This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/texture_pointdensity.c
Hans Goudey 1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00

949 lines
25 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
/** \file
* \ingroup render
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_kdopbvh.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BKE_colorband.h"
#include "BKE_colortools.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "texture_common.h"
#include "RE_texture.h"
static ThreadMutex sample_mutex = PTHREAD_MUTEX_INITIALIZER;
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
if ((pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) ||
(pd->color_source == TEX_PD_COLOR_PARTVEL) ||
(pd->color_source == TEX_PD_COLOR_PARTSPEED)) {
pd_bitflag |= POINT_DATA_VEL;
}
if ((pd->color_source == TEX_PD_COLOR_PARTAGE) ||
(pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE)) {
pd_bitflag |= POINT_DATA_LIFE;
}
}
else if (pd->source == TEX_PD_OBJECT) {
if (ELEM(pd->ob_color_source,
TEX_PD_COLOR_VERTCOL,
TEX_PD_COLOR_VERTWEIGHT,
TEX_PD_COLOR_VERTNOR)) {
pd_bitflag |= POINT_DATA_COLOR;
}
}
return pd_bitflag;
}
static void point_data_pointers(PointDensity *pd,
float **r_data_velocity,
float **r_data_life,
float **r_data_color)
{
const int data_used = point_data_used(pd);
const int totpoint = pd->totpoints;
float *data = pd->point_data;
int offset = 0;
if (data_used & POINT_DATA_VEL) {
if (r_data_velocity) {
*r_data_velocity = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_velocity) {
*r_data_velocity = NULL;
}
}
if (data_used & POINT_DATA_LIFE) {
if (r_data_life) {
*r_data_life = data + offset;
}
offset += totpoint;
}
else {
if (r_data_life) {
*r_data_life = NULL;
}
}
if (data_used & POINT_DATA_COLOR) {
if (r_data_color) {
*r_data_color = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_color) {
*r_data_color = NULL;
}
}
}
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd)
{
const int totpoints = pd->totpoints;
int data_used = point_data_used(pd);
int data_size = 0;
if (data_used & POINT_DATA_VEL) {
/* store 3 channels of velocity data */
data_size += 3;
}
if (data_used & POINT_DATA_LIFE) {
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_used & POINT_DATA_COLOR) {
/* store 3 channels of RGB data */
data_size += 3;
}
if (data_size) {
pd->point_data = MEM_callocN(sizeof(float) * data_size * totpoints, "particle point data");
}
}
static void pointdensity_cache_psys(
Depsgraph *depsgraph, Scene *scene, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
float cfra = BKE_scene_ctime_get(scene);
int i /*, Childexists*/ /* UNUSED */;
int total_particles;
int data_used;
float *data_vel, *data_life;
float partco[3];
const bool use_render_params = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
data_used = point_data_used(pd);
if (!psys_check_enabled(ob, psys, use_render_params)) {
return;
}
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
/* in case ob->world_to_object isn't up-to-date */
invert_m4_m4(ob->world_to_object, ob->object_to_world);
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
pd->totpoints = total_particles;
alloc_point_data(pd);
point_data_pointers(pd, &data_vel, &data_life, NULL);
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT)) {
childexists = 1;
}
#endif
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
if (i < psys->totpart && psys->pathcache) {
cache = psys->pathcache[i];
}
else if (i >= psys->totpart && psys->childcache) {
cache = psys->childcache[i - psys->totpart];
}
else {
continue;
}
cache += cache->segments; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
}
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time) / pa->lifetime;
}
else {
ChildParticle *cpa = (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
}
copy_v3_v3(partco, state.co);
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE) {
mul_m4_v3(ob->world_to_object, partco);
}
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
if (data_vel) {
data_vel[i * 3 + 0] = state.vel[0];
data_vel[i * 3 + 1] = state.vel[1];
data_vel[i * 3 + 2] = state.vel[2];
}
if (data_life) {
data_life[i] = state.time;
}
}
BLI_bvhtree_balance(pd->point_tree);
psys_sim_data_free(&sim);
}
static void pointdensity_cache_vertex_color(PointDensity *pd,
Object *UNUSED(ob),
Mesh *mesh,
float *data_color)
{
const MLoop *mloop = BKE_mesh_loops(mesh);
const int totloop = mesh->totloop;
char layername[MAX_CUSTOMDATA_LAYER_NAME];
int i;
BLI_assert(data_color);
if (!CustomData_has_layer(&mesh->ldata, CD_PROP_BYTE_COLOR)) {
return;
}
CustomData_validate_layer_name(
&mesh->ldata, CD_PROP_BYTE_COLOR, pd->vertex_attribute_name, layername);
const MLoopCol *mcol = CustomData_get_layer_named(&mesh->ldata, CD_PROP_BYTE_COLOR, layername);
if (!mcol) {
return;
}
/* Stores the number of MLoops using the same vertex, so we can normalize colors. */
int *mcorners = MEM_callocN(sizeof(int) * pd->totpoints, "point density corner count");
for (i = 0; i < totloop; i++) {
int v = mloop[i].v;
if (mcorners[v] == 0) {
rgb_uchar_to_float(&data_color[v * 3], &mcol[i].r);
}
else {
float col[3];
rgb_uchar_to_float(col, &mcol[i].r);
add_v3_v3(&data_color[v * 3], col);
}
++mcorners[v];
}
/* Normalize colors by averaging over mcorners.
* All the corners share the same vertex, ie. occupy the same point in space.
*/
for (i = 0; i < pd->totpoints; i++) {
if (mcorners[i] > 0) {
mul_v3_fl(&data_color[i * 3], 1.0f / mcorners[i]);
}
}
MEM_freeN(mcorners);
}
static void pointdensity_cache_vertex_weight(PointDensity *pd,
Object *ob,
Mesh *mesh,
float *data_color)
{
const int totvert = mesh->totvert;
int mdef_index;
int i;
BLI_assert(data_color);
const MDeformVert *mdef = CustomData_get_layer(&mesh->vdata, CD_MDEFORMVERT);
if (!mdef) {
return;
}
mdef_index = BKE_id_defgroup_name_index(&mesh->id, pd->vertex_attribute_name);
if (mdef_index < 0) {
mdef_index = BKE_object_defgroup_active_index_get(ob) - 1;
}
if (mdef_index < 0) {
return;
}
const MDeformVert *dv;
for (i = 0, dv = mdef; i < totvert; i++, dv++, data_color += 3) {
MDeformWeight *dw;
int j;
for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
if (dw->def_nr == mdef_index) {
copy_v3_fl(data_color, dw->weight);
break;
}
}
}
}
static void pointdensity_cache_vertex_normal(Mesh *mesh, float *data_color)
{
BLI_assert(data_color);
const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh);
memcpy(data_color, vert_normals, sizeof(float[3]) * mesh->totvert);
}
static void pointdensity_cache_object(PointDensity *pd, Object *ob)
{
float *data_color;
int i;
Mesh *mesh = ob->data;
#if 0 /* UNUSED */
CustomData_MeshMasks mask = CD_MASK_BAREMESH;
mask.fmask |= CD_MASK_MTFACE | CD_MASK_MCOL;
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
mask.lmask |= CD_MASK_PROP_BYTE_COLOR;
break;
case TEX_PD_COLOR_VERTWEIGHT:
mask.vmask |= CD_MASK_MDEFORMVERT;
break;
}
#endif
const float(*positions)[3] = BKE_mesh_vert_positions(mesh); /* local object space */
pd->totpoints = mesh->totvert;
if (pd->totpoints == 0) {
return;
}
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
alloc_point_data(pd);
point_data_pointers(pd, NULL, NULL, &data_color);
for (i = 0; i < pd->totpoints; i++) {
float co[3];
copy_v3_v3(co, positions[i]);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->object_to_world, co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->object_to_world, co);
break;
}
BLI_bvhtree_insert(pd->point_tree, i, co, 1);
}
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
pointdensity_cache_vertex_color(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTWEIGHT:
pointdensity_cache_vertex_weight(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTNOR:
pointdensity_cache_vertex_normal(mesh, data_color);
break;
}
BLI_bvhtree_balance(pd->point_tree);
}
static void cache_pointdensity(Depsgraph *depsgraph, Scene *scene, PointDensity *pd)
{
if (pd == NULL) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->source == TEX_PD_PSYS) {
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) {
return;
}
psys = BLI_findlink(&ob->particlesystem, pd->psys - 1);
if (!psys) {
return;
}
pointdensity_cache_psys(depsgraph, scene, pd, ob, psys);
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
if (ob && ob->type == OB_MESH) {
pointdensity_cache_object(pd, ob);
}
}
}
static void free_pointdensity(PointDensity *pd)
{
if (pd == NULL) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
MEM_SAFE_FREE(pd->point_data);
pd->totpoints = 0;
}
typedef struct PointDensityRangeData {
float *density;
float squared_radius;
float *point_data_life;
float *point_data_velocity;
float *point_data_color;
float *vec;
float *col;
float softness;
short falloff_type;
short noise_influence;
float *age;
struct CurveMapping *density_curve;
float velscale;
} PointDensityRangeData;
static float density_falloff(PointDensityRangeData *pdr, int index, float squared_dist)
{
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
switch (pdr->falloff_type) {
case TEX_PD_FALLOFF_STD:
density = dist;
break;
case TEX_PD_FALLOFF_SMOOTH:
density = 3.0f * dist * dist - 2.0f * dist * dist * dist;
break;
case TEX_PD_FALLOFF_SOFT:
density = pow(dist, pdr->softness);
break;
case TEX_PD_FALLOFF_CONSTANT:
density = pdr->squared_radius;
break;
case TEX_PD_FALLOFF_ROOT:
density = sqrtf(dist);
break;
case TEX_PD_FALLOFF_PARTICLE_AGE:
if (pdr->point_data_life) {
density = dist * MIN2(pdr->point_data_life[index], 1.0f);
}
else {
density = dist;
}
break;
case TEX_PD_FALLOFF_PARTICLE_VEL:
if (pdr->point_data_velocity) {
density = dist * len_v3(&pdr->point_data_velocity[index * 3]) * pdr->velscale;
}
else {
density = dist;
}
break;
}
if (pdr->density_curve && dist != 0.0f) {
BKE_curvemapping_init(pdr->density_curve);
density = BKE_curvemapping_evaluateF(pdr->density_curve, 0, density / dist) * dist;
}
return density;
}
static void accum_density(void *userdata, int index, const float co[3], float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
float density = 0.0f;
UNUSED_VARS(co);
if (pdr->point_data_velocity) {
pdr->vec[0] += pdr->point_data_velocity[index * 3 + 0]; // * density;
pdr->vec[1] += pdr->point_data_velocity[index * 3 + 1]; // * density;
pdr->vec[2] += pdr->point_data_velocity[index * 3 + 2]; // * density;
}
if (pdr->point_data_life) {
*pdr->age += pdr->point_data_life[index]; // * density;
}
if (pdr->point_data_color) {
add_v3_v3(pdr->col, &pdr->point_data_color[index * 3]); // * density;
}
density = density_falloff(pdr, index, squared_dist);
*pdr->density += density;
}
static void init_pointdensityrangedata(PointDensity *pd,
PointDensityRangeData *pdr,
float *density,
float *vec,
float *age,
float *col,
struct CurveMapping *density_curve,
float velscale)
{
pdr->squared_radius = pd->radius * pd->radius;
pdr->density = density;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->col = col;
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
point_data_pointers(
pd, &pdr->point_data_velocity, &pdr->point_data_life, &pdr->point_data_color);
pdr->density_curve = density_curve;
pdr->velscale = velscale;
}
static int pointdensity(PointDensity *pd,
const float texvec[3],
TexResult *texres,
float r_vec[3],
float *r_age,
float r_col[3])
{
int retval = TEX_INT;
PointDensityRangeData pdr;
float density = 0.0f, age = 0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, col[3] = {0.0f, 0.0f, 0.0f}, co[3];
float turb, noise_fac;
int num = 0;
texres->tin = 0.0f;
init_pointdensityrangedata(pd,
&pdr,
&density,
vec,
&age,
col,
(pd->flag & TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : NULL),
pd->falloff_speed_scale * 0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
/* reset */
density = 0.0f;
zero_v3(vec);
zero_v3(col);
}
if (pd->flag & TEX_PD_TURBULENCE) {
turb = BLI_noise_generic_turbulence(pd->noise_size,
texvec[0] + vec[0],
texvec[1] + vec[1],
texvec[2] + vec[2],
pd->noise_depth,
0,
pd->noise_basis);
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
texres->tin = density;
if (r_age != NULL) {
*r_age = age;
}
if (r_vec != NULL) {
copy_v3_v3(r_vec, vec);
}
if (r_col != NULL) {
copy_v3_v3(r_col, col);
}
return retval;
}
static void pointdensity_color(
PointDensity *pd, TexResult *texres, float age, const float vec[3], const float col[3])
{
copy_v4_fl(texres->trgba, 1.0f);
if (pd->source == TEX_PD_PSYS) {
float rgba[4];
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, age, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
case TEX_PD_COLOR_PARTSPEED: {
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, speed, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = true;
mul_v3_v3fl(texres->trgba, vec, pd->speed_scale);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
else {
float rgba[4];
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTWEIGHT:
texres->talpha = true;
if (pd->coba && BKE_colorband_evaluate(pd->coba, col[0], rgba)) {
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
}
else {
copy_v3_v3(texres->trgba, col);
}
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTNOR:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
}
static void sample_dummy_point_density(int resolution, float *values)
{
memset(values, 0, sizeof(float[4]) * resolution * resolution * resolution);
}
static void particle_system_minmax(Depsgraph *depsgraph,
Scene *scene,
Object *object,
ParticleSystem *psys,
float radius,
float min[3],
float max[3])
{
const float size[3] = {radius, radius, radius};
const float cfra = BKE_scene_ctime_get(scene);
ParticleSettings *part = psys->part;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
int i;
int total_particles;
float mat[4][4], imat[4][4];
INIT_MINMAX(min, max);
if (part->type == PART_HAIR) {
/* TODO(sergey): Not supported currently. */
return;
}
unit_m4(mat);
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = object;
sim.psys = psys;
sim.psmd = psys_get_modifier(object, psys);
invert_m4_m4(imat, object->object_to_world);
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
float co_object[3], co_min[3], co_max[3];
ParticleKey state;
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
}
mul_v3_m4v3(co_object, imat, state.co);
sub_v3_v3v3(co_min, co_object, size);
add_v3_v3v3(co_max, co_object, size);
minmax_v3v3_v3(min, max, co_min);
minmax_v3v3_v3(min, max, co_max);
}
psys_sim_data_free(&sim);
}
void RE_point_density_cache(struct Depsgraph *depsgraph, PointDensity *pd)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
/* Same matrices/resolution as dupli_render_particle_set(). */
BLI_mutex_lock(&sample_mutex);
cache_pointdensity(depsgraph, scene, pd);
BLI_mutex_unlock(&sample_mutex);
}
void RE_point_density_minmax(struct Depsgraph *depsgraph,
struct PointDensity *pd,
float r_min[3],
float r_max[3])
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
Object *object = pd->object;
if (object == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
if (pd->source == TEX_PD_PSYS) {
ParticleSystem *psys;
if (pd->psys == 0) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
psys = BLI_findlink(&object->particlesystem, pd->psys - 1);
if (psys == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
particle_system_minmax(depsgraph, scene, object, psys, pd->radius, r_min, r_max);
}
else {
const float radius[3] = {pd->radius, pd->radius, pd->radius};
const BoundBox *bb = BKE_object_boundbox_get(object);
if (bb != NULL) {
BLI_assert((bb->flag & BOUNDBOX_DIRTY) == 0);
copy_v3_v3(r_min, bb->vec[0]);
copy_v3_v3(r_max, bb->vec[6]);
/* Adjust texture space to include density points on the boundaries. */
sub_v3_v3(r_min, radius);
add_v3_v3(r_max, radius);
}
else {
zero_v3(r_min);
zero_v3(r_max);
}
}
}
typedef struct SampleCallbackData {
PointDensity *pd;
int resolution;
float *min, *dim;
float *values;
} SampleCallbackData;
static void point_density_sample_func(void *__restrict data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
SampleCallbackData *data = (SampleCallbackData *)data_v;
const int resolution = data->resolution;
const int resolution2 = resolution * resolution;
const float *min = data->min, *dim = data->dim;
PointDensity *pd = data->pd;
float *values = data->values;
if (!pd || !pd->point_tree) {
return;
}
size_t z = (size_t)iter;
for (size_t y = 0; y < resolution; y++) {
for (size_t x = 0; x < resolution; x++) {
size_t index = z * resolution2 + y * resolution + x;
float texvec[3];
float age, vec[3], col[3];
TexResult texres;
copy_v3_v3(texvec, min);
texvec[0] += dim[0] * (float)x / (float)resolution;
texvec[1] += dim[1] * (float)y / (float)resolution;
texvec[2] += dim[2] * (float)z / (float)resolution;
pointdensity(pd, texvec, &texres, vec, &age, col);
pointdensity_color(pd, &texres, age, vec, col);
copy_v3_v3(&values[index * 4 + 0], texres.trgba);
values[index * 4 + 3] = texres.tin;
}
}
}
void RE_point_density_sample(Depsgraph *depsgraph,
PointDensity *pd,
const int resolution,
float *values)
{
Object *object = pd->object;
float min[3], max[3], dim[3];
/* TODO(sergey): Implement some sort of assert() that point density
* was cached already.
*/
if (object == NULL) {
sample_dummy_point_density(resolution, values);
return;
}
BLI_mutex_lock(&sample_mutex);
RE_point_density_minmax(depsgraph, pd, min, max);
BLI_mutex_unlock(&sample_mutex);
sub_v3_v3v3(dim, max, min);
if (dim[0] <= 0.0f || dim[1] <= 0.0f || dim[2] <= 0.0f) {
sample_dummy_point_density(resolution, values);
return;
}
SampleCallbackData data;
data.pd = pd;
data.resolution = resolution;
data.min = min;
data.dim = dim;
data.values = values;
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (resolution > 32);
BLI_task_parallel_range(0, resolution, &data, point_density_sample_func, &settings);
free_pointdensity(pd);
}
void RE_point_density_free(struct PointDensity *pd)
{
free_pointdensity(pd);
}
void RE_point_density_fix_linking(void)
{
}