BezTriple *bezt;
 | |
| 	BPoint *bp;
 | |
| 	int a;
 | |
| 
 | |
| 	for (nu = editnurb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			a = nu->pntsu;
 | |
| 			bezt = nu->bezt;
 | |
| 			while (a--) {
 | |
| 				bezt->f1 = bezt->f2 = bezt->f3 = flag;
 | |
| 				bezt++;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			a = nu->pntsu * nu->pntsv;
 | |
| 			bp = nu->bp;
 | |
| 			while (a--) {
 | |
| 				bp->f1 = flag;
 | |
| 				bp++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_nurb_direction_switch(Nurb *nu)
 | |
| {
 | |
| 	BezTriple *bezt1, *bezt2;
 | |
| 	BPoint *bp1, *bp2;
 | |
| 	float *fp1, *fp2, *tempf;
 | |
| 	int a, b;
 | |
| 
 | |
| 	if (nu->pntsu == 1 && nu->pntsv == 1) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (nu->type == CU_BEZIER) {
 | |
| 		a = nu->pntsu;
 | |
| 		bezt1 = nu->bezt;
 | |
| 		bezt2 = bezt1 + (a - 1);
 | |
| 		if (a & 1) a += 1;  /* if odd, also swap middle content */
 | |
| 		a /= 2;
 | |
| 		while (a > 0) {
 | |
| 			if (bezt1 != bezt2) {
 | |
| 				SWAP(BezTriple, *bezt1, *bezt2);
 | |
| 			}
 | |
| 
 | |
| 			swap_v3_v3(bezt1->vec[0], bezt1->vec[2]);
 | |
| 
 | |
| 			if (bezt1 != bezt2) {
 | |
| 				swap_v3_v3(bezt2->vec[0], bezt2->vec[2]);
 | |
| 			}
 | |
| 
 | |
| 			SWAP(char, bezt1->h1, bezt1->h2);
 | |
| 			SWAP(char, bezt1->f1, bezt1->f3);
 | |
| 
 | |
| 			if (bezt1 != bezt2) {
 | |
| 				SWAP(char, bezt2->h1, bezt2->h2);
 | |
| 				SWAP(char, bezt2->f1, bezt2->f3);
 | |
| 				bezt1->alfa = -bezt1->alfa;
 | |
| 				bezt2->alfa = -bezt2->alfa;
 | |
| 			}
 | |
| 			else {
 | |
| 				bezt1->alfa = -bezt1->alfa;
 | |
| 			}
 | |
| 			a--;
 | |
| 			bezt1++;
 | |
| 			bezt2--;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (nu->pntsv == 1) {
 | |
| 		a = nu->pntsu;
 | |
| 		bp1 = nu->bp;
 | |
| 		bp2 = bp1 + (a - 1);
 | |
| 		a /= 2;
 | |
| 		while (bp1 != bp2 && a > 0) {
 | |
| 			SWAP(BPoint, *bp1, *bp2);
 | |
| 			a--;
 | |
| 			bp1->alfa = -bp1->alfa;
 | |
| 			bp2->alfa = -bp2->alfa;
 | |
| 			bp1++;
 | |
| 			bp2--;
 | |
| 		}
 | |
| 		/* If there're odd number of points no need to touch coord of middle one,
 | |
| 		 * but still need to change it's tilt.
 | |
| 		 */
 | |
| 		if (nu->pntsu & 1) {
 | |
| 			bp1->alfa = -bp1->alfa;
 | |
| 		}
 | |
| 		if (nu->type == CU_NURBS) {
 | |
| 			/* no knots for too short paths */
 | |
| 			if (nu->knotsu) {
 | |
| 				/* inverse knots */
 | |
| 				a = KNOTSU(nu);
 | |
| 				fp1 = nu->knotsu;
 | |
| 				fp2 = fp1 + (a - 1);
 | |
| 				a /= 2;
 | |
| 				while (fp1 != fp2 && a > 0) {
 | |
| 					SWAP(float, *fp1, *fp2);
 | |
| 					a--;
 | |
| 					fp1++;
 | |
| 					fp2--;
 | |
| 				}
 | |
| 				/* and make in increasing order again */
 | |
| 				a = KNOTSU(nu);
 | |
| 				fp1 = nu->knotsu;
 | |
| 				fp2 = tempf = MEM_mallocN(sizeof(float) * a, "switchdirect");
 | |
| 				a--;
 | |
| 				fp2[a] = fp1[a];
 | |
| 				while (a--) {
 | |
| 					fp2[0] = fabsf(fp1[1] - fp1[0]);
 | |
| 					fp1++;
 | |
| 					fp2++;
 | |
| 				}
 | |
| 
 | |
| 				a = KNOTSU(nu) - 1;
 | |
| 				fp1 = nu->knotsu;
 | |
| 				fp2 = tempf;
 | |
| 				fp1[0] = 0.0;
 | |
| 				fp1++;
 | |
| 				while (a--) {
 | |
| 					fp1[0] = fp1[-1] + fp2[0];
 | |
| 					fp1++;
 | |
| 					fp2++;
 | |
| 				}
 | |
| 				MEM_freeN(tempf);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		for (b = 0; b < nu->pntsv; b++) {
 | |
| 			bp1 = nu->bp + b * nu->pntsu;
 | |
| 			a = nu->pntsu;
 | |
| 			bp2 = bp1 + (a - 1);
 | |
| 			a /= 2;
 | |
| 
 | |
| 			while (bp1 != bp2 && a > 0) {
 | |
| 				SWAP(BPoint, *bp1, *bp2);
 | |
| 				a--;
 | |
| 				bp1++;
 | |
| 				bp2--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| float (*BKE_curve_nurbs_vertexCos_get(ListBase *lb, int *r_numVerts))[3]
 | |
| {
 | |
| 	int i, numVerts = *r_numVerts = BKE_nurbList_verts_count(lb);
 | |
| 	float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
 | |
| 	Nurb *nu;
 | |
| 
 | |
| 	co = cos[0];
 | |
| 	for (nu = lb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BezTriple *bezt = nu->bezt;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | |
| 				copy_v3_v3(co, bezt->vec[0]); co += 3;
 | |
| 				copy_v3_v3(co, bezt->vec[1]); co += 3;
 | |
| 				copy_v3_v3(co, bezt->vec[2]); co += 3;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			BPoint *bp = nu->bp;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | |
| 				copy_v3_v3(co, bp->vec); co += 3;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return cos;
 | |
| }
 | |
| 
 | |
| void BK_curve_nurbs_vertexCos_apply(ListBase *lb, float (*vertexCos)[3])
 | |
| {
 | |
| 	const float *co = vertexCos[0];
 | |
| 	Nurb *nu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (nu = lb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BezTriple *bezt = nu->bezt;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | |
| 				copy_v3_v3(bezt->vec[0], co); co += 3;
 | |
| 				copy_v3_v3(bezt->vec[1], co); co += 3;
 | |
| 				copy_v3_v3(bezt->vec[2], co); co += 3;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			BPoint *bp = nu->bp;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | |
| 				copy_v3_v3(bp->vec, co); co += 3;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		calchandlesNurb_intern(nu, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| float (*BKE_curve_nurbs_keyVertexCos_get(ListBase *lb, float *key))[3]
 | |
| {
 | |
| 	int i, numVerts = BKE_nurbList_verts_count(lb);
 | |
| 	float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
 | |
| 	Nurb *nu;
 | |
| 
 | |
| 	co = cos[0];
 | |
| 	for (nu = lb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BezTriple *bezt = nu->bezt;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | |
| 				copy_v3_v3(co, key); co += 3; key += 3;
 | |
| 				copy_v3_v3(co, key); co += 3; key += 3;
 | |
| 				copy_v3_v3(co, key); co += 3; key += 3;
 | |
| 				key += 3; /* skip tilt */
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			BPoint *bp = nu->bp;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | |
| 				copy_v3_v3(co, key); co += 3; key += 3;
 | |
| 				key++; /* skip tilt */
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return cos;
 | |
| }
 | |
| 
 | |
| void BKE_curve_nurbs_keyVertexTilts_apply(ListBase *lb, float *key)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (nu = lb->first; nu; nu = nu->next) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BezTriple *bezt = nu->bezt;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | |
| 				key += 3 * 3;
 | |
| 				bezt->alfa = *key;
 | |
| 				key += 3;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			BPoint *bp = nu->bp;
 | |
| 
 | |
| 			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | |
| 				key += 3;
 | |
| 				bp->alfa = *key;
 | |
| 				key++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool BKE_nurb_check_valid_u(struct Nurb *nu)
 | |
| {
 | |
| 	if (nu->pntsu <= 1)
 | |
| 		return false;
 | |
| 	if (nu->type != CU_NURBS)
 | |
| 		return true;           /* not a nurb, lets assume its valid */
 | |
| 
 | |
| 	if (nu->pntsu < nu->orderu) return false;
 | |
| 	if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
 | |
| 		if (nu->orderu == 4) {
 | |
| 			if (nu->pntsu < 5)
 | |
| 				return false;  /* bezier with 4 orderu needs 5 points */
 | |
| 		}
 | |
| 		else {
 | |
| 			if (nu->orderu != 3)
 | |
| 				return false;  /* order must be 3 or 4 */
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| bool BKE_nurb_check_valid_v(struct Nurb *nu)
 | |
| {
 | |
| 	if (nu->pntsv <= 1)
 | |
| 		return false;
 | |
| 	if (nu->type != CU_NURBS)
 | |
| 		return true;           /* not a nurb, lets assume its valid */
 | |
| 
 | |
| 	if (nu->pntsv < nu->orderv)
 | |
| 		return false;
 | |
| 	if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
 | |
| 		if (nu->orderv == 4) {
 | |
| 			if (nu->pntsv < 5)
 | |
| 				return false;  /* bezier with 4 orderu needs 5 points */
 | |
| 		}
 | |
| 		else {
 | |
| 			if (nu->orderv != 3)
 | |
| 				return false;  /* order must be 3 or 4 */
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool BKE_nurb_check_valid_uv(struct Nurb *nu)
 | |
| {
 | |
| 	if (!BKE_nurb_check_valid_u(nu))
 | |
| 		return false;
 | |
| 	if ((nu->pntsv > 1) && !BKE_nurb_check_valid_v(nu))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool BKE_nurb_order_clamp_u(struct Nurb *nu)
 | |
| {
 | |
| 	bool changed = false;
 | |
| 	if (nu->pntsu < nu->orderu) {
 | |
| 		nu->orderu = max_ii(2, nu->pntsu);
 | |
| 		changed = true;
 | |
| 	}
 | |
| 	if (((nu->flagu & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) {
 | |
| 		CLAMP(nu->orderu, 3, 4);
 | |
| 		changed = true;
 | |
| 	}
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| bool BKE_nurb_order_clamp_v(struct Nurb *nu)
 | |
| {
 | |
| 	bool changed = false;
 | |
| 	if (nu->pntsv < nu->orderv) {
 | |
| 		nu->orderv = max_ii(2, nu->pntsv);
 | |
| 		changed = true;
 | |
| 	}
 | |
| 	if (((nu->flagv & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) {
 | |
| 		CLAMP(nu->orderv, 3, 4);
 | |
| 		changed = true;
 | |
| 	}
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| bool BKE_nurb_type_convert(Nurb *nu, const short type, const bool use_handles)
 | |
| {
 | |
| 	BezTriple *bezt;
 | |
| 	BPoint *bp;
 | |
| 	int a, c, nr;
 | |
| 
 | |
| 	if (nu->type == CU_POLY) {
 | |
| 		if (type == CU_BEZIER) {  /* to Bezier with vecthandles  */
 | |
| 			nr = nu->pntsu;
 | |
| 			bezt = (BezTriple *)MEM_callocN(nr * sizeof(BezTriple), "setsplinetype2");
 | |
| 			nu->bezt = bezt;
 | |
| 			a = nr;
 | |
| 			bp = nu->bp;
 | |
| 			while (a--) {
 | |
| 				copy_v3_v3(bezt->vec[1], bp->vec);
 | |
| 				bezt->f1 = bezt->f2 = bezt->f3 = bp->f1;
 | |
| 				bezt->h1 = bezt->h2 = HD_VECT;
 | |
| 				bezt->weight = bp->weight;
 | |
| 				bezt->radius = bp->radius;
 | |
| 				bp++;
 | |
| 				bezt++;
 | |
| 			}
 | |
| 			MEM_freeN(nu->bp);
 | |
| 			nu->bp = NULL;
 | |
| 			nu->pntsu = nr;
 | |
| 			nu->type = CU_BEZIER;
 | |
| 			BKE_nurb_handles_calc(nu);
 | |
| 		}
 | |
| 		else if (type == CU_NURBS) {
 | |
| 			nu->type = CU_NURBS;
 | |
| 			nu->orderu = 4;
 | |
| 			nu->flagu &= CU_NURB_CYCLIC; /* disable all flags except for cyclic */
 | |
| 			BKE_nurb_knot_calc_u(nu);
 | |
| 			a = nu->pntsu * nu->pntsv;
 | |
| 			bp = nu->bp;
 | |
| 			while (a--) {
 | |
| 				bp->vec[3] = 1.0;
 | |
| 				bp++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else if (nu->type == CU_BEZIER) {   /* Bezier */
 | |
| 		if (type == CU_POLY || type == CU_NURBS) {
 | |
| 			nr = use_handles ? (3 * nu->pntsu) : nu->pntsu;
 | |
| 			nu->bp = MEM_callocN(nr * sizeof(BPoint), "setsplinetype");
 | |
| 			a = nu->pntsu;
 | |
| 			bezt = nu->bezt;
 | |
| 			bp = nu->bp;
 | |
| 			while (a--) {
 | |
| 				if ((type == CU_POLY && bezt->h1 == HD_VECT && bezt->h2 == HD_VECT) || (use_handles == false)) {
 | |
| 					/* vector handle becomes 1 poly vertice */
 | |
| 					copy_v3_v3(bp->vec, bezt->vec[1]);
 | |
| 					bp->vec[3] = 1.0;
 | |
| 					bp->f1 = bezt->f2;
 | |
| 					if (use_handles) nr -= 2;
 | |
| 					bp->radius = bezt->radius;
 | |
| 					bp->weight = bezt->weight;
 | |
| 					bp++;
 | |
| 				}
 | |
| 				else {
 | |
| 					const char *f = &bezt->f1;
 | |
| 					for (c = 0; c < 3; c++, f++) {
 | |
| 						copy_v3_v3(bp->vec, bezt->vec[c]);
 | |
| 						bp->vec[3] = 1.0;
 | |
| 						bp->f1 = *f;
 | |
| 						bp->radius = bezt->radius;
 | |
| 						bp->weight = bezt->weight;
 | |
| 						bp++;
 | |
| 					}
 | |
| 				}
 | |
| 				bezt++;
 | |
| 			}
 | |
| 			MEM_freeN(nu->bezt);
 | |
| 			nu->bezt = NULL;
 | |
| 			nu->pntsu = nr;
 | |
| 			nu->pntsv = 1;
 | |
| 			nu->orderu = 4;
 | |
| 			nu->orderv = 1;
 | |
| 			nu->type = type;
 | |
| 
 | |
| #if 0       /* UNUSED */
 | |
| 			if (nu->flagu & CU_NURB_CYCLIC) c = nu->orderu - 1;
 | |
| 			else c = 0;
 | |
| #endif
 | |
| 
 | |
| 			if (type == CU_NURBS) {
 | |
| 				nu->flagu &= CU_NURB_CYCLIC; /* disable all flags except for cyclic */
 | |
| 				nu->flagu |= CU_NURB_BEZIER;
 | |
| 				BKE_nurb_knot_calc_u(nu);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else if (nu->type == CU_NURBS) {
 | |
| 		if (type == CU_POLY) {
 | |
| 			nu->type = CU_POLY;
 | |
| 			if (nu->knotsu) MEM_freeN(nu->knotsu);  /* python created nurbs have a knotsu of zero */
 | |
| 			nu->knotsu = NULL;
 | |
| 			if (nu->knotsv) MEM_freeN(nu->knotsv);
 | |
| 			nu->knotsv = NULL;
 | |
| 		}
 | |
| 		else if (type == CU_BEZIER) {     /* to Bezier */
 | |
| 			nr = nu->pntsu / 3;
 | |
| 
 | |
| 			if (nr < 2) {
 | |
| 				return false;  /* conversion impossible */
 | |
| 			}
 | |
| 			else {
 | |
| 				bezt = MEM_callocN(nr * sizeof(BezTriple), "setsplinetype2");
 | |
| 				nu->bezt = bezt;
 | |
| 				a = nr;
 | |
| 				bp = nu->bp;
 | |
| 				while (a--) {
 | |
| 					copy_v3_v3(bezt->vec[0], bp->vec);
 | |
| 					bezt->f1 = bp->f1;
 | |
| 					bp++;
 | |
| 					copy_v3_v3(bezt->vec[1], bp->vec);
 | |
| 					bezt->f2 = bp->f1;
 | |
| 					bp++;
 | |
| 					copy_v3_v3(bezt->vec[2], bp->vec);
 | |
| 					bezt->f3 = bp->f1;
 | |
| 					bezt->radius = bp->radius;
 | |
| 					bezt->weight = bp->weight;
 | |
| 					bp++;
 | |
| 					bezt++;
 | |
| 				}
 | |
| 				MEM_freeN(nu->bp);
 | |
| 				nu->bp = NULL;
 | |
| 				MEM_freeN(nu->knotsu);
 | |
| 				nu->knotsu = NULL;
 | |
| 				nu->pntsu = nr;
 | |
| 				nu->type = CU_BEZIER;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Get edit nurbs or normal nurbs list */
 | |
| ListBase *BKE_curve_nurbs_get(Curve *cu)
 | |
| {
 | |
| 	if (cu->editnurb) {
 | |
| 		return BKE_curve_editNurbs_get(cu);
 | |
| 	}
 | |
| 
 | |
| 	return &cu->nurb;
 | |
| }
 | |
| 
 | |
| void BKE_curve_nurb_active_set(Curve *cu, Nurb *nu)
 | |
| {
 | |
| 	if (nu == NULL) {
 | |
| 		cu->actnu = -1;
 | |
| 	}
 | |
| 	else {
 | |
| 		ListBase *nurbs = BKE_curve_editNurbs_get(cu);
 | |
| 		cu->actnu = BLI_findindex(nurbs, nu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Nurb *BKE_curve_nurb_active_get(Curve *cu)
 | |
| {
 | |
| 	ListBase *nurbs = BKE_curve_editNurbs_get(cu);
 | |
| 	return BLI_findlink(nurbs, cu->actnu);
 | |
| }
 | |
| 
 | |
| /* Get active vert for curve */
 | |
| void *BKE_curve_vert_active_get(Curve *cu)
 | |
| {
 | |
| 	Nurb *nu = NULL;
 | |
| 	void *vert = NULL;
 | |
| 
 | |
| 	BKE_curve_nurb_vert_active_get(cu, &nu, &vert);
 | |
| 	return vert;
 | |
| }
 | |
| 
 | |
| /* Set active nurb and active vert for curve */
 | |
| void BKE_curve_nurb_vert_active_set(Curve *cu, Nurb *nu, void *vert)
 | |
| {
 | |
| 	if (nu) {
 | |
| 		BKE_curve_nurb_active_set(cu, nu);
 | |
| 
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BLI_assert(ARRAY_HAS_ITEM((BezTriple *)vert, nu->bezt, nu->pntsu));
 | |
| 			cu->actvert = (BezTriple *)vert - nu->bezt;
 | |
| 		}
 | |
| 		else {
 | |
| 			BLI_assert(ARRAY_HAS_ITEM((BPoint *)vert, nu->bp, nu->pntsu * nu->pntsv));
 | |
| 			cu->actvert = (BPoint *)vert - nu->bp;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		cu->actnu = cu->actvert = CU_ACT_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Get points to active active nurb and active vert for curve */
 | |
| bool BKE_curve_nurb_vert_active_get(Curve *cu, Nurb **r_nu, void **r_vert)
 | |
| {
 | |
| 	Nurb *nu = NULL;
 | |
| 	void *vert = NULL;
 | |
| 
 | |
| 	if (cu->actvert != CU_ACT_NONE) {
 | |
| 		ListBase *nurbs = BKE_curve_editNurbs_get(cu);
 | |
| 		nu = BLI_findlink(nurbs, cu->actnu);
 | |
| 
 | |
| 		if (nu) {
 | |
| 			if (nu->type == CU_BEZIER) {
 | |
| 				BLI_assert(nu->pntsu > cu->actvert);
 | |
| 				vert = &nu->bezt[cu->actvert];
 | |
| 			}
 | |
| 			else {
 | |
| 				BLI_assert((nu->pntsu * nu->pntsv) > cu->actvert);
 | |
| 				vert = &nu->bp[cu->actvert];
 | |
| 			}
 | |
| 		}
 | |
| 		/* get functions should never set! */
 | |
| #if 0
 | |
| 		else {
 | |
| 			cu->actnu = cu->actvert = CU_ACT_NONE;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	*r_nu = nu;
 | |
| 	*r_vert = vert;
 | |
| 
 | |
| 	return (*r_vert != NULL);
 | |
| }
 | |
| 
 | |
| void BKE_curve_nurb_vert_active_validate(Curve *cu)
 | |
| {
 | |
| 	Nurb *nu;
 | |
| 	void *vert;
 | |
| 
 | |
| 	if (BKE_curve_nurb_vert_active_get(cu, &nu, &vert)) {
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			if ((((BezTriple *)vert)->f1 & SELECT) == 0) {
 | |
| 				cu->actvert = CU_ACT_NONE;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			if ((((BPoint *)vert)->f1 & SELECT) == 0) {
 | |
| 				cu->actvert = CU_ACT_NONE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* basic vertex data functions */
 | |
| bool BKE_curve_minmax(Curve *cu, bool use_radius, float min[3], float max[3])
 | |
| {
 | |
| 	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | |
| 	Nurb *nu;
 | |
| 
 | |
| 	for (nu = nurb_lb->first; nu; nu = nu->next)
 | |
| 		BKE_nurb_minmax(nu, use_radius, min, max);
 | |
| 
 | |
| 	return (BLI_listbase_is_empty(nurb_lb) == false);
 | |
| }
 | |
| 
 | |
| bool BKE_curve_center_median(Curve *cu, float cent[3])
 | |
| {
 | |
| 	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | |
| 	Nurb *nu;
 | |
| 	int total = 0;
 | |
| 
 | |
| 	zero_v3(cent);
 | |
| 
 | |
| 	for (nu = nurb_lb->first; nu; nu = nu->next) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			BezTriple *bezt;
 | |
| 			i = nu->pntsu;
 | |
| 			total += i * 3;
 | |
| 			for (bezt = nu->bezt; i--; bezt++) {
 | |
| 				add_v3_v3(cent, bezt->vec[0]);
 | |
| 				add_v3_v3(cent, bezt->vec[1]);
 | |
| 				add_v3_v3(cent, bezt->vec[2]);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			BPoint *bp;
 | |
| 			i = nu->pntsu * nu->pntsv;
 | |
| 			total += i;
 | |
| 			for (bp = nu->bp; i--; bp++) {
 | |
| 				add_v3_v3(cent, bp->vec);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (total) {
 | |
| 		mul_v3_fl(cent, 1.0f / (float)total);
 | |
| 	}
 | |
| 
 | |
| 	return (total != 0);
 | |
| }
 | |
| 
 | |
| bool BKE_curve_center_bounds(Curve *cu, float cent[3])
 | |
| {
 | |
| 	float min[3], max[3];
 | |
| 	INIT_MINMAX(min, max);
 | |
| 	if (BKE_curve_minmax(cu, false, min, max)) {
 | |
| 		mid_v3_v3v3(cent, min, max);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void BKE_curve_translate(Curve *cu, float offset[3], const bool do_keys)
 | |
| {
 | |
| 	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | |
| 	Nurb *nu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (nu = nurb_lb->first; nu; nu = nu->next) {
 | |
| 		BezTriple *bezt;
 | |
| 		BPoint *bp;
 | |
| 
 | |
| 		if (nu->type == CU_BEZIER) {
 | |
| 			i = nu->pntsu;
 | |
| 			for (bezt = nu->bezt; i--; bezt++) {
 | |
| 				add_v3_v3(bezt->vec[0], offset);
 | |
| 				add_v3_v3(bezt->vec[1], offset);
 | |
| 				add_v3_v3(bezt->vec[2], offset);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			i = nu->pntsu * nu->pntsv;
 | |
| 			for (bp = nu->bp; i--; bp++) {
 | |
| 				add_v3_v3(bp->vec, offset);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (do_keys && cu->key) {
 | |
| 		KeyBlock *kb;
 | |
| 		for (kb = cu->key->block.first; kb; kb = kb->next) {
 | |
| 			float *fp = kb->data;
 | |
| 			for (i = kb->totelem; i--; fp += 3) {
 | |
| 				add_v3_v3(fp, offset);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_material_index_remove(Curve *cu, int index)
 | |
| {
 | |
| 	const int curvetype = BKE_curve_type_get(cu);
 | |
| 
 | |
| 	if (curvetype == OB_FONT) {
 | |
| 		struct CharInfo *info = cu->strinfo;
 | |
| 		int i;
 | |
| 		for (i = cu->len_wchar - 1; i >= 0; i--, info++) {
 | |
| 			if (info->mat_nr && info->mat_nr >= index) {
 | |
| 				info->mat_nr--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		Nurb *nu;
 | |
| 
 | |
| 		for (nu = cu->nurb.first; nu; nu = nu->next) {
 | |
| 			if (nu->mat_nr && nu->mat_nr >= index) {
 | |
| 				nu->mat_nr--;
 | |
| 				if (curvetype == OB_CURVE) {
 | |
| 					nu->charidx--;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_material_index_clear(Curve *cu)
 | |
| {
 | |
| 	const int curvetype = BKE_curve_type_get(cu);
 | |
| 
 | |
| 	if (curvetype == OB_FONT) {
 | |
| 		struct CharInfo *info = cu->strinfo;
 | |
| 		int i;
 | |
| 		for (i = cu->len_wchar - 1; i >= 0; i--, info++) {
 | |
| 			info->mat_nr = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		Nurb *nu;
 | |
| 
 | |
| 		for (nu = cu->nurb.first; nu; nu = nu->next) {
 | |
| 			nu->mat_nr = 0;
 | |
| 			if (curvetype == OB_CURVE) {
 | |
| 				nu->charidx = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void BKE_curve_rect_from_textbox(const struct Curve *cu, const struct TextBox *tb, struct rctf *r_rect)
 | |
| {
 | |
| 	r_rect->xmin = (cu->xof * cu->fsize) + tb->x;
 | |
| 	r_rect->ymax = (cu->yof * cu->fsize) + tb->y + cu->fsize;
 | |
| 
 | |
| 	r_rect->xmax = r_rect->xmin + tb->w;
 | |
| 	r_rect->ymin = r_rect->ymax - tb->h;
 | |
| }
 |