This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/space_sequencer/sequencer_scopes.c
Bastien Montagne 5f405728bb BLI_task: Cleanup: rename some structs to make them more generic.
TLS and Settings can be used by other types of parallel 'for loops', so
removing 'Range' from their names.

No functional changes expected here.
2019-07-30 14:56:47 +02:00

771 lines
19 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Author: Peter Schlaile < peter [at] schlaile [dot] de >
*/
/** \file
* \ingroup spseq
*/
#include <math.h>
#include <string.h>
#include "BLI_utildefines.h"
#include "BLI_task.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "atomic_ops.h"
#include "sequencer_intern.h"
/* XXX, why is this function better then BLI_math version?
* only difference is it does some normalize after, need to double check on this - campbell */
static void rgb_to_yuv_normalized(const float rgb[3], float yuv[3])
{
yuv[0] = 0.299f * rgb[0] + 0.587f * rgb[1] + 0.114f * rgb[2];
yuv[1] = 0.492f * (rgb[2] - yuv[0]);
yuv[2] = 0.877f * (rgb[0] - yuv[0]);
/* Normalize */
yuv[1] *= 255.0f / (122 * 2.0f);
yuv[1] += 0.5f;
yuv[2] *= 255.0f / (157 * 2.0f);
yuv[2] += 0.5f;
}
static void scope_put_pixel(unsigned char *table, unsigned char *pos)
{
unsigned char newval = table[*pos];
pos[0] = pos[1] = pos[2] = newval;
pos[3] = 255;
}
static void scope_put_pixel_single(unsigned char *table, unsigned char *pos, int col)
{
char newval = table[pos[col]];
pos[col] = newval;
pos[3] = 255;
}
static void wform_put_line(int w, unsigned char *last_pos, unsigned char *new_pos)
{
if (last_pos > new_pos) {
unsigned char *temp = new_pos;
new_pos = last_pos;
last_pos = temp;
}
while (last_pos < new_pos) {
if (last_pos[0] == 0) {
last_pos[0] = last_pos[1] = last_pos[2] = 32;
last_pos[3] = 255;
}
last_pos += 4 * w;
}
}
static void wform_put_line_single(int w, unsigned char *last_pos, unsigned char *new_pos, int col)
{
if (last_pos > new_pos) {
unsigned char *temp = new_pos;
new_pos = last_pos;
last_pos = temp;
}
while (last_pos < new_pos) {
if (last_pos[col] == 0) {
last_pos[col] = 32;
last_pos[3] = 255;
}
last_pos += 4 * w;
}
}
static void wform_put_border(unsigned char *tgt, int w, int h)
{
int x, y;
for (x = 0; x < w; x++) {
unsigned char *p = tgt + 4 * x;
p[1] = p[3] = 155;
p[4 * w + 1] = p[4 * w + 3] = 155;
p = tgt + 4 * (w * (h - 1) + x);
p[1] = p[3] = 155;
p[-4 * w + 1] = p[-4 * w + 3] = 155;
}
for (y = 0; y < h; y++) {
unsigned char *p = tgt + 4 * w * y;
p[1] = p[3] = 155;
p[4 + 1] = p[4 + 3] = 155;
p = tgt + 4 * (w * y + w - 1);
p[1] = p[3] = 155;
p[-4 + 1] = p[-4 + 3] = 155;
}
}
static void wform_put_gridrow(unsigned char *tgt, float perc, int w, int h)
{
int i;
tgt += (int)(perc / 100.0f * h) * w * 4;
for (i = 0; i < w * 2; i++) {
tgt[0] = 255;
tgt += 4;
}
}
static void wform_put_grid(unsigned char *tgt, int w, int h)
{
wform_put_gridrow(tgt, 90.0, w, h);
wform_put_gridrow(tgt, 70.0, w, h);
wform_put_gridrow(tgt, 10.0, w, h);
}
static ImBuf *make_waveform_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const unsigned char *src = (unsigned char *)ibuf->rect;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
wform_put_border(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p = NULL;
for (x = 0; x < ibuf->x; x++) {
const unsigned char *rgb = src + 4 * (ibuf->x * y + x);
float v = (float)IMB_colormanagement_get_luminance_byte(rgb) / 255.0f;
unsigned char *p = tgt;
p += 4 * (w * ((int)(v * (h - 3)) + 1) + x + 1);
scope_put_pixel(wtable, p);
p += 4 * w;
scope_put_pixel(wtable, p);
if (last_p != NULL) {
wform_put_line(w, last_p, p);
}
last_p = p;
}
}
return rval;
}
static ImBuf *make_waveform_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p = NULL;
for (x = 0; x < ibuf->x; x++) {
const float *rgb = src + 4 * (ibuf->x * y + x);
float v = IMB_colormanagement_get_luminance(rgb);
unsigned char *p = tgt;
CLAMP(v, 0.0f, 1.0f);
p += 4 * (w * ((int)(v * (h - 3)) + 1) + x + 1);
scope_put_pixel(wtable, p);
p += 4 * w;
scope_put_pixel(wtable, p);
if (last_p != NULL) {
wform_put_line(w, last_p, p);
}
last_p = p;
}
}
wform_put_border(tgt, w, h);
return rval;
}
ImBuf *make_waveform_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_waveform_view_from_ibuf_float(ibuf);
}
else {
return make_waveform_view_from_ibuf_byte(ibuf);
}
}
static ImBuf *make_sep_waveform_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const unsigned char *src = (const unsigned char *)ibuf->rect;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int sw = ibuf->x / 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p[3] = {NULL, NULL, NULL};
for (x = 0; x < ibuf->x; x++) {
int c;
const unsigned char *rgb = src + 4 * (ibuf->x * y + x);
for (c = 0; c < 3; c++) {
unsigned char *p = tgt;
p += 4 * (w * ((rgb[c] * (h - 3)) / 255 + 1) + c * sw + x / 3 + 1);
scope_put_pixel_single(wtable, p, c);
p += 4 * w;
scope_put_pixel_single(wtable, p, c);
if (last_p[c] != NULL) {
wform_put_line_single(w, last_p[c], p, c);
}
last_p[c] = p;
}
}
}
wform_put_border(tgt, w, h);
return rval;
}
static ImBuf *make_sep_waveform_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int sw = ibuf->x / 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p[3] = {NULL, NULL, NULL};
for (x = 0; x < ibuf->x; x++) {
int c;
const float *rgb = src + 4 * (ibuf->x * y + x);
for (c = 0; c < 3; c++) {
unsigned char *p = tgt;
float v = rgb[c];
CLAMP(v, 0.0f, 1.0f);
p += 4 * (w * ((int)(v * (h - 3)) + 1) + c * sw + x / 3 + 1);
scope_put_pixel_single(wtable, p, c);
p += 4 * w;
scope_put_pixel_single(wtable, p, c);
if (last_p[c] != NULL) {
wform_put_line_single(w, last_p[c], p, c);
}
last_p[c] = p;
}
}
}
wform_put_border(tgt, w, h);
return rval;
}
ImBuf *make_sep_waveform_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_sep_waveform_view_from_ibuf_float(ibuf);
}
else {
return make_sep_waveform_view_from_ibuf_byte(ibuf);
}
}
static void draw_zebra_byte(ImBuf *src, ImBuf *ibuf, float perc)
{
unsigned int limit = 255.0f * perc / 100.0f;
unsigned char *p = (unsigned char *)src->rect;
unsigned char *o = (unsigned char *)ibuf->rect;
int x;
int y;
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
unsigned char r = *p++;
unsigned char g = *p++;
unsigned char b = *p++;
unsigned char a = *p++;
if (r >= limit || g >= limit || b >= limit) {
if (((x + y) & 0x08) != 0) {
r = 255 - r;
g = 255 - g;
b = 255 - b;
}
}
*o++ = r;
*o++ = g;
*o++ = b;
*o++ = a;
}
}
}
static void draw_zebra_float(ImBuf *src, ImBuf *ibuf, float perc)
{
float limit = perc / 100.0f;
const float *p = src->rect_float;
unsigned char *o = (unsigned char *)ibuf->rect;
int x;
int y;
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
float r = *p++;
float g = *p++;
float b = *p++;
float a = *p++;
if (r >= limit || g >= limit || b >= limit) {
if (((x + y) & 0x08) != 0) {
r = -r;
g = -g;
b = -b;
}
}
*o++ = unit_float_to_uchar_clamp(r);
*o++ = unit_float_to_uchar_clamp(g);
*o++ = unit_float_to_uchar_clamp(b);
*o++ = unit_float_to_uchar_clamp(a);
}
}
}
ImBuf *make_zebra_view_from_ibuf(ImBuf *src, float perc)
{
ImBuf *ibuf = IMB_allocImBuf(src->x, src->y, 32, IB_rect);
if (src->rect_float) {
draw_zebra_float(src, ibuf, perc);
}
else {
draw_zebra_byte(src, ibuf, perc);
}
return ibuf;
}
static void draw_histogram_marker(ImBuf *ibuf, int x)
{
unsigned char *p = (unsigned char *)ibuf->rect;
int barh = ibuf->y * 0.1;
int i;
p += 4 * (x + ibuf->x * (ibuf->y - barh + 1));
for (i = 0; i < barh - 1; i++) {
p[0] = p[1] = p[2] = 255;
p += ibuf->x * 4;
}
}
static void draw_histogram_bar(ImBuf *ibuf, int x, float val, int col)
{
unsigned char *p = (unsigned char *)ibuf->rect;
int barh = ibuf->y * val * 0.9f;
int i;
p += 4 * (x + ibuf->x);
for (i = 0; i < barh; i++) {
p[col] = 255;
p += ibuf->x * 4;
}
}
#define HIS_STEPS 512
typedef struct MakeHistogramViewData {
const ImBuf *ibuf;
uint32_t (*bins)[HIS_STEPS];
} MakeHistogramViewData;
static void make_histogram_view_from_ibuf_byte_cb_ex(void *__restrict userdata,
const int y,
const TaskParallelTLS *__restrict tls)
{
MakeHistogramViewData *data = userdata;
const ImBuf *ibuf = data->ibuf;
const unsigned char *src = (unsigned char *)ibuf->rect;
uint32_t(*cur_bins)[HIS_STEPS] = tls->userdata_chunk;
for (int x = 0; x < ibuf->x; x++) {
const unsigned char *pixel = src + (y * ibuf->x + x) * 4;
for (int j = 3; j--;) {
cur_bins[j][pixel[j]]++;
}
}
}
static void make_histogram_view_from_ibuf_finalize(void *__restrict userdata,
void *__restrict userdata_chunk)
{
MakeHistogramViewData *data = userdata;
uint32_t(*bins)[HIS_STEPS] = data->bins;
uint32_t(*cur_bins)[HIS_STEPS] = userdata_chunk;
for (int j = 3; j--;) {
for (int i = 0; i < HIS_STEPS; i++) {
bins[j][i] += cur_bins[j][i];
}
}
}
static ImBuf *make_histogram_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 128, 32, IB_rect);
int x;
unsigned int nr, ng, nb;
unsigned int bins[3][HIS_STEPS];
memset(bins, 0, sizeof(bins));
MakeHistogramViewData data = {
.ibuf = ibuf,
.bins = bins,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (ibuf->y >= 256);
settings.userdata_chunk = bins;
settings.userdata_chunk_size = sizeof(bins);
settings.func_finalize = make_histogram_view_from_ibuf_finalize;
BLI_task_parallel_range(0, ibuf->y, &data, make_histogram_view_from_ibuf_byte_cb_ex, &settings);
nr = nb = ng = 0;
for (x = 0; x < HIS_STEPS; x++) {
if (bins[0][x] > nr) {
nr = bins[0][x];
}
if (bins[1][x] > ng) {
ng = bins[1][x];
}
if (bins[2][x] > nb) {
nb = bins[2][x];
}
}
for (x = 0; x < HIS_STEPS; x++) {
if (nr) {
draw_histogram_bar(rval, x * 2 + 1, ((float)bins[0][x]) / nr, 0);
draw_histogram_bar(rval, x * 2 + 2, ((float)bins[0][x]) / nr, 0);
}
if (ng) {
draw_histogram_bar(rval, x * 2 + 1, ((float)bins[1][x]) / ng, 1);
draw_histogram_bar(rval, x * 2 + 2, ((float)bins[1][x]) / ng, 1);
}
if (nb) {
draw_histogram_bar(rval, x * 2 + 1, ((float)bins[2][x]) / nb, 2);
draw_histogram_bar(rval, x * 2 + 2, ((float)bins[2][x]) / nb, 2);
}
}
wform_put_border((unsigned char *)rval->rect, rval->x, rval->y);
return rval;
}
BLI_INLINE int get_bin_float(float f)
{
if (f < -0.25f) {
return 0;
}
else if (f >= 1.25f) {
return 511;
}
return (int)(((f + 0.25f) / 1.5f) * 512);
}
static void make_histogram_view_from_ibuf_float_cb_ex(void *__restrict userdata,
const int y,
const TaskParallelTLS *__restrict tls)
{
const MakeHistogramViewData *data = userdata;
const ImBuf *ibuf = data->ibuf;
const float *src = ibuf->rect_float;
uint32_t(*cur_bins)[HIS_STEPS] = tls->userdata_chunk;
for (int x = 0; x < ibuf->x; x++) {
const float *pixel = src + (y * ibuf->x + x) * 4;
for (int j = 3; j--;) {
cur_bins[j][get_bin_float(pixel[j])]++;
}
}
}
static ImBuf *make_histogram_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 128, 32, IB_rect);
int nr, ng, nb;
int x;
unsigned int bins[3][HIS_STEPS];
memset(bins, 0, sizeof(bins));
MakeHistogramViewData data = {
.ibuf = ibuf,
.bins = bins,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (ibuf->y >= 256);
settings.userdata_chunk = bins;
settings.userdata_chunk_size = sizeof(bins);
settings.func_finalize = make_histogram_view_from_ibuf_finalize;
BLI_task_parallel_range(0, ibuf->y, &data, make_histogram_view_from_ibuf_float_cb_ex, &settings);
nr = nb = ng = 0;
for (x = 0; x < HIS_STEPS; x++) {
if (bins[0][x] > nr) {
nr = bins[0][x];
}
if (bins[1][x] > ng) {
ng = bins[1][x];
}
if (bins[2][x] > nb) {
nb = bins[2][x];
}
}
for (x = 0; x < HIS_STEPS; x++) {
if (nr) {
draw_histogram_bar(rval, x + 1, ((float)bins[0][x]) / nr, 0);
}
if (ng) {
draw_histogram_bar(rval, x + 1, ((float)bins[1][x]) / ng, 1);
}
if (nb) {
draw_histogram_bar(rval, x + 1, ((float)bins[2][x]) / nb, 2);
}
}
draw_histogram_marker(rval, get_bin_float(0.0));
draw_histogram_marker(rval, get_bin_float(1.0));
wform_put_border((unsigned char *)rval->rect, rval->x, rval->y);
return rval;
}
#undef HIS_STEPS
ImBuf *make_histogram_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_histogram_view_from_ibuf_float(ibuf);
}
else {
return make_histogram_view_from_ibuf_byte(ibuf);
}
}
static void vectorscope_put_cross(
unsigned char r, unsigned char g, unsigned char b, char *tgt, int w, int h, int size)
{
float rgb[3], yuv[3];
char *p;
int x = 0;
int y = 0;
rgb[0] = (float)r / 255.0f;
rgb[1] = (float)g / 255.0f;
rgb[2] = (float)b / 255.0f;
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int)((yuv[2] * (h - 3) + 1)) + (int)((yuv[1] * (w - 3) + 1)));
if (r == 0 && g == 0 && b == 0) {
r = 255;
}
for (y = -size; y <= size; y++) {
for (x = -size; x <= size; x++) {
char *q = p + 4 * (y * w + x);
q[0] = r;
q[1] = g;
q[2] = b;
q[3] = 255;
}
}
}
static ImBuf *make_vectorscope_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 515, 32, IB_rect);
int x, y;
const char *src = (const char *)ibuf->rect;
char *tgt = (char *)rval->rect;
float rgb[3], yuv[3];
int w = 515;
int h = 515;
float scope_gamma = 0.2;
unsigned char wtable[256];
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, scope_gamma) * 255);
}
for (x = 0; x < 256; x++) {
vectorscope_put_cross(255, 0, 255 - x, tgt, w, h, 1);
vectorscope_put_cross(255, x, 0, tgt, w, h, 1);
vectorscope_put_cross(255 - x, 255, 0, tgt, w, h, 1);
vectorscope_put_cross(0, 255, x, tgt, w, h, 1);
vectorscope_put_cross(0, 255 - x, 255, tgt, w, h, 1);
vectorscope_put_cross(x, 0, 255, tgt, w, h, 1);
}
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
const char *src1 = src + 4 * (ibuf->x * y + x);
char *p;
rgb[0] = (float)src1[0] / 255.0f;
rgb[1] = (float)src1[1] / 255.0f;
rgb[2] = (float)src1[2] / 255.0f;
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int)((yuv[2] * (h - 3) + 1)) + (int)((yuv[1] * (w - 3) + 1)));
scope_put_pixel(wtable, (unsigned char *)p);
}
}
vectorscope_put_cross(0, 0, 0, tgt, w, h, 3);
return rval;
}
static ImBuf *make_vectorscope_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
char *tgt = (char *)rval->rect;
float rgb[3], yuv[3];
int w = 515;
int h = 515;
float scope_gamma = 0.2;
unsigned char wtable[256];
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char)(pow(((float)x + 1) / 256, scope_gamma) * 255);
}
for (x = 0; x <= 255; x++) {
vectorscope_put_cross(255, 0, 255 - x, tgt, w, h, 1);
vectorscope_put_cross(255, x, 0, tgt, w, h, 1);
vectorscope_put_cross(255 - x, 255, 0, tgt, w, h, 1);
vectorscope_put_cross(0, 255, x, tgt, w, h, 1);
vectorscope_put_cross(0, 255 - x, 255, tgt, w, h, 1);
vectorscope_put_cross(x, 0, 255, tgt, w, h, 1);
}
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
const float *src1 = src + 4 * (ibuf->x * y + x);
const char *p;
memcpy(rgb, src1, 3 * sizeof(float));
CLAMP(rgb[0], 0.0f, 1.0f);
CLAMP(rgb[1], 0.0f, 1.0f);
CLAMP(rgb[2], 0.0f, 1.0f);
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int)((yuv[2] * (h - 3) + 1)) + (int)((yuv[1] * (w - 3) + 1)));
scope_put_pixel(wtable, (unsigned char *)p);
}
}
vectorscope_put_cross(0, 0, 0, tgt, w, h, 3);
return rval;
}
ImBuf *make_vectorscope_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_vectorscope_view_from_ibuf_float(ibuf);
}
else {
return make_vectorscope_view_from_ibuf_byte(ibuf);
}
}