I was careful in selectively rolling back revisions, but if you've committed changes unrelated to BPY mixed with BPY changes, I might have reverted those too, so please double check.
976 lines
32 KiB
C
976 lines
32 KiB
C
/*
|
|
* $Id: matrix.c 11958 2007-09-07 07:55:36Z campbellbarton $
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Michel Selten & Joseph Gilbert
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BKE_utildefines.h"
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "gen_utils.h"
|
|
|
|
/*-------------------------DOC STRINGS ---------------------------*/
|
|
char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
|
|
char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
|
|
char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
|
|
char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
|
|
char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible";
|
|
char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
|
|
char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
|
|
char Matrix_scalePart_doc[] = "() - convert matrix to a 3D vector";
|
|
char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
|
|
char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
|
|
char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
|
|
char Matrix_copy_doc[] = "() - return a copy of the matrix";
|
|
/*-----------------------METHOD DEFINITIONS ----------------------*/
|
|
struct PyMethodDef Matrix_methods[] = {
|
|
{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
|
|
{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
|
|
{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
|
|
{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
|
|
{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
|
|
{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
|
|
{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
|
|
{"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
|
|
{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
|
|
{"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
|
|
{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
|
|
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
|
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
/*-----------------------------METHODS----------------------------*/
|
|
/*---------------------------Matrix.toQuat() ---------------------*/
|
|
PyObject *Matrix_toQuat(MatrixObject * self)
|
|
{
|
|
float quat[4];
|
|
|
|
/*must be 3-4 cols, 3-4 rows, square matrix*/
|
|
if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
|
|
}
|
|
if(self->colSize == 3){
|
|
Mat3ToQuat((float (*)[3])*self->matrix, quat);
|
|
}else{
|
|
Mat4ToQuat((float (*)[4])*self->matrix, quat);
|
|
}
|
|
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
/*---------------------------Matrix.toEuler() --------------------*/
|
|
PyObject *Matrix_toEuler(MatrixObject * self)
|
|
{
|
|
float eul[3];
|
|
|
|
int x;
|
|
|
|
/*must be 3-4 cols, 3-4 rows, square matrix*/
|
|
if(self->colSize ==3 && self->rowSize ==3) {
|
|
Mat3ToEul((float (*)[3])*self->matrix, eul);
|
|
}else if (self->colSize ==4 && self->rowSize ==4) {
|
|
float tempmat3[3][3];
|
|
Mat3CpyMat4(tempmat3, (float (*)[4])*self->matrix);
|
|
Mat3ToEul(tempmat3, eul);
|
|
}else
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
|
|
|
|
/*have to convert to degrees*/
|
|
for(x = 0; x < 3; x++) {
|
|
eul[x] *= (float) (180 / Py_PI);
|
|
}
|
|
return newEulerObject(eul, Py_NEW);
|
|
}
|
|
/*---------------------------Matrix.resize4x4() ------------------*/
|
|
PyObject *Matrix_Resize4x4(MatrixObject * self)
|
|
{
|
|
int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
|
|
|
|
if(self->data.blend_data){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"cannot resize wrapped data - only python matrices\n");
|
|
}
|
|
|
|
self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
|
|
if(self->data.py_data == NULL) {
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"matrix.resize4x4(): problem allocating pointer space\n\n");
|
|
}
|
|
self->contigPtr = self->data.py_data; /*force*/
|
|
self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
|
|
if(self->matrix == NULL) {
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"matrix.resize4x4(): problem allocating pointer space\n\n");
|
|
}
|
|
/*set row pointers*/
|
|
for(x = 0; x < 4; x++) {
|
|
self->matrix[x] = self->contigPtr + (x * 4);
|
|
}
|
|
/*move data to new spot in array + clean*/
|
|
for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
|
|
for(x = 0; x < 4; x++){
|
|
index = (4 * (self->rowSize + (blank_rows - 1))) + x;
|
|
if (index == 10 || index == 15){
|
|
self->contigPtr[index] = 1.0f;
|
|
}else{
|
|
self->contigPtr[index] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
for(x = 1; x <= self->rowSize; x++){
|
|
first_row_elem = (self->colSize * (self->rowSize - x));
|
|
curr_pos = (first_row_elem + (self->colSize -1));
|
|
new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
|
|
for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
|
|
self->contigPtr[new_pos + blank_columns] = 0.0f;
|
|
}
|
|
for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
|
|
self->contigPtr[new_pos] = self->contigPtr[curr_pos];
|
|
new_pos--;
|
|
}
|
|
}
|
|
self->rowSize = 4;
|
|
self->colSize = 4;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*---------------------------Matrix.translationPart() ------------*/
|
|
PyObject *Matrix_TranslationPart(MatrixObject * self)
|
|
{
|
|
float vec[4];
|
|
|
|
if(self->colSize < 3 || self->rowSize < 4){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.translationPart: inappropriate matrix size\n");
|
|
}
|
|
|
|
vec[0] = self->matrix[3][0];
|
|
vec[1] = self->matrix[3][1];
|
|
vec[2] = self->matrix[3][2];
|
|
|
|
return newVectorObject(vec, 3, Py_NEW);
|
|
}
|
|
/*---------------------------Matrix.rotationPart() ---------------*/
|
|
PyObject *Matrix_RotationPart(MatrixObject * self)
|
|
{
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(self->colSize < 3 || self->rowSize < 3){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.rotationPart: inappropriate matrix size\n");
|
|
}
|
|
|
|
mat[0] = self->matrix[0][0];
|
|
mat[1] = self->matrix[0][1];
|
|
mat[2] = self->matrix[0][2];
|
|
mat[3] = self->matrix[1][0];
|
|
mat[4] = self->matrix[1][1];
|
|
mat[5] = self->matrix[1][2];
|
|
mat[6] = self->matrix[2][0];
|
|
mat[7] = self->matrix[2][1];
|
|
mat[8] = self->matrix[2][2];
|
|
|
|
return newMatrixObject(mat, 3, 3, Py_NEW);
|
|
}
|
|
/*---------------------------Matrix.scalePart() --------------------*/
|
|
PyObject *Matrix_scalePart(MatrixObject * self)
|
|
{
|
|
float scale[3], rot[3];
|
|
float mat[3][3], imat[3][3], tmat[3][3];
|
|
|
|
/*must be 3-4 cols, 3-4 rows, square matrix*/
|
|
if(self->colSize == 4 && self->rowSize == 4)
|
|
Mat3CpyMat4(mat, (float (*)[4])*self->matrix);
|
|
else if(self->colSize == 3 && self->rowSize == 3)
|
|
Mat3CpyMat3(mat, (float (*)[3])*self->matrix);
|
|
else
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.scalePart(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
|
|
|
|
/* functionality copied from editobject.c apply_obmat */
|
|
Mat3ToEul(mat, rot);
|
|
EulToMat3(rot, tmat);
|
|
Mat3Inv(imat, tmat);
|
|
Mat3MulMat3(tmat, imat, mat);
|
|
|
|
scale[0]= tmat[0][0];
|
|
scale[1]= tmat[1][1];
|
|
scale[2]= tmat[2][2];
|
|
return newVectorObject(scale, 3, Py_NEW);
|
|
}
|
|
/*---------------------------Matrix.invert() ---------------------*/
|
|
PyObject *Matrix_Invert(MatrixObject * self)
|
|
{
|
|
|
|
int x, y, z = 0;
|
|
float det = 0.0f;
|
|
PyObject *f = NULL;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(self->rowSize != self->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.invert(ed): only square matrices are supported\n");
|
|
}
|
|
|
|
/*calculate the determinant*/
|
|
f = Matrix_Determinant(self);
|
|
det = (float)PyFloat_AS_DOUBLE(f); /*Increfs, so we need to decref*/
|
|
Py_DECREF(f);
|
|
|
|
if(det != 0) {
|
|
/*calculate the classical adjoint*/
|
|
if(self->rowSize == 2) {
|
|
mat[0] = self->matrix[1][1];
|
|
mat[1] = -self->matrix[1][0];
|
|
mat[2] = -self->matrix[0][1];
|
|
mat[3] = self->matrix[0][0];
|
|
} else if(self->rowSize == 3) {
|
|
Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
|
|
} else if(self->rowSize == 4) {
|
|
Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
|
|
}
|
|
/*divide by determinate*/
|
|
for(x = 0; x < (self->rowSize * self->colSize); x++) {
|
|
mat[x] /= det;
|
|
}
|
|
/*set values*/
|
|
for(x = 0; x < self->rowSize; x++) {
|
|
for(y = 0; y < self->colSize; y++) {
|
|
self->matrix[x][y] = mat[z];
|
|
z++;
|
|
}
|
|
}
|
|
/*transpose
|
|
Matrix_Transpose(self);*/
|
|
} else {
|
|
return EXPP_ReturnPyObjError(PyExc_ValueError,
|
|
"matrix does not have an inverse");
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
|
|
|
|
/*---------------------------Matrix.determinant() ----------------*/
|
|
PyObject *Matrix_Determinant(MatrixObject * self)
|
|
{
|
|
float det = 0.0f;
|
|
|
|
if(self->rowSize != self->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.determinant: only square matrices are supported\n");
|
|
}
|
|
|
|
if(self->rowSize == 2) {
|
|
det = Det2x2(self->matrix[0][0], self->matrix[0][1],
|
|
self->matrix[1][0], self->matrix[1][1]);
|
|
} else if(self->rowSize == 3) {
|
|
det = Det3x3(self->matrix[0][0], self->matrix[0][1],
|
|
self->matrix[0][2], self->matrix[1][0],
|
|
self->matrix[1][1], self->matrix[1][2],
|
|
self->matrix[2][0], self->matrix[2][1],
|
|
self->matrix[2][2]);
|
|
} else {
|
|
det = Det4x4((float (*)[4]) *self->matrix);
|
|
}
|
|
|
|
return PyFloat_FromDouble( (double) det );
|
|
}
|
|
/*---------------------------Matrix.transpose() ------------------*/
|
|
PyObject *Matrix_Transpose(MatrixObject * self)
|
|
{
|
|
float t = 0.0f;
|
|
|
|
if(self->rowSize != self->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.transpose(d): only square matrices are supported\n");
|
|
}
|
|
|
|
if(self->rowSize == 2) {
|
|
t = self->matrix[1][0];
|
|
self->matrix[1][0] = self->matrix[0][1];
|
|
self->matrix[0][1] = t;
|
|
} else if(self->rowSize == 3) {
|
|
Mat3Transp((float (*)[3])*self->matrix);
|
|
} else {
|
|
Mat4Transp((float (*)[4])*self->matrix);
|
|
}
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
|
|
|
|
/*---------------------------Matrix.zero() -----------------------*/
|
|
PyObject *Matrix_Zero(MatrixObject * self)
|
|
{
|
|
int row, col;
|
|
|
|
for(row = 0; row < self->rowSize; row++) {
|
|
for(col = 0; col < self->colSize; col++) {
|
|
self->matrix[row][col] = 0.0f;
|
|
}
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*---------------------------Matrix.identity(() ------------------*/
|
|
PyObject *Matrix_Identity(MatrixObject * self)
|
|
{
|
|
if(self->rowSize != self->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix.identity: only square matrices are supported\n");
|
|
}
|
|
|
|
if(self->rowSize == 2) {
|
|
self->matrix[0][0] = 1.0f;
|
|
self->matrix[0][1] = 0.0f;
|
|
self->matrix[1][0] = 0.0f;
|
|
self->matrix[1][1] = 1.0f;
|
|
} else if(self->rowSize == 3) {
|
|
Mat3One((float (*)[3]) *self->matrix);
|
|
} else {
|
|
Mat4One((float (*)[4]) *self->matrix);
|
|
}
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
|
|
/*---------------------------Matrix.inverted() ------------------*/
|
|
PyObject *Matrix_copy(MatrixObject * self)
|
|
{
|
|
return (PyObject*)(MatrixObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW);
|
|
}
|
|
|
|
/*----------------------------dealloc()(internal) ----------------*/
|
|
/*free the py_object*/
|
|
static void Matrix_dealloc(MatrixObject * self)
|
|
{
|
|
Py_XDECREF(self->coerced_object);
|
|
PyMem_Free(self->matrix);
|
|
/*only free py_data*/
|
|
if(self->data.py_data){
|
|
PyMem_Free(self->data.py_data);
|
|
}
|
|
PyObject_DEL(self);
|
|
}
|
|
/*----------------------------getattr()(internal) ----------------*/
|
|
/*object.attribute access (get)*/
|
|
static PyObject *Matrix_getattr(MatrixObject * self, char *name)
|
|
{
|
|
if(STREQ(name, "rowSize")) {
|
|
return PyInt_FromLong((long) self->rowSize);
|
|
} else if(STREQ(name, "colSize")) {
|
|
return PyInt_FromLong((long) self->colSize);
|
|
}
|
|
if(STREQ(name, "wrapped")){
|
|
if(self->wrapped == Py_WRAP)
|
|
return EXPP_incr_ret((PyObject *)Py_True);
|
|
else
|
|
return EXPP_incr_ret((PyObject *)Py_False);
|
|
}
|
|
return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
|
|
}
|
|
/*----------------------------setattr()(internal) ----------------*/
|
|
/*object.attribute access (set)*/
|
|
static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
|
|
{
|
|
/* This is not supported. */
|
|
return (-1);
|
|
}
|
|
/*----------------------------print object (internal)-------------*/
|
|
/*print the object to screen*/
|
|
static PyObject *Matrix_repr(MatrixObject * self)
|
|
{
|
|
int x, y;
|
|
char buffer[48], str[1024];
|
|
|
|
BLI_strncpy(str,"",1024);
|
|
for(x = 0; x < self->rowSize; x++){
|
|
sprintf(buffer, "[");
|
|
strcat(str,buffer);
|
|
for(y = 0; y < (self->colSize - 1); y++) {
|
|
sprintf(buffer, "%.6f, ", self->matrix[x][y]);
|
|
strcat(str,buffer);
|
|
}
|
|
if(x < (self->rowSize-1)){
|
|
sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
|
|
strcat(str,buffer);
|
|
}else{
|
|
sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
|
|
strcat(str,buffer);
|
|
}
|
|
}
|
|
|
|
return PyString_FromString(str);
|
|
}
|
|
/*------------------------tp_richcmpr*/
|
|
/*returns -1 execption, 0 false, 1 true*/
|
|
static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
MatrixObject *matA = NULL, *matB = NULL;
|
|
int result = 0;
|
|
|
|
if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
matA = (MatrixObject*)objectA;
|
|
matB = (MatrixObject*)objectB;
|
|
|
|
if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
|
|
switch (comparison_type){
|
|
case Py_EQ:
|
|
/*contigPtr is basically a really long vector*/
|
|
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
|
|
(matA->rowSize * matA->colSize), 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
|
|
(matA->rowSize * matA->colSize), 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
/*------------------------tp_doc*/
|
|
static char MatrixObject_doc[] = "This is a wrapper for matrix objects.";
|
|
/*---------------------SEQUENCE PROTOCOLS------------------------
|
|
----------------------------len(object)------------------------
|
|
sequence length*/
|
|
static int Matrix_len(MatrixObject * self)
|
|
{
|
|
return (self->colSize * self->rowSize);
|
|
}
|
|
/*----------------------------object[]---------------------------
|
|
sequence accessor (get)
|
|
the wrapped vector gives direct access to the matrix data*/
|
|
static PyObject *Matrix_item(MatrixObject * self, int i)
|
|
{
|
|
if(i < 0 || i >= self->rowSize)
|
|
return EXPP_ReturnPyObjError(PyExc_IndexError,
|
|
"matrix[attribute]: array index out of range\n");
|
|
|
|
return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
|
|
}
|
|
/*----------------------------object[]-------------------------
|
|
sequence accessor (set)*/
|
|
static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
|
|
{
|
|
int y, x, size = 0;
|
|
float vec[4];
|
|
PyObject *m, *f;
|
|
|
|
if(i >= self->rowSize || i < 0){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[attribute] = x: bad row\n");
|
|
}
|
|
|
|
if(PySequence_Check(ob)){
|
|
size = PySequence_Length(ob);
|
|
if(size != self->colSize){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[attribute] = x: bad sequence size\n");
|
|
}
|
|
for (x = 0; x < size; x++) {
|
|
m = PySequence_GetItem(ob, x);
|
|
if (m == NULL) { /*Failed to read sequence*/
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"matrix[attribute] = x: unable to read sequence\n");
|
|
}
|
|
|
|
f = PyNumber_Float(m);
|
|
if(f == NULL) { /*parsed item not a number*/
|
|
Py_DECREF(m);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[attribute] = x: sequence argument not a number\n");
|
|
}
|
|
|
|
vec[x] = (float)PyFloat_AS_DOUBLE(f);
|
|
EXPP_decr2(m, f);
|
|
}
|
|
/*parsed well - now set in matrix*/
|
|
for(y = 0; y < size; y++){
|
|
self->matrix[i][y] = vec[y];
|
|
}
|
|
return 0;
|
|
}else{
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[attribute] = x: expects a sequence of column size\n");
|
|
}
|
|
}
|
|
/*----------------------------object[z:y]------------------------
|
|
sequence slice (get)*/
|
|
static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
|
|
{
|
|
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
CLAMP(begin, 0, self->rowSize);
|
|
CLAMP(end, 0, self->rowSize);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
/*----------------------------object[z:y]------------------------
|
|
sequence slice (set)*/
|
|
static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
|
|
PyObject * seq)
|
|
{
|
|
int i, x, y, size, sub_size = 0;
|
|
float mat[16];
|
|
PyObject *subseq;
|
|
PyObject *m, *f;
|
|
|
|
CLAMP(begin, 0, self->rowSize);
|
|
CLAMP(end, 0, self->rowSize);
|
|
begin = MIN2(begin,end);
|
|
|
|
if(PySequence_Check(seq)){
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
/*parse sub items*/
|
|
for (i = 0; i < size; i++) {
|
|
/*parse each sub sequence*/
|
|
subseq = PySequence_GetItem(seq, i);
|
|
if (subseq == NULL) { /*Failed to read sequence*/
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"matrix[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
|
|
if(PySequence_Check(subseq)){
|
|
/*subsequence is also a sequence*/
|
|
sub_size = PySequence_Length(subseq);
|
|
if(sub_size != self->colSize){
|
|
Py_DECREF(subseq);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
for (y = 0; y < sub_size; y++) {
|
|
m = PySequence_GetItem(subseq, y);
|
|
if (m == NULL) { /*Failed to read sequence*/
|
|
Py_DECREF(subseq);
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"matrix[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
|
|
f = PyNumber_Float(m);
|
|
if(f == NULL) { /*parsed item not a number*/
|
|
EXPP_decr2(m, subseq);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[begin:end] = []: sequence argument not a number\n");
|
|
}
|
|
|
|
mat[(i * self->colSize) + y] = (float)PyFloat_AS_DOUBLE(f);
|
|
EXPP_decr2(f, m);
|
|
}
|
|
}else{
|
|
Py_DECREF(subseq);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[begin:end] = []: illegal argument type for built-in operation\n");
|
|
}
|
|
Py_DECREF(subseq);
|
|
}
|
|
/*parsed well - now set in matrix*/
|
|
for(x = 0; x < (size * sub_size); x++){
|
|
self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
|
|
}
|
|
return 0;
|
|
}else{
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix[begin:end] = []: illegal argument type for built-in operation\n");
|
|
}
|
|
}
|
|
/*------------------------NUMERIC PROTOCOLS----------------------
|
|
------------------------obj + obj------------------------------*/
|
|
static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
|
|
{
|
|
int x, y;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
MatrixObject *mat1 = NULL, *mat2 = NULL;
|
|
|
|
mat1 = (MatrixObject*)m1;
|
|
mat2 = (MatrixObject*)m2;
|
|
|
|
if(mat1->coerced_object || mat2->coerced_object){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix addition: arguments not valid for this operation....\n");
|
|
}
|
|
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix addition: matrices must have the same dimensions for this operation\n");
|
|
}
|
|
|
|
for(x = 0; x < mat1->rowSize; x++) {
|
|
for(y = 0; y < mat1->colSize; y++) {
|
|
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
|
|
}
|
|
}
|
|
|
|
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
|
|
}
|
|
/*------------------------obj - obj------------------------------
|
|
subtraction*/
|
|
static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
|
|
{
|
|
int x, y;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
MatrixObject *mat1 = NULL, *mat2 = NULL;
|
|
|
|
mat1 = (MatrixObject*)m1;
|
|
mat2 = (MatrixObject*)m2;
|
|
|
|
if(mat1->coerced_object || mat2->coerced_object){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix addition: arguments not valid for this operation....\n");
|
|
}
|
|
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix addition: matrices must have the same dimensions for this operation\n");
|
|
}
|
|
|
|
for(x = 0; x < mat1->rowSize; x++) {
|
|
for(y = 0; y < mat1->colSize; y++) {
|
|
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
|
|
}
|
|
}
|
|
|
|
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
|
|
}
|
|
/*------------------------obj * obj------------------------------
|
|
mulplication*/
|
|
static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
|
|
{
|
|
int x, y, z;
|
|
float scalar;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
double dot = 0.0f;
|
|
MatrixObject *mat1 = NULL, *mat2 = NULL;
|
|
PyObject *f = NULL;
|
|
PointObject *pt = NULL;
|
|
|
|
mat1 = (MatrixObject*)m1;
|
|
mat2 = (MatrixObject*)m2;
|
|
|
|
if(mat1->coerced_object){
|
|
if (PyFloat_Check(mat1->coerced_object) ||
|
|
PyInt_Check(mat1->coerced_object)){ /*FLOAT/INT * MATRIX*/
|
|
f = PyNumber_Float(mat1->coerced_object);
|
|
if(f == NULL) { /*parsed item not a number*/
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Matrix multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
for(x = 0; x < mat2->rowSize; x++) {
|
|
for(y = 0; y < mat2->colSize; y++) {
|
|
mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
|
|
}
|
|
}
|
|
return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
|
|
}
|
|
}else{
|
|
if(mat2->coerced_object){
|
|
/* MATRIX * VECTOR operation is now being done by vector */
|
|
/*if(VectorObject_Check(mat2->coerced_object)){
|
|
vec = (VectorObject*)mat2->coerced_object;
|
|
return column_vector_multiplication(mat1, vec);
|
|
}else */
|
|
if(PointObject_Check(mat2->coerced_object)){ /*MATRIX * POINT*/
|
|
pt = (PointObject*)mat2->coerced_object;
|
|
return column_point_multiplication(mat1, pt);
|
|
}else if (PyFloat_Check(mat2->coerced_object) ||
|
|
PyInt_Check(mat2->coerced_object)){ /*MATRIX * FLOAT/INT*/
|
|
f = PyNumber_Float(mat2->coerced_object);
|
|
if(f == NULL) { /*parsed item not a number*/
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Matrix multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
for(x = 0; x < mat1->rowSize; x++) {
|
|
for(y = 0; y < mat1->colSize; y++) {
|
|
mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
|
|
}
|
|
}
|
|
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
|
|
}
|
|
}else{ /*MATRIX * MATRIX*/
|
|
if(mat1->colSize != mat2->rowSize){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
|
|
}
|
|
for(x = 0; x < mat1->rowSize; x++) {
|
|
for(y = 0; y < mat2->colSize; y++) {
|
|
for(z = 0; z < mat1->colSize; z++) {
|
|
dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
|
|
}
|
|
mat[((x * mat1->rowSize) + y)] = (float)dot;
|
|
dot = 0.0f;
|
|
}
|
|
}
|
|
return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
|
|
}
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Matrix multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
PyObject* Matrix_inv(MatrixObject *self)
|
|
{
|
|
return Matrix_Invert(self);
|
|
}
|
|
/*------------------------coerce(obj, obj)-----------------------
|
|
coercion of unknown types to type MatrixObject for numeric protocols.
|
|
|
|
Coercion() is called whenever a math operation has 2 operands that
|
|
it doesn't understand how to evaluate. 2+Matrix for example. We want to
|
|
evaluate some of these operations like: (vector * 2), however, for math
|
|
to proceed, the unknown operand must be cast to a type that python math will
|
|
understand. (e.g. in the case above case, 2 must be cast to a vector and
|
|
then call vector.multiply(vector, scalar_cast_as_vector)*/
|
|
static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
|
|
{
|
|
if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) ||
|
|
PointObject_Check(*m2)) {
|
|
PyObject *coerced = EXPP_incr_ret(*m2);
|
|
*m2 = newMatrixObject(NULL,3,3,Py_NEW);
|
|
((MatrixObject*)*m2)->coerced_object = coerced;
|
|
Py_INCREF (*m1);
|
|
return 0;
|
|
}
|
|
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"matrix.coerce(): unknown operand - can't coerce for numeric protocols");
|
|
}
|
|
/*-----------------PROTOCOL DECLARATIONS--------------------------*/
|
|
static PySequenceMethods Matrix_SeqMethods = {
|
|
(inquiry) Matrix_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(intargfunc) 0, /* sq_repeat */
|
|
(intargfunc) Matrix_item, /* sq_item */
|
|
(intintargfunc) Matrix_slice, /* sq_slice */
|
|
(intobjargproc) Matrix_ass_item, /* sq_ass_item */
|
|
(intintobjargproc) Matrix_ass_slice, /* sq_ass_slice */
|
|
};
|
|
static PyNumberMethods Matrix_NumMethods = {
|
|
(binaryfunc) Matrix_add, /* __add__ */
|
|
(binaryfunc) Matrix_sub, /* __sub__ */
|
|
(binaryfunc) Matrix_mul, /* __mul__ */
|
|
(binaryfunc) 0, /* __div__ */
|
|
(binaryfunc) 0, /* __mod__ */
|
|
(binaryfunc) 0, /* __divmod__ */
|
|
(ternaryfunc) 0, /* __pow__ */
|
|
(unaryfunc) 0, /* __neg__ */
|
|
(unaryfunc) 0, /* __pos__ */
|
|
(unaryfunc) 0, /* __abs__ */
|
|
(inquiry) 0, /* __nonzero__ */
|
|
(unaryfunc) Matrix_inv, /* __invert__ */
|
|
(binaryfunc) 0, /* __lshift__ */
|
|
(binaryfunc) 0, /* __rshift__ */
|
|
(binaryfunc) 0, /* __and__ */
|
|
(binaryfunc) 0, /* __xor__ */
|
|
(binaryfunc) 0, /* __or__ */
|
|
(coercion) Matrix_coerce, /* __coerce__ */
|
|
(unaryfunc) 0, /* __int__ */
|
|
(unaryfunc) 0, /* __long__ */
|
|
(unaryfunc) 0, /* __float__ */
|
|
(unaryfunc) 0, /* __oct__ */
|
|
(unaryfunc) 0, /* __hex__ */
|
|
};
|
|
/*------------------PY_OBECT DEFINITION--------------------------*/
|
|
PyTypeObject matrix_Type = {
|
|
PyObject_HEAD_INIT(NULL) /*tp_head*/
|
|
0, /*tp_internal*/
|
|
"matrix", /*tp_name*/
|
|
sizeof(MatrixObject), /*tp_basicsize*/
|
|
0, /*tp_itemsize*/
|
|
(destructor)Matrix_dealloc, /*tp_dealloc*/
|
|
0, /*tp_print*/
|
|
(getattrfunc)Matrix_getattr, /*tp_getattr*/
|
|
(setattrfunc) Matrix_setattr, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
(reprfunc) Matrix_repr, /*tp_repr*/
|
|
&Matrix_NumMethods, /*tp_as_number*/
|
|
&Matrix_SeqMethods, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash*/
|
|
0, /*tp_call*/
|
|
0, /*tp_str*/
|
|
0, /*tp_getattro*/
|
|
0, /*tp_setattro*/
|
|
0, /*tp_as_buffer*/
|
|
Py_TPFLAGS_DEFAULT, /*tp_flags*/
|
|
MatrixObject_doc, /*tp_doc*/
|
|
0, /*tp_traverse*/
|
|
0, /*tp_clear*/
|
|
(richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
|
|
0, /*tp_weaklistoffset*/
|
|
0, /*tp_iter*/
|
|
0, /*tp_iternext*/
|
|
0, /*tp_methods*/
|
|
0, /*tp_members*/
|
|
0, /*tp_getset*/
|
|
0, /*tp_base*/
|
|
0, /*tp_dict*/
|
|
0, /*tp_descr_get*/
|
|
0, /*tp_descr_set*/
|
|
0, /*tp_dictoffset*/
|
|
0, /*tp_init*/
|
|
0, /*tp_alloc*/
|
|
0, /*tp_new*/
|
|
0, /*tp_free*/
|
|
0, /*tp_is_gc*/
|
|
0, /*tp_bases*/
|
|
0, /*tp_mro*/
|
|
0, /*tp_cache*/
|
|
0, /*tp_subclasses*/
|
|
0, /*tp_weaklist*/
|
|
0 /*tp_del*/
|
|
};
|
|
|
|
/*------------------------newMatrixObject (internal)-------------
|
|
creates a new matrix object
|
|
self->matrix self->contiguous_ptr (reference to data.xxx)
|
|
[0]------------->[0]
|
|
[1]
|
|
[2]
|
|
[1]------------->[3]
|
|
[4]
|
|
[5]
|
|
....
|
|
self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]*/
|
|
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
|
|
{
|
|
MatrixObject *self;
|
|
int x, row, col;
|
|
|
|
/*matrix objects can be any 2-4row x 2-4col matrix*/
|
|
if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
|
|
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
|
|
"matrix(): row and column sizes must be between 2 and 4\n");
|
|
}
|
|
|
|
self = PyObject_NEW(MatrixObject, &matrix_Type);
|
|
self->data.blend_data = NULL;
|
|
self->data.py_data = NULL;
|
|
self->rowSize = rowSize;
|
|
self->colSize = colSize;
|
|
self->coerced_object = NULL;
|
|
|
|
if(type == Py_WRAP){
|
|
self->data.blend_data = mat;
|
|
self->contigPtr = self->data.blend_data;
|
|
/*create pointer array*/
|
|
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
|
|
if(self->matrix == NULL) { /*allocation failure*/
|
|
return EXPP_ReturnPyObjError( PyExc_MemoryError,
|
|
"matrix(): problem allocating pointer space\n");
|
|
}
|
|
/*pointer array points to contigous memory*/
|
|
for(x = 0; x < rowSize; x++) {
|
|
self->matrix[x] = self->contigPtr + (x * colSize);
|
|
}
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
|
|
if(self->data.py_data == NULL) { /*allocation failure*/
|
|
return EXPP_ReturnPyObjError( PyExc_MemoryError,
|
|
"matrix(): problem allocating pointer space\n");
|
|
}
|
|
self->contigPtr = self->data.py_data;
|
|
/*create pointer array*/
|
|
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
|
|
if(self->matrix == NULL) { /*allocation failure*/
|
|
PyMem_Free(self->data.py_data);
|
|
return EXPP_ReturnPyObjError( PyExc_MemoryError,
|
|
"matrix(): problem allocating pointer space\n");
|
|
}
|
|
/*pointer array points to contigous memory*/
|
|
for(x = 0; x < rowSize; x++) {
|
|
self->matrix[x] = self->contigPtr + (x * colSize);
|
|
}
|
|
/*parse*/
|
|
if(mat) { /*if a float array passed*/
|
|
for(row = 0; row < rowSize; row++) {
|
|
for(col = 0; col < colSize; col++) {
|
|
self->matrix[row][col] = mat[(row * colSize) + col];
|
|
}
|
|
}
|
|
} else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
|
|
Matrix_Identity(self);
|
|
Py_DECREF(self);
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ /*bad type*/
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|