This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/tools/bmesh_decimate_dissolve.c
Campbell Barton 2a14ab998a Fix T87259: Un-Subdivide creates duplicate faces
Add argument to BM_vert_collapse_faces to remove any faces that become
duplicate as result of the collapse.
2021-04-12 14:24:09 +10:00

572 lines
18 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* BMesh decimator that dissolves flat areas into polygons (ngons).
*/
#include "MEM_guardedalloc.h"
#include "BLI_heap.h"
#include "BLI_math.h"
#include "BKE_customdata.h"
#include "bmesh.h"
#include "bmesh_decimate.h" /* own include */
/* check that collapsing a vertex between 2 edges doesn't cause a degenerate face. */
#define USE_DEGENERATE_CHECK
#define COST_INVALID FLT_MAX
struct DelimitData;
static bool bm_edge_is_delimiter(const BMEdge *e,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data);
static bool bm_vert_is_delimiter(const BMVert *v,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data);
/* multiply vertex edge angle by face angle
* this means we are not left with sharp corners between _almost_ planer faces
* convert angles [0-PI/2] -> [0-1], multiply together, then convert back to radians. */
static float bm_vert_edge_face_angle(BMVert *v,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data)
{
#define UNIT_TO_ANGLE DEG2RADF(90.0f)
#define ANGLE_TO_UNIT (1.0f / UNIT_TO_ANGLE)
const float angle = BM_vert_calc_edge_angle(v);
/* note: could be either edge, it doesn't matter */
if (v->e && BM_edge_is_manifold(v->e)) {
/* Checking delimited is important here,
* otherwise the boundary between two materials for e.g.
* will collapse if the faces on either side of the edge have a small angle.
*
* This way, delimiting edges are treated like boundary edges,
* the detail between two delimiting regions won't over-collapse. */
if (!bm_vert_is_delimiter(v, delimit, delimit_data)) {
return ((angle * ANGLE_TO_UNIT) * (BM_edge_calc_face_angle(v->e) * ANGLE_TO_UNIT)) *
UNIT_TO_ANGLE;
}
}
return angle;
#undef UNIT_TO_ANGLE
#undef ANGLE_TO_UNIT
}
struct DelimitData {
int cd_loop_type;
int cd_loop_size;
int cd_loop_offset;
int cd_loop_offset_end;
};
static bool bm_edge_is_contiguous_loop_cd_all(const BMEdge *e,
const struct DelimitData *delimit_data)
{
int cd_loop_offset;
for (cd_loop_offset = delimit_data->cd_loop_offset;
cd_loop_offset < delimit_data->cd_loop_offset_end;
cd_loop_offset += delimit_data->cd_loop_size) {
if (BM_edge_is_contiguous_loop_cd(e, delimit_data->cd_loop_type, cd_loop_offset) == false) {
return false;
}
}
return true;
}
static bool bm_edge_is_delimiter(const BMEdge *e,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data)
{
/* Caller must ensure. */
BLI_assert(BM_edge_is_manifold(e));
if (delimit != 0) {
if (delimit & BMO_DELIM_SEAM) {
if (BM_elem_flag_test(e, BM_ELEM_SEAM)) {
return true;
}
}
if (delimit & BMO_DELIM_SHARP) {
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) == 0) {
return true;
}
}
if (delimit & BMO_DELIM_MATERIAL) {
if (e->l->f->mat_nr != e->l->radial_next->f->mat_nr) {
return true;
}
}
if (delimit & BMO_DELIM_NORMAL) {
if (!BM_edge_is_contiguous(e)) {
return true;
}
}
if (delimit & BMO_DELIM_UV) {
if (bm_edge_is_contiguous_loop_cd_all(e, delimit_data) == 0) {
return true;
}
}
}
return false;
}
static bool bm_vert_is_delimiter(const BMVert *v,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data)
{
BLI_assert(v->e != NULL);
if (delimit != 0) {
const BMEdge *e, *e_first;
e = e_first = v->e;
do {
if (BM_edge_is_manifold(e)) {
if (bm_edge_is_delimiter(e, delimit, delimit_data)) {
return true;
}
}
} while ((e = BM_DISK_EDGE_NEXT(e, v)) != e_first);
}
return false;
}
static float bm_edge_calc_dissolve_error(const BMEdge *e,
const BMO_Delimit delimit,
const struct DelimitData *delimit_data)
{
if (BM_edge_is_manifold(e) && !bm_edge_is_delimiter(e, delimit, delimit_data)) {
float angle_cos_neg = dot_v3v3(e->l->f->no, e->l->radial_next->f->no);
if (BM_edge_is_contiguous(e)) {
angle_cos_neg *= -1;
}
return angle_cos_neg;
}
return COST_INVALID;
}
#ifdef USE_DEGENERATE_CHECK
static void mul_v2_m3v3_center(float r[2],
const float m[3][3],
const float a[3],
const float center[3])
{
BLI_assert(r != a);
BLI_assert(r != center);
float co[3];
sub_v3_v3v3(co, a, center);
r[0] = m[0][0] * co[0] + m[1][0] * co[1] + m[2][0] * co[2];
r[1] = m[0][1] * co[0] + m[1][1] * co[1] + m[2][1] * co[2];
}
static bool bm_loop_collapse_is_degenerate(BMLoop *l_ear)
{
/* Calculate relative to the central vertex for higher precision. */
const float *center = l_ear->v->co;
float tri_2d[3][2];
float axis_mat[3][3];
axis_dominant_v3_to_m3(axis_mat, l_ear->f->no);
{
mul_v2_m3v3_center(tri_2d[0], axis_mat, l_ear->prev->v->co, center);
# if 0
mul_v2_m3v3_center(tri_2d[1], axis_mat, l_ear->v->co, center);
# else
zero_v2(tri_2d[1]);
# endif
mul_v2_m3v3_center(tri_2d[2], axis_mat, l_ear->next->v->co, center);
}
/* check we're not flipping face corners before or after the ear */
{
float adjacent_2d[2];
if (!BM_vert_is_edge_pair(l_ear->prev->v)) {
mul_v2_m3v3_center(adjacent_2d, axis_mat, l_ear->prev->prev->v->co, center);
if (signum_i(cross_tri_v2(adjacent_2d, tri_2d[0], tri_2d[1])) !=
signum_i(cross_tri_v2(adjacent_2d, tri_2d[0], tri_2d[2]))) {
return true;
}
}
if (!BM_vert_is_edge_pair(l_ear->next->v)) {
mul_v2_m3v3_center(adjacent_2d, axis_mat, l_ear->next->next->v->co, center);
if (signum_i(cross_tri_v2(adjacent_2d, tri_2d[2], tri_2d[1])) !=
signum_i(cross_tri_v2(adjacent_2d, tri_2d[2], tri_2d[0]))) {
return true;
}
}
}
/* check no existing verts are inside the triangle */
{
/* triangle may be concave, if so - flip so we can use clockwise check */
if (cross_tri_v2(UNPACK3(tri_2d)) < 0.0f) {
swap_v2_v2(tri_2d[1], tri_2d[2]);
}
/* skip l_ear and adjacent verts */
BMLoop *l_iter, *l_first;
l_iter = l_ear->next->next;
l_first = l_ear->prev;
do {
float co_2d[2];
mul_v2_m3v3_center(co_2d, axis_mat, l_iter->v->co, center);
if (isect_point_tri_v2_cw(co_2d, tri_2d[0], tri_2d[1], tri_2d[2])) {
return true;
}
} while ((l_iter = l_iter->next) != l_first);
}
return false;
}
static bool bm_vert_collapse_is_degenerate(BMVert *v)
{
BMEdge *e_pair[2];
BMVert *v_pair[2];
if (BM_vert_edge_pair(v, &e_pair[0], &e_pair[1])) {
/* allow wire edges */
if (BM_edge_is_wire(e_pair[0]) || BM_edge_is_wire(e_pair[1])) {
return false;
}
v_pair[0] = BM_edge_other_vert(e_pair[0], v);
v_pair[1] = BM_edge_other_vert(e_pair[1], v);
if (fabsf(cos_v3v3v3(v_pair[0]->co, v->co, v_pair[1]->co)) < (1.0f - FLT_EPSILON)) {
BMLoop *l_iter, *l_first;
l_iter = l_first = e_pair[1]->l;
do {
if (l_iter->f->len > 3) {
BMLoop *l_pivot = (l_iter->v == v ? l_iter : l_iter->next);
BLI_assert(v == l_pivot->v);
if (bm_loop_collapse_is_degenerate(l_pivot)) {
return true;
}
}
} while ((l_iter = l_iter->radial_next) != l_first);
}
return false;
}
return true;
}
#endif /* USE_DEGENERATE_CHECK */
void BM_mesh_decimate_dissolve_ex(BMesh *bm,
const float angle_limit,
const bool do_dissolve_boundaries,
BMO_Delimit delimit,
BMVert **vinput_arr,
const int vinput_len,
BMEdge **einput_arr,
const int einput_len,
const short oflag_out)
{
const float angle_limit_cos_neg = -cosf(angle_limit);
struct DelimitData delimit_data = {0};
const int eheap_table_len = do_dissolve_boundaries ? einput_len : max_ii(einput_len, vinput_len);
void *_heap_table = MEM_mallocN(sizeof(HeapNode *) * eheap_table_len, __func__);
int i;
if (delimit & BMO_DELIM_UV) {
const int layer_len = CustomData_number_of_layers(&bm->ldata, CD_MLOOPUV);
if (layer_len == 0) {
delimit &= ~BMO_DELIM_UV;
}
else {
delimit_data.cd_loop_type = CD_MLOOPUV;
delimit_data.cd_loop_size = CustomData_sizeof(delimit_data.cd_loop_type);
delimit_data.cd_loop_offset = CustomData_get_n_offset(&bm->ldata, CD_MLOOPUV, 0);
delimit_data.cd_loop_offset_end = delimit_data.cd_loop_size * layer_len;
}
}
/* --- first edges --- */
if (1) {
BMEdge **earray;
Heap *eheap;
HeapNode **eheap_table = _heap_table;
HeapNode *enode_top;
int *vert_reverse_lookup;
BMIter iter;
BMEdge *e_iter;
/* --- setup heap --- */
eheap = BLI_heap_new_ex(einput_len);
/* wire -> tag */
BM_ITER_MESH (e_iter, &iter, bm, BM_EDGES_OF_MESH) {
BM_elem_flag_set(e_iter, BM_ELEM_TAG, BM_edge_is_wire(e_iter));
BM_elem_index_set(e_iter, -1); /* set dirty */
}
bm->elem_index_dirty |= BM_EDGE;
/* build heap */
for (i = 0; i < einput_len; i++) {
BMEdge *e = einput_arr[i];
const float cost = bm_edge_calc_dissolve_error(e, delimit, &delimit_data);
eheap_table[i] = BLI_heap_insert(eheap, cost, e);
BM_elem_index_set(e, i); /* set dirty */
}
while ((BLI_heap_is_empty(eheap) == false) &&
(BLI_heap_node_value((enode_top = BLI_heap_top(eheap))) < angle_limit_cos_neg)) {
BMFace *f_new = NULL;
BMEdge *e;
e = BLI_heap_node_ptr(enode_top);
i = BM_elem_index_get(e);
if (BM_edge_is_manifold(e)) {
f_new = BM_faces_join_pair(bm, e->l, e->l->radial_next, false);
if (f_new) {
BMLoop *l_first, *l_iter;
BLI_heap_remove(eheap, enode_top);
eheap_table[i] = NULL;
/* update normal */
BM_face_normal_update(f_new);
if (oflag_out) {
BMO_face_flag_enable(bm, f_new, oflag_out);
}
/* re-calculate costs */
l_iter = l_first = BM_FACE_FIRST_LOOP(f_new);
do {
const int j = BM_elem_index_get(l_iter->e);
if (j != -1 && eheap_table[j]) {
const float cost = bm_edge_calc_dissolve_error(l_iter->e, delimit, &delimit_data);
BLI_heap_node_value_update(eheap, eheap_table[j], cost);
}
} while ((l_iter = l_iter->next) != l_first);
}
else {
BMO_error_clear(bm);
}
}
if (UNLIKELY(f_new == NULL)) {
BLI_heap_node_value_update(eheap, enode_top, COST_INVALID);
}
}
/* prepare for cleanup */
BM_mesh_elem_index_ensure(bm, BM_VERT);
vert_reverse_lookup = MEM_mallocN(sizeof(int) * bm->totvert, __func__);
copy_vn_i(vert_reverse_lookup, bm->totvert, -1);
for (i = 0; i < vinput_len; i++) {
BMVert *v = vinput_arr[i];
vert_reverse_lookup[BM_elem_index_get(v)] = i;
}
/* --- cleanup --- */
earray = MEM_mallocN(sizeof(BMEdge *) * bm->totedge, __func__);
BM_ITER_MESH_INDEX (e_iter, &iter, bm, BM_EDGES_OF_MESH, i) {
earray[i] = e_iter;
}
/* Remove all edges/verts left behind from dissolving,
* NULL'ing the vertex array so we don't re-use. */
for (i = bm->totedge - 1; i != -1; i--) {
e_iter = earray[i];
if (BM_edge_is_wire(e_iter) && (BM_elem_flag_test(e_iter, BM_ELEM_TAG) == false)) {
/* edge has become wire */
int vidx_reverse;
BMVert *v1 = e_iter->v1;
BMVert *v2 = e_iter->v2;
BM_edge_kill(bm, e_iter);
if (v1->e == NULL) {
vidx_reverse = vert_reverse_lookup[BM_elem_index_get(v1)];
if (vidx_reverse != -1) {
vinput_arr[vidx_reverse] = NULL;
}
BM_vert_kill(bm, v1);
}
if (v2->e == NULL) {
vidx_reverse = vert_reverse_lookup[BM_elem_index_get(v2)];
if (vidx_reverse != -1) {
vinput_arr[vidx_reverse] = NULL;
}
BM_vert_kill(bm, v2);
}
}
}
MEM_freeN(vert_reverse_lookup);
MEM_freeN(earray);
BLI_heap_free(eheap, NULL);
}
/* --- second verts --- */
if (do_dissolve_boundaries) {
/* simple version of the branch below, since we will dissolve _all_ verts that use 2 edges */
for (i = 0; i < vinput_len; i++) {
BMVert *v = vinput_arr[i];
if (LIKELY(v != NULL) && BM_vert_is_edge_pair(v)) {
BM_vert_collapse_edge(bm, v->e, v, true, true, true); /* join edges */
}
}
}
else {
Heap *vheap;
HeapNode **vheap_table = _heap_table;
HeapNode *vnode_top;
BMVert *v_iter;
BMIter iter;
BM_ITER_MESH (v_iter, &iter, bm, BM_VERTS_OF_MESH) {
BM_elem_index_set(v_iter, -1); /* set dirty */
}
bm->elem_index_dirty |= BM_VERT;
vheap = BLI_heap_new_ex(vinput_len);
for (i = 0; i < vinput_len; i++) {
BMVert *v = vinput_arr[i];
if (LIKELY(v != NULL)) {
const float cost = bm_vert_edge_face_angle(v, delimit, &delimit_data);
vheap_table[i] = BLI_heap_insert(vheap, cost, v);
BM_elem_index_set(v, i); /* set dirty */
}
}
while ((BLI_heap_is_empty(vheap) == false) &&
(BLI_heap_node_value((vnode_top = BLI_heap_top(vheap))) < angle_limit)) {
BMEdge *e_new = NULL;
BMVert *v;
v = BLI_heap_node_ptr(vnode_top);
i = BM_elem_index_get(v);
if (
#ifdef USE_DEGENERATE_CHECK
!bm_vert_collapse_is_degenerate(v)
#else
BM_vert_is_edge_pair(v)
#endif
) {
e_new = BM_vert_collapse_edge(bm, v->e, v, true, true, true); /* join edges */
if (e_new) {
BLI_heap_remove(vheap, vnode_top);
vheap_table[i] = NULL;
/* update normal */
if (e_new->l) {
BMLoop *l_first, *l_iter;
l_iter = l_first = e_new->l;
do {
BM_face_normal_update(l_iter->f);
} while ((l_iter = l_iter->radial_next) != l_first);
}
/* re-calculate costs */
BM_ITER_ELEM (v_iter, &iter, e_new, BM_VERTS_OF_EDGE) {
const int j = BM_elem_index_get(v_iter);
if (j != -1 && vheap_table[j]) {
const float cost = bm_vert_edge_face_angle(v_iter, delimit, &delimit_data);
BLI_heap_node_value_update(vheap, vheap_table[j], cost);
}
}
#ifdef USE_DEGENERATE_CHECK
/* dissolving a vertex may mean vertices we previously weren't able to dissolve
* can now be re-evaluated. */
if (e_new->l) {
BMLoop *l_first, *l_iter;
l_iter = l_first = e_new->l;
do {
/* skip vertices part of this edge, evaluated above */
BMLoop *l_cycle_first, *l_cycle_iter;
l_cycle_iter = l_iter->next->next;
l_cycle_first = l_iter->prev;
do {
const int j = BM_elem_index_get(l_cycle_iter->v);
if (j != -1 && vheap_table[j] &&
(BLI_heap_node_value(vheap_table[j]) == COST_INVALID)) {
const float cost = bm_vert_edge_face_angle(
l_cycle_iter->v, delimit, &delimit_data);
BLI_heap_node_value_update(vheap, vheap_table[j], cost);
}
} while ((l_cycle_iter = l_cycle_iter->next) != l_cycle_first);
} while ((l_iter = l_iter->radial_next) != l_first);
}
#endif /* USE_DEGENERATE_CHECK */
}
}
if (UNLIKELY(e_new == NULL)) {
BLI_heap_node_value_update(vheap, vnode_top, COST_INVALID);
}
}
BLI_heap_free(vheap, NULL);
}
MEM_freeN(_heap_table);
}
void BM_mesh_decimate_dissolve(BMesh *bm,
const float angle_limit,
const bool do_dissolve_boundaries,
const BMO_Delimit delimit)
{
int vinput_len;
int einput_len;
BMVert **vinput_arr = BM_iter_as_arrayN(bm, BM_VERTS_OF_MESH, NULL, &vinput_len, NULL, 0);
BMEdge **einput_arr = BM_iter_as_arrayN(bm, BM_EDGES_OF_MESH, NULL, &einput_len, NULL, 0);
BM_mesh_decimate_dissolve_ex(bm,
angle_limit,
do_dissolve_boundaries,
delimit,
vinput_arr,
vinput_len,
einput_arr,
einput_len,
0);
MEM_freeN(vinput_arr);
MEM_freeN(einput_arr);
}