This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/stroke/Operators.cpp

1346 lines
35 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup freestyle
* \brief Class gathering stroke creation algorithms
*/
#include <algorithm>
#include <stdexcept>
#include "Operators.h"
#include "Canvas.h"
#include "Stroke.h"
#include "StrokeIterators.h"
#include "CurveIterators.h"
#include "BKE_global.h"
namespace Freestyle {
Operators::I1DContainer Operators::_current_view_edges_set;
Operators::I1DContainer Operators::_current_chains_set;
Operators::I1DContainer *Operators::_current_set = NULL;
Operators::StrokesContainer Operators::_current_strokes_set;
int Operators::select(UnaryPredicate1D &pred)
{
if (!_current_set) {
return 0;
}
if (_current_set->empty()) {
return 0;
}
I1DContainer new_set;
I1DContainer rejected;
Functions1D::ChainingTimeStampF1D cts;
Functions1D::TimeStampF1D ts;
I1DContainer::iterator it = _current_set->begin();
I1DContainer::iterator itbegin = it;
while (it != _current_set->end()) {
Interface1D *i1d = *it;
cts(*i1d); // mark everyone's chaining time stamp anyway
if (pred(*i1d) < 0) {
new_set.clear();
rejected.clear();
return -1;
}
if (pred.result) {
new_set.push_back(i1d);
ts(*i1d);
}
else {
rejected.push_back(i1d);
}
++it;
}
if ((*itbegin)->getExactTypeName() != "ViewEdge") {
for (it = rejected.begin(); it != rejected.end(); ++it) {
delete *it;
}
}
rejected.clear();
_current_set->clear();
*_current_set = new_set;
return 0;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator &it,
UnaryPredicate1D &pred,
UnaryFunction1D_void &modifier)
{
if (_current_view_edges_set.empty()) {
return 0;
}
unsigned id = 0;
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0) {
goto error;
}
if (pred.result) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
if (modifier(**it) < 0) {
delete new_chain;
goto error;
}
++it;
if (it.isEnd()) {
break;
}
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result) {
break;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator &it, UnaryPredicate1D &pred)
{
if (_current_view_edges_set.empty()) {
return 0;
}
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0) {
goto error;
}
if (pred.result) {
continue;
}
if (pred_ts(**it_edge) < 0) {
goto error;
}
if (pred_ts.result) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
++it;
if (it.isEnd()) {
break;
}
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result) {
break;
}
if (pred_ts(**it) < 0) {
delete new_chain;
goto error;
}
if (pred_ts.result) {
break;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
#if 0
void Operators::bidirectionalChain(ViewEdgeIterator &it,
UnaryPredicate1D &pred,
UnaryFunction1D_void &modifier)
{
if (_current_view_edges_set.empty()) {
return;
}
unsigned id = 0;
ViewEdge *edge;
Chain *new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge)) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
# if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
# endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
modifier(**it);
++it;
} while (!it.isEnd() && !pred(**it));
it.setBegin(edge);
it.setCurrentEdge(edge);
--it;
while (!it.isEnd() && !pred(**it)) {
new_chain->push_viewedge_front(*it, it.getOrientation());
modifier(**it);
--it;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
}
void Operators::bidirectionalChain(ViewEdgeIterator &it, UnaryPredicate1D &pred)
{
if (_current_view_edges_set.empty()) {
return;
}
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
Chain *new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) || pred_ts(**it_edge)) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
# if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
# endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
++it;
} while (!it.isEnd() && !pred(**it) && !pred_ts(**it));
it.setBegin(edge);
it.setCurrentEdge(edge);
--it;
while (!it.isEnd() && !pred(**it) && !pred_ts(**it)) {
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
--it;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
}
#endif
int Operators::bidirectionalChain(ChainingIterator &it, UnaryPredicate1D &pred)
{
if (_current_view_edges_set.empty()) {
return 0;
}
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0) {
goto error;
}
if (pred.result) {
continue;
}
if (pred_ts(**it_edge) < 0) {
goto error;
}
if (pred_ts.result) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0) {
goto error;
}
Chain *new_chain = new Chain(id);
++id;
#if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) {
delete new_chain;
goto error;
}
if (it.isEnd()) {
break;
}
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result) {
break;
}
}
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) {
delete new_chain;
goto error;
}
while (!it.isEnd()) {
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result) {
break;
}
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) {
delete new_chain;
goto error;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::bidirectionalChain(ChainingIterator &it)
{
if (_current_view_edges_set.empty()) {
return 0;
}
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred_ts(**it_edge) < 0) {
goto error;
}
if (pred_ts.result) {
continue;
}
edge = dynamic_cast<ViewEdge *>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0) {
goto error;
}
Chain *new_chain = new Chain(id);
++id;
#if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) { // FIXME
delete new_chain;
goto error;
}
} while (!it.isEnd());
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) { // FIXME
delete new_chain;
goto error;
}
while (!it.isEnd()) {
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) { // FIXME
delete new_chain;
goto error;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::sequentialSplit(UnaryPredicate0D &pred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain *new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator it;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
Id currentId = (*cit)->getId();
new_curve = new Chain(currentId);
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;
--last;
it = first;
point = dynamic_cast<CurvePoint *>(&(*it));
new_curve->push_vertex_back(point);
++it;
for (; it != end; ++it) {
point = dynamic_cast<CurvePoint *>(&(*it));
new_curve->push_vertex_back(point);
if (pred(it) < 0) {
delete new_curve;
goto error;
}
if (pred.result && (it != last)) {
splitted_chains.push_back(new_curve);
currentId.setSecond(currentId.getSecond() + 1);
new_curve = new Chain(currentId);
new_curve->push_vertex_back(point);
}
}
if (new_curve->nSegments() == 0) {
delete new_curve;
return 0;
}
splitted_chains.push_back(new_curve);
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for (; cit != citend; ++cit) {
delete (*cit);
}
_current_chains_set.clear();
#if 0
_current_chains_set = splitted_chains;
#else
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
splitted_chains.clear();
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for (; cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
return -1;
}
int Operators::sequentialSplit(UnaryPredicate0D &startingPred,
UnaryPredicate0D &stoppingPred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain *new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator itStart;
Interface0DIterator itStop;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
Id currentId = (*cit)->getId();
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;
--last;
itStart = first;
do {
itStop = itStart;
++itStop;
new_curve = new Chain(currentId);
currentId.setSecond(currentId.getSecond() + 1);
point = dynamic_cast<CurvePoint *>(&(*itStart));
new_curve->push_vertex_back(point);
do {
point = dynamic_cast<CurvePoint *>(&(*itStop));
new_curve->push_vertex_back(point);
++itStop;
if (itStop == end) {
break;
}
if (stoppingPred(itStop) < 0) {
delete new_curve;
goto error;
}
} while (!stoppingPred.result);
if (itStop != end) {
point = dynamic_cast<CurvePoint *>(&(*itStop));
new_curve->push_vertex_back(point);
}
if (new_curve->nSegments() == 0) {
delete new_curve;
}
else {
splitted_chains.push_back(new_curve);
}
// find next start
do {
++itStart;
if (itStart == end) {
break;
}
if (startingPred(itStart) < 0) {
goto error;
}
} while (!startingPred.result);
} while ((itStart != end) && (itStart != last));
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for (; cit != citend; ++cit) {
delete (*cit);
}
_current_chains_set.clear();
#if 0
_current_chains_set = splitted_chains;
#else
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
splitted_chains.clear();
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for (; cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
return -1;
}
// Internal function
static int __recursiveSplit(Chain *_curve,
UnaryFunction0D<double> &func,
UnaryPredicate1D &pred,
float sampling,
Operators::I1DContainer &newChains,
Operators::I1DContainer &splitted_chains)
{
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first;
++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
real _min = FLT_MAX; // func(it0d);
++it;
CurveInternal::CurvePointIterator next = it;
++next;
bool bsplit = false;
for (; ((it != end) && (next != end)); ++it, ++next) {
it0d = it.castToInterface0DIterator();
if (func(it0d) < 0) {
return -1;
}
if (func.result < _min) {
_min = func.result;
split = it;
bsplit = true;
}
}
if (!bsplit) { // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id *newId = _curve->getSplittingId();
if (newId == 0) {
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(),
vitend = _curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit;
++vnext;
for (; (vit != vitend) && (vnext != vitend) &&
(vnext._CurvilinearLength < split._CurvilinearLength);
++vit, ++vnext) {
new_curve_a->push_vertex_back(&(*vit));
}
if ((vit == vitend) || (vnext == vitend)) {
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "The split takes place in bad location" << endl;
}
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
new_curve_a->push_vertex_back(&(*vit));
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
for (vit = vnext; vit != vitend; ++vit) {
new_curve_b->push_vertex_back(&(*vit));
}
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if (pred.result) {
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double> &func,
UnaryPredicate1D &pred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
currentChain = dynamic_cast<Chain *>(*cit);
if (!currentChain) {
continue;
}
// let's check the first one:
if (pred(*currentChain) < 0) {
return -1;
}
if (!pred.result) {
__recursiveSplit(currentChain, func, pred, sampling, newChains, splitted_chains);
}
else {
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if (!splitted_chains.empty()) {
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
#if 0
_current_chains_set = newChains;
#else
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
newChains.clear();
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
return 0;
}
// recursive split with pred 0D
static int __recursiveSplit(Chain *_curve,
UnaryFunction0D<double> &func,
UnaryPredicate0D &pred0d,
UnaryPredicate1D &pred,
float sampling,
Operators::I1DContainer &newChains,
Operators::I1DContainer &splitted_chains)
{
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first;
++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
#if 0
real _min = func(it0d);
++it;
#endif
real _min = FLT_MAX;
++it;
real mean = 0.f;
// soc unused - real variance = 0.0f;
unsigned count = 0;
CurveInternal::CurvePointIterator next = it;
++next;
bool bsplit = false;
for (; ((it != end) && (next != end)); ++it, ++next) {
++count;
it0d = it.castToInterface0DIterator();
if (pred0d(it0d) < 0) {
return -1;
}
if (!pred0d.result) {
continue;
}
if (func(it0d) < 0) {
return -1;
}
mean += func.result;
if (func.result < _min) {
_min = func.result;
split = it;
bsplit = true;
}
}
mean /= (float)count;
// if ((!bsplit) || (mean - _min > mean)) { // we didn't find any minimum
if (!bsplit) { // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id *newId = _curve->getSplittingId();
if (newId == NULL) {
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(),
vitend = _curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit;
++vnext;
for (; (vit != vitend) && (vnext != vitend) &&
(vnext._CurvilinearLength < split._CurvilinearLength);
++vit, ++vnext) {
new_curve_a->push_vertex_back(&(*vit));
}
if ((vit == vitend) || (vnext == vitend)) {
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "The split takes place in bad location" << endl;
}
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
new_curve_a->push_vertex_back(&(*vit));
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
for (vit = vnext; vit != vitend; ++vit) {
new_curve_b->push_vertex_back(&(*vit));
}
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if (pred.result) {
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred0d, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred0d, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double> &func,
UnaryPredicate0D &pred0d,
UnaryPredicate1D &pred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
currentChain = dynamic_cast<Chain *>(*cit);
if (!currentChain) {
continue;
}
// let's check the first one:
if (pred(*currentChain) < 0) {
return -1;
}
if (!pred.result) {
__recursiveSplit(currentChain, func, pred0d, pred, sampling, newChains, splitted_chains);
}
else {
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if (!splitted_chains.empty()) {
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
#if 0
_current_chains_set = newChains;
#else
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
newChains.clear();
if (!_current_chains_set.empty()) {
_current_set = &_current_chains_set;
}
return 0;
}
// Internal class
class PredicateWrapper {
public:
inline PredicateWrapper(BinaryPredicate1D &pred)
{
_pred = &pred;
}
inline bool operator()(Interface1D *i1, Interface1D *i2)
{
if (i1 == i2) {
return false;
}
if ((*_pred)(*i1, *i2) < 0) {
throw std::runtime_error("comparison failed");
}
return _pred->result;
}
private:
BinaryPredicate1D *_pred;
};
int Operators::sort(BinaryPredicate1D &pred)
{
if (!_current_set) {
return 0;
}
PredicateWrapper wrapper(pred);
try {
std::sort(_current_set->begin(), _current_set->end(), wrapper);
}
catch (std::runtime_error &e) {
cerr << "Warning: Operator.sort(): " << e.what() << endl;
return -1;
}
return 0;
}
static Stroke *createStroke(Interface1D &inter)
{
Stroke *stroke = new Stroke;
stroke->setId(inter.getId());
float currentCurvilignAbscissa = 0.0f;
Interface0DIterator it = inter.verticesBegin(), itend = inter.verticesEnd();
Interface0DIterator itfirst = it;
Vec2r current(it->getPoint2D());
Vec2r previous = current;
SVertex *sv;
CurvePoint *cp;
StrokeVertex *stroke_vertex = NULL;
bool hasSingularity = false;
do {
cp = dynamic_cast<CurvePoint *>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex *>(&(*it));
if (!sv) {
cerr << "Warning: unexpected Vertex type" << endl;
continue;
}
stroke_vertex = new StrokeVertex(sv);
}
else {
stroke_vertex = new StrokeVertex(cp);
}
current = stroke_vertex->getPoint2D();
Vec2r vec_tmp(current - previous);
real dist = vec_tmp.norm();
if (dist < 1.0e-6) {
hasSingularity = true;
}
currentCurvilignAbscissa += dist;
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
previous = current;
++it;
} while ((it != itend) && (it != itfirst));
if (it == itfirst) {
// Add last vertex:
cp = dynamic_cast<CurvePoint *>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex *>(&(*it));
if (!sv) {
cerr << "Warning: unexpected Vertex type" << endl;
}
else {
stroke_vertex = new StrokeVertex(sv);
}
}
else {
stroke_vertex = new StrokeVertex(cp);
}
current = stroke_vertex->getPoint2D();
Vec2r vec_tmp(current - previous);
real dist = vec_tmp.norm();
if (dist < 1.0e-6) {
hasSingularity = true;
}
currentCurvilignAbscissa += dist;
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
}
// Discard the stroke if the number of stroke vertices is less than two
if (stroke->strokeVerticesSize() < 2) {
delete stroke;
return NULL;
}
stroke->setLength(currentCurvilignAbscissa);
if (hasSingularity) {
// Try to address singular points such that the distance between two subsequent vertices
// are smaller than epsilon.
StrokeInternal::StrokeVertexIterator v = stroke->strokeVerticesBegin();
StrokeInternal::StrokeVertexIterator vnext = v;
++vnext;
Vec2r next((*v).getPoint());
while (!vnext.isEnd()) {
current = next;
next = (*vnext).getPoint();
if ((next - current).norm() < 1.0e-6) {
StrokeInternal::StrokeVertexIterator vprevious = v;
if (!vprevious.isBegin()) {
--vprevious;
}
// collect a set of overlapping vertices
std::vector<StrokeVertex *> overlapping_vertices;
overlapping_vertices.push_back(&(*v));
do {
overlapping_vertices.push_back(&(*vnext));
current = next;
++v;
++vnext;
if (vnext.isEnd()) {
break;
}
next = (*vnext).getPoint();
} while ((next - current).norm() < 1.0e-6);
Vec2r target;
bool reverse;
if (!vnext.isEnd()) {
target = (*vnext).getPoint();
reverse = false;
}
else if (!vprevious.isBegin()) {
target = (*vprevious).getPoint();
reverse = true;
}
else {
// Discard the stroke because all stroke vertices are overlapping
delete stroke;
return NULL;
}
current = overlapping_vertices.front()->getPoint();
Vec2r dir(target - current);
real dist = dir.norm();
real len = 1.0e-3; // default offset length
int nvert = overlapping_vertices.size();
if (dist < len * nvert) {
len = dist / nvert;
}
dir.normalize();
Vec2r offset(dir * len);
// add the offset to the overlapping vertices
StrokeVertex *sv;
std::vector<StrokeVertex *>::iterator it = overlapping_vertices.begin();
if (!reverse) {
for (int n = 0; n < nvert; n++) {
sv = (*it);
sv->setPoint(sv->getPoint() + offset * (n + 1));
++it;
}
}
else {
for (int n = 0; n < nvert; n++) {
sv = (*it);
sv->setPoint(sv->getPoint() + offset * (nvert - n));
++it;
}
}
if (vnext.isEnd()) {
break;
}
}
++v;
++vnext;
}
}
{
// Check if the stroke no longer contains singular points
Interface0DIterator v = stroke->verticesBegin();
Interface0DIterator vnext = v;
++vnext;
Vec2r next((*v).getPoint2D());
bool warning = false;
while (!vnext.isEnd()) {
current = next;
next = (*vnext).getPoint2D();
if ((next - current).norm() < 1.0e-6) {
warning = true;
break;
}
++v;
++vnext;
}
if (warning && G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: stroke contains singular points.\n");
}
}
return stroke;
}
inline int applyShading(Stroke &stroke, vector<StrokeShader *> &shaders)
{
for (vector<StrokeShader *>::iterator it = shaders.begin(); it != shaders.end(); ++it) {
if ((*it)->shade(stroke) < 0) {
return -1;
}
}
return 0;
}
int Operators::create(UnaryPredicate1D &pred, vector<StrokeShader *> shaders)
{
// Canvas* canvas = Canvas::getInstance();
if (!_current_set) {
cerr << "Warning: current set empty" << endl;
return 0;
}
StrokesContainer new_strokes_set;
for (Operators::I1DContainer::iterator it = _current_set->begin(); it != _current_set->end();
++it) {
if (pred(**it) < 0) {
goto error;
}
if (!pred.result) {
continue;
}
Stroke *stroke = createStroke(**it);
if (stroke) {
if (applyShading(*stroke, shaders) < 0) {
delete stroke;
goto error;
}
// canvas->RenderStroke(stroke);
new_strokes_set.push_back(stroke);
}
}
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end();
++it) {
_current_strokes_set.push_back(*it);
}
new_strokes_set.clear();
return 0;
error:
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end();
++it) {
delete (*it);
}
new_strokes_set.clear();
return -1;
}
void Operators::reset(bool removeStrokes)
{
ViewMap *vm = ViewMap::getInstance();
if (!vm) {
cerr << "Error: no ViewMap computed yet" << endl;
return;
}
_current_view_edges_set.clear();
for (I1DContainer::iterator it = _current_chains_set.begin(); it != _current_chains_set.end();
++it) {
delete *it;
}
_current_chains_set.clear();
ViewMap::viewedges_container &vedges = vm->ViewEdges();
ViewMap::viewedges_container::iterator ve = vedges.begin(), veend = vedges.end();
for (; ve != veend; ++ve) {
if ((*ve)->getLength2D() < M_EPSILON) {
continue;
}
_current_view_edges_set.push_back(*ve);
}
_current_set = &_current_view_edges_set;
if (removeStrokes) {
_current_strokes_set.clear();
}
}
} /* namespace Freestyle */