This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/tools/bmesh_boolean.cc

531 lines
19 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* Main functions for boolean on a #BMesh (used by the tool and modifier)
*/
#include "BLI_array.hh"
#include "BLI_math.h"
#include "BLI_math_mpq.hh"
#include "BLI_mesh_boolean.hh"
#include "BLI_mesh_intersect.hh"
#include "bmesh.h"
#include "bmesh_boolean.h"
#include "bmesh_edgesplit.h"
#include "PIL_time.h"
// #define PERF_DEBUG
namespace blender::meshintersect {
#ifdef WITH_GMP
/**
* Make a #blender::meshintersect::Mesh from #BMesh bm.
* We are given a triangulation of it from the caller via #looptris,
* which are looptris_tot triples of loops that together tessellate
* the faces of bm.
* Return a second #IMesh in *r_triangulated that has the triangulated
* mesh, with face "orig" fields that connect the triangles back to
* the faces in the returned (polygonal) mesh.
*/
static IMesh mesh_from_bm(BMesh *bm,
struct BMLoop *(*looptris)[3],
const int looptris_tot,
IMesh *r_triangulated,
IMeshArena *arena)
{
BLI_assert(r_triangulated != nullptr);
BM_mesh_elem_index_ensure(bm, BM_VERT | BM_EDGE | BM_FACE);
BM_mesh_elem_table_ensure(bm, BM_VERT | BM_EDGE | BM_FACE);
/* Account for triangulation and intersects. */
const int estimate_num_outv = 3 * bm->totvert;
const int estimate_num_outf = 4 * bm->totface;
arena->reserve(estimate_num_outv, estimate_num_outf);
Array<const Vert *> vert(bm->totvert);
for (int v = 0; v < bm->totvert; ++v) {
BMVert *bmv = BM_vert_at_index(bm, v);
vert[v] = arena->add_or_find_vert(mpq3(bmv->co[0], bmv->co[1], bmv->co[2]), v);
}
Array<Face *> face(bm->totface);
constexpr int estimated_max_facelen = 100;
Vector<const Vert *, estimated_max_facelen> face_vert;
Vector<int, estimated_max_facelen> face_edge_orig;
for (int f = 0; f < bm->totface; ++f) {
BMFace *bmf = BM_face_at_index(bm, f);
int flen = bmf->len;
face_vert.clear();
face_edge_orig.clear();
BMLoop *l = bmf->l_first;
for (int i = 0; i < flen; ++i) {
const Vert *v = vert[BM_elem_index_get(l->v)];
face_vert.append(v);
int e_index = BM_elem_index_get(l->e);
face_edge_orig.append(e_index);
l = l->next;
}
face[f] = arena->add_face(face_vert, f, face_edge_orig);
}
/* Now do the triangulation mesh.
* The loop_tris have accurate v and f members for the triangles,
* but their next and e pointers are not correct for the loops
* that start added-diagonal edges. */
Array<Face *> tri_face(looptris_tot);
face_vert.resize(3);
face_edge_orig.resize(3);
for (int i = 0; i < looptris_tot; ++i) {
BMFace *bmf = looptris[i][0]->f;
int f = BM_elem_index_get(bmf);
for (int j = 0; j < 3; ++j) {
BMLoop *l = looptris[i][j];
int v_index = BM_elem_index_get(l->v);
int e_index;
if (l->next->v == looptris[i][(j + 1) % 3]->v) {
e_index = BM_elem_index_get(l->e);
}
else {
e_index = NO_INDEX;
}
face_vert[j] = vert[v_index];
face_edge_orig[j] = e_index;
}
tri_face[i] = arena->add_face(face_vert, f, face_edge_orig);
}
r_triangulated->set_faces(tri_face);
return IMesh(face);
}
static bool bmvert_attached_to_wire(const BMVert *bmv)
{
/* This is not quite right. It returns true if the only edges
* Attached to \a bmv are wire edges. TODO: iterate through edges
* attached to \a bmv and check #BM_edge_is_wire. */
return BM_vert_is_wire(bmv);
}
static bool bmvert_attached_to_hidden_face(BMVert *bmv)
{
BMIter iter;
for (BMFace *bmf = static_cast<BMFace *>(BM_iter_new(&iter, nullptr, BM_FACES_OF_VERT, bmv));
bmf;
bmf = static_cast<BMFace *>(BM_iter_step(&iter))) {
if (BM_elem_flag_test(bmf, BM_ELEM_HIDDEN)) {
return true;
}
}
return false;
}
static bool face_has_verts_in_order(BMesh *bm, BMFace *bmf, const BMVert *v1, const BMVert *v2)
{
BMIter liter;
BMLoop *l = static_cast<BMLoop *>(BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, bmf));
while (l != nullptr) {
if (l->v == v1 && l->next->v == v2) {
return true;
}
l = static_cast<BMLoop *>(BM_iter_step(&liter));
}
return false;
}
/** Use the unused _BM_ELEM_TAG_ALT #BMElem.hflag to mark geometry we will keep. */
constexpr uint KEEP_FLAG = (1 << 6);
/**
* Change #BMesh bm to have the mesh match m_out. Return true if there were any changes at all.
* Vertices, faces, and edges in the current bm that are not used in the output are killed,
* except we don't kill wire edges and we don't kill hidden geometry.
* Also, the #BM_ELEM_TAG header flag is set for those #BMEdge's that come from intersections
* resulting from the intersection needed by the Boolean operation.
*/
static bool apply_mesh_output_to_bmesh(BMesh *bm, IMesh &m_out, bool keep_hidden)
{
bool any_change = false;
m_out.populate_vert();
/* Initially mark all existing verts as "don't keep", except hidden verts
* (if keep_hidden is true), and verts attached to wire edges. */
for (int v = 0; v < bm->totvert; ++v) {
BMVert *bmv = BM_vert_at_index(bm, v);
if ((keep_hidden &&
(BM_elem_flag_test(bmv, BM_ELEM_HIDDEN) || bmvert_attached_to_hidden_face(bmv))) ||
bmvert_attached_to_wire(bmv)) {
BM_elem_flag_enable(bmv, KEEP_FLAG);
}
else {
BM_elem_flag_disable(bmv, KEEP_FLAG);
}
}
/* Reuse old or make new #BMVert's, depending on if there's an orig or not.
* For those reused, mark them "keep".
* Store needed old #BMVert's in new_bmvs first, as the table may be unusable after
* creating a new #BMVert. */
Array<BMVert *> new_bmvs(m_out.vert_size());
for (int v : m_out.vert_index_range()) {
const Vert *vertp = m_out.vert(v);
int orig = vertp->orig;
if (orig != NO_INDEX) {
BLI_assert(orig >= 0 && orig < bm->totvert);
BMVert *bmv = BM_vert_at_index(bm, orig);
new_bmvs[v] = bmv;
BM_elem_flag_enable(bmv, KEEP_FLAG);
}
else {
new_bmvs[v] = NULL;
}
}
for (int v : m_out.vert_index_range()) {
const Vert *vertp = m_out.vert(v);
if (new_bmvs[v] == NULL) {
float co[3];
const double3 &d_co = vertp->co;
for (int i = 0; i < 3; ++i) {
co[i] = static_cast<float>(d_co[i]);
}
BMVert *bmv = BM_vert_create(bm, co, nullptr, BM_CREATE_NOP);
new_bmvs[v] = bmv;
BM_elem_flag_enable(bmv, KEEP_FLAG);
any_change = true;
}
}
/* Initially mark all existing faces as "don't keep", except hidden faces (if keep_hidden).
* Also, save current #BMFace pointers as creating faces will disturb the table. */
Array<BMFace *> old_bmfs(bm->totface);
BM_mesh_elem_index_ensure(bm, BM_FACE);
for (int f = 0; f < bm->totface; ++f) {
BMFace *bmf = BM_face_at_index(bm, f);
old_bmfs[f] = bmf;
if (keep_hidden && BM_elem_flag_test(bmf, BM_ELEM_HIDDEN)) {
BM_elem_flag_enable(bmf, KEEP_FLAG);
}
else {
BM_elem_flag_disable(bmf, KEEP_FLAG);
}
}
/* Save the original #BMEdge's so we can use them as examples. */
Array<BMEdge *> old_edges(bm->totedge);
std::copy(bm->etable, bm->etable + bm->totedge, old_edges.begin());
/* Reuse or make new #BMFace's, as the faces are identical to old ones or not.
* If reusing, mark them as "keep". First find the maximum face length
* so we can declare some arrays outside of the face-creating loop. */
int maxflen = 0;
for (const Face *f : m_out.faces()) {
maxflen = max_ii(maxflen, f->size());
}
Array<BMVert *> face_bmverts(maxflen);
Array<BMEdge *> face_bmedges(maxflen);
for (const Face *f : m_out.faces()) {
const Face &face = *f;
int flen = face.size();
for (int i = 0; i < flen; ++i) {
const Vert *v = face[i];
int v_index = m_out.lookup_vert(v);
BLI_assert(v_index < new_bmvs.size());
face_bmverts[i] = new_bmvs[v_index];
}
BMFace *bmf = BM_face_exists(face_bmverts.data(), flen);
/* #BM_face_exists checks if the face exists with the vertices in either order.
* We can only reuse the face if the orientations are the same. */
if (bmf != nullptr && face_has_verts_in_order(bm, bmf, face_bmverts[0], face_bmverts[1])) {
BM_elem_flag_enable(bmf, KEEP_FLAG);
}
else {
int orig = face.orig;
BMFace *orig_face;
/* There should always be an orig face, but just being extra careful here. */
if (orig != NO_INDEX) {
orig_face = old_bmfs[orig];
}
else {
orig_face = nullptr;
}
/* Make or find #BMEdge's. */
for (int i = 0; i < flen; ++i) {
BMVert *bmv1 = face_bmverts[i];
BMVert *bmv2 = face_bmverts[(i + 1) % flen];
BMEdge *bme = BM_edge_exists(bmv1, bmv2);
if (bme == nullptr) {
BMEdge *orig_edge = nullptr;
if (face.edge_orig[i] != NO_INDEX) {
orig_edge = old_edges[face.edge_orig[i]];
}
bme = BM_edge_create(bm, bmv1, bmv2, orig_edge, BM_CREATE_NOP);
if (orig_edge != nullptr) {
BM_elem_select_copy(bm, bme, orig_edge);
}
}
face_bmedges[i] = bme;
if (face.is_intersect[i]) {
BM_elem_flag_enable(bme, BM_ELEM_TAG);
}
else {
BM_elem_flag_disable(bme, BM_ELEM_TAG);
}
}
BMFace *bmf = BM_face_create(
bm, face_bmverts.data(), face_bmedges.data(), flen, orig_face, BM_CREATE_NOP);
if (orig_face != nullptr) {
BM_elem_select_copy(bm, bmf, orig_face);
}
BM_elem_flag_enable(bmf, KEEP_FLAG);
/* Now do interpolation of loop data (e.g., UV's) using the example face. */
if (orig_face != nullptr) {
BMIter liter;
BMLoop *l = static_cast<BMLoop *>(BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, bmf));
while (l != nullptr) {
BM_loop_interp_from_face(bm, l, orig_face, false, true);
l = static_cast<BMLoop *>(BM_iter_step(&liter));
}
}
any_change = true;
}
}
/* Now kill the unused faces and verts, and clear flags for kept ones. */
/* #BM_ITER_MESH_MUTABLE macro needs type casts for C++, so expand here.
* TODO(howard): make some nice C++ iterators for #BMesh. */
BMIter iter;
BMFace *bmf = static_cast<BMFace *>(BM_iter_new(&iter, bm, BM_FACES_OF_MESH, nullptr));
while (bmf != nullptr) {
# ifdef DEBUG
iter.count = BM_iter_mesh_count(BM_FACES_OF_MESH, bm);
# endif
BMFace *bmf_next = static_cast<BMFace *>(BM_iter_step(&iter));
if (BM_elem_flag_test(bmf, KEEP_FLAG)) {
BM_elem_flag_disable(bmf, KEEP_FLAG);
}
else {
BM_face_kill_loose(bm, bmf);
# if 0
BM_face_kill(bm, bmf);
# endif
any_change = true;
}
bmf = bmf_next;
}
BMVert *bmv = static_cast<BMVert *>(BM_iter_new(&iter, bm, BM_VERTS_OF_MESH, nullptr));
while (bmv != nullptr) {
# ifdef DEBUG
iter.count = BM_iter_mesh_count(BM_VERTS_OF_MESH, bm);
# endif
BMVert *bmv_next = static_cast<BMVert *>(BM_iter_step(&iter));
if (BM_elem_flag_test(bmv, KEEP_FLAG)) {
BM_elem_flag_disable(bmv, KEEP_FLAG);
}
else {
BM_vert_kill(bm, bmv);
any_change = true;
}
bmv = bmv_next;
}
return any_change;
}
static bool bmesh_boolean(BMesh *bm,
struct BMLoop *(*looptris)[3],
const int looptris_tot,
int (*test_fn)(BMFace *f, void *user_data),
void *user_data,
int nshapes,
const bool use_self,
const bool use_separate_all,
const bool keep_hidden,
const bool hole_tolerant,
const BoolOpType boolean_mode)
{
IMeshArena arena;
IMesh m_triangulated;
# ifdef PERF_DEBUG
double start_time = PIL_check_seconds_timer();
# endif
IMesh m_in = mesh_from_bm(bm, looptris, looptris_tot, &m_triangulated, &arena);
# ifdef PERF_DEBUG
double mesh_time = PIL_check_seconds_timer();
std::cout << "bmesh_boolean, imesh_from_bm done, time = " << mesh_time - start_time << "\n";
# endif
std::function<int(int)> shape_fn;
if (use_self && boolean_mode == BoolOpType::None) {
/* Unary knife operation. Want every face where test_fn doesn't return -1. */
BLI_assert(nshapes == 1);
shape_fn = [bm, test_fn, user_data](int f) {
BMFace *bmf = BM_face_at_index(bm, f);
if (test_fn(bmf, user_data) != -1) {
return 0;
}
return -1;
};
}
else {
shape_fn = [bm, test_fn, user_data](int f) {
BMFace *bmf = BM_face_at_index(bm, f);
int test_val = test_fn(bmf, user_data);
if (test_val >= 0) {
return test_val;
}
return -1;
};
}
IMesh m_out = boolean_mesh(
m_in, boolean_mode, nshapes, shape_fn, use_self, hole_tolerant, &m_triangulated, &arena);
# ifdef PERF_DEBUG
double boolean_time = PIL_check_seconds_timer();
std::cout << "boolean done, time = " << boolean_time - mesh_time << "\n";
# endif
bool any_change = apply_mesh_output_to_bmesh(bm, m_out, keep_hidden);
# ifdef PERF_DEBUG
double apply_mesh_time = PIL_check_seconds_timer();
std::cout << "applied boolean output to bmesh, time = " << apply_mesh_time - boolean_time
<< "\n";
# endif
if (use_separate_all) {
/* We are supposed to separate all faces that are incident on intersection edges. */
BM_mesh_edgesplit(bm, false, true, false);
}
return any_change;
}
#endif // WITH_GMP
} // namespace blender::meshintersect
extern "C" {
/**
* Perform the boolean operation specified by boolean_mode on the mesh bm.
* The inputs to the boolean operation are either one sub-mesh (if use_self is true),
* or two sub-meshes. The sub-meshes are specified by providing a test_fn which takes
* a face and the supplied user_data and says with 'side' of the boolean operation
* that face is for: 0 for the first side (side A), 1 for the second side (side B),
* and -1 if the face is to be ignored completely in the boolean operation.
*
* If use_self is true, all operations do the same: the sub-mesh is self-intersected
* and all pieces inside that result are removed.
* Otherwise, the operations can be one of #BMESH_ISECT_BOOLEAN_ISECT, #BMESH_ISECT_BOOLEAN_UNION,
* or #BMESH_ISECT_BOOLEAN_DIFFERENCE.
*
* (The actual library function called to do the boolean is internally capable of handling
* n-ary operands, so maybe in the future we can expose that functionality to users.)
*/
#ifdef WITH_GMP
bool BM_mesh_boolean(BMesh *bm,
struct BMLoop *(*looptris)[3],
const int looptris_tot,
int (*test_fn)(BMFace *f, void *user_data),
void *user_data,
const int nshapes,
const bool use_self,
const bool keep_hidden,
const bool hole_tolerant,
const int boolean_mode)
{
return blender::meshintersect::bmesh_boolean(
bm,
looptris,
looptris_tot,
test_fn,
user_data,
nshapes,
use_self,
false,
keep_hidden,
hole_tolerant,
static_cast<blender::meshintersect::BoolOpType>(boolean_mode));
}
/**
* Perform a Knife Intersection operation on the mesh bm.
* There are either one or two operands, the same as described above for BM_mesh_boolean().
* If use_separate_all is true, each edge that is created from the intersection should
* be used to separate all its incident faces. TODO: implement that.
* TODO: need to ensure that "selected/non-selected" flag of original faces gets propagated
* to the intersection result faces.
*/
bool BM_mesh_boolean_knife(BMesh *bm,
struct BMLoop *(*looptris)[3],
const int looptris_tot,
int (*test_fn)(BMFace *f, void *user_data),
void *user_data,
const int nshapes,
const bool use_self,
const bool use_separate_all,
const bool hole_tolerant,
const bool keep_hidden)
{
return blender::meshintersect::bmesh_boolean(bm,
looptris,
looptris_tot,
test_fn,
user_data,
nshapes,
use_self,
use_separate_all,
keep_hidden,
hole_tolerant,
blender::meshintersect::BoolOpType::None);
}
#else
bool BM_mesh_boolean(BMesh *UNUSED(bm),
struct BMLoop *(*looptris)[3],
const int UNUSED(looptris_tot),
int (*test_fn)(BMFace *, void *),
void *UNUSED(user_data),
const int UNUSED(nshapes),
const bool UNUSED(use_self),
const bool UNUSED(keep_hidden),
const bool UNUSED(hole_tolerant),
const int UNUSED(boolean_mode))
{
UNUSED_VARS(looptris, test_fn);
return false;
}
/**
* Perform a Knife Intersection operation on the mesh bm.
* There are either one or two operands, the same as described above for #BM_mesh_boolean().
* If use_separate_all is true, each edge that is created from the intersection should
* be used to separate all its incident faces. TODO: implement that.
* TODO: need to ensure that "selected/non-selected" flag of original faces gets propagated
* to the intersection result faces.
*/
bool BM_mesh_boolean_knife(BMesh *UNUSED(bm),
struct BMLoop *(*looptris)[3],
const int UNUSED(looptris_tot),
int (*test_fn)(BMFace *, void *),
void *UNUSED(user_data),
const int UNUSED(nshapes),
const bool UNUSED(use_self),
const bool UNUSED(use_separate_all),
const bool UNUSED(hole_tolerant),
const bool UNUSED(keep_hidden))
{
UNUSED_VARS(looptris, test_fn);
return false;
}
#endif
} /* extern "C" */