This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_string_ref.hh
Jacques Lucke 6c2e1f3398 BLI: cleanup StringRef and Span and improve parameter validation
Previously, methods like `Span.drop_front` would crash when more
elements would be dropped than are available. While this is most
efficient, it is not very practical in some use cases. Also other languages
silently clamp the index, so one can easily write wrong code accidentally.

Now, `Span.drop_front` and similar methods will only crash when n
is negative. Too large values will be clamped down to their maximum
possible value. While this is slightly less efficient, I did not have a case
where this actually mattered yet. If it does matter in the future, we can
add a separate `*_unchecked` method.

This should not change the behavior of existing code.
2021-02-20 22:05:50 +01:00

544 lines
16 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup bli
*
* A `blender::StringRef` references a const char array owned by someone else. It is just a pointer
* and a size. Since the memory is not owned, StringRef should not be used to transfer ownership of
* the string. The data referenced by a StringRef cannot be mutated through it.
*
* A StringRef is NOT null-terminated. This makes it much more powerful within C++, because we can
* also cut off parts of the end without creating a copy. When interfacing with C code that expects
* null-terminated strings, `blender::StringRefNull` can be used. It is essentially the same as
* StringRef, but with the restriction that the string has to be null-terminated.
*
* Whenever possible, string parameters should be of type StringRef and the string return type
* should be StringRefNull. Don't forget that the StringRefNull does not own the string, so don't
* return it when the string exists only in the scope of the function. This convention makes
* functions usable in the most contexts.
*
* blender::StringRef vs. std::string_view:
* Both types are certainly very similar. The main benefit of using StringRef in Blender is that
* this allows us to add convenience methods at any time. Especially, when doing a lot of string
* manipulation, this helps to keep the code clean. Furthermore, we need StringRefNull anyway,
* because there is a lot of C code that expects null-terminated strings. Conversion between
* StringRef and string_view is very cheap and can be done at api boundaries at essentially no
* cost. Another benefit of using StringRef is that it uses signed integers, thus developers
* have to deal less with issues resulting from unsigned integers.
*/
#include <cstring>
#include <sstream>
#include <string>
#include <string_view>
#include "BLI_span.hh"
#include "BLI_utildefines.h"
namespace blender {
class StringRef;
/**
* A common base class for StringRef and StringRefNull. This should never be used in other files.
* It only exists to avoid some code duplication.
*/
class StringRefBase {
protected:
const char *data_;
int64_t size_;
constexpr StringRefBase(const char *data, const int64_t size) : data_(data), size_(size)
{
}
public:
/* Similar to string_view::npos, but signed. */
static constexpr int64_t not_found = -1;
/**
* Return the (byte-)length of the referenced string, without any null-terminator.
*/
constexpr int64_t size() const
{
return size_;
}
constexpr bool is_empty() const
{
return size_ == 0;
}
/**
* Return a pointer to the start of the string.
*/
constexpr const char *data() const
{
return data_;
}
constexpr operator Span<char>() const
{
return Span<char>(data_, size_);
}
/**
* Implicitly convert to std::string. This is convenient in most cases, but you have to be a bit
* careful not to convert to std::string accidentally.
*/
operator std::string() const
{
return std::string(data_, static_cast<size_t>(size_));
}
constexpr operator std::string_view() const
{
return std::string_view(data_, static_cast<size_t>(size_));
}
constexpr const char *begin() const
{
return data_;
}
constexpr const char *end() const
{
return data_ + size_;
}
constexpr IndexRange index_range() const
{
return IndexRange(size_);
}
/**
* Copy the string into a buffer. The buffer has to be one byte larger than the size of the
* string, because the copied string will be null-terminated. Only use this when you are
* absolutely sure that the buffer is large enough.
*/
void unsafe_copy(char *dst) const
{
memcpy(dst, data_, static_cast<size_t>(size_));
dst[size_] = '\0';
}
/**
* Copy the string into a buffer. The copied string will be null-terminated. This invokes
* undefined behavior when dst_size is too small. (Should we define the behavior?)
*/
void copy(char *dst, const int64_t dst_size) const
{
if (size_ < dst_size) {
this->unsafe_copy(dst);
}
else {
BLI_assert(false);
dst[0] = '\0';
}
}
/**
* Copy the string into a char array. The copied string will be null-terminated. This invokes
* undefined behavior when dst is too small.
*/
template<size_t N> void copy(char (&dst)[N]) const
{
this->copy(dst, N);
}
/**
* Returns true when the string begins with the given prefix. Otherwise false.
*/
constexpr bool startswith(StringRef prefix) const;
/**
* Returns true when the string ends with the given suffix. Otherwise false.
*/
constexpr bool endswith(StringRef suffix) const;
constexpr StringRef substr(int64_t start, const int64_t size) const;
/**
* Get the first char in the string. This invokes undefined behavior when the string is empty.
*/
constexpr const char &front() const
{
BLI_assert(size_ >= 1);
return data_[0];
}
/**
* Get the last char in the string. This invokes undefined behavior when the string is empty.
*/
constexpr const char &back() const
{
BLI_assert(size_ >= 1);
return data_[size_ - 1];
}
/**
* The behavior of those functions matches the standard library implementation of
* std::string_view.
*/
constexpr int64_t find(char c, int64_t pos = 0) const;
constexpr int64_t find(StringRef str, int64_t pos = 0) const;
constexpr int64_t rfind(char c, int64_t pos = INT64_MAX) const;
constexpr int64_t rfind(StringRef str, int64_t pos = INT64_MAX) const;
constexpr int64_t find_first_of(StringRef chars, int64_t pos = 0) const;
constexpr int64_t find_first_of(char c, int64_t pos = 0) const;
constexpr int64_t find_last_of(StringRef chars, int64_t pos = INT64_MAX) const;
constexpr int64_t find_last_of(char c, int64_t pos = INT64_MAX) const;
constexpr int64_t find_first_not_of(StringRef chars, int64_t pos = 0) const;
constexpr int64_t find_first_not_of(char c, int64_t pos = 0) const;
constexpr int64_t find_last_not_of(StringRef chars, int64_t pos = INT64_MAX) const;
constexpr int64_t find_last_not_of(char c, int64_t pos = INT64_MAX) const;
};
/**
* References a null-terminated const char array.
*/
class StringRefNull : public StringRefBase {
public:
constexpr StringRefNull() : StringRefBase("", 0)
{
}
/**
* Construct a StringRefNull from a null terminated c-string. The pointer must not point to
* NULL.
*/
StringRefNull(const char *str) : StringRefBase(str, static_cast<int64_t>(strlen(str)))
{
BLI_assert(str != nullptr);
BLI_assert(data_[size_] == '\0');
}
/**
* Construct a StringRefNull from a null terminated c-string. This invokes undefined behavior
* when the given size is not the correct size of the string.
*/
constexpr StringRefNull(const char *str, const int64_t size) : StringRefBase(str, size)
{
BLI_assert(static_cast<int64_t>(strlen(str)) == size);
}
/**
* Reference a std::string. Remember that when the std::string is destructed, the StringRefNull
* will point to uninitialized memory.
*/
StringRefNull(const std::string &str) : StringRefNull(str.c_str())
{
}
/**
* Get the char at the given index.
*/
constexpr char operator[](const int64_t index) const
{
BLI_assert(index >= 0);
/* Use '<=' instead of just '<', so that the null character can be accessed as well. */
BLI_assert(index <= size_);
return data_[index];
}
/**
* Returns the beginning of a null-terminated char array.
*
* This is like ->data(), but can only be called on a StringRefNull.
*/
constexpr const char *c_str() const
{
return data_;
}
};
/**
* References a const char array. It might not be null terminated.
*/
class StringRef : public StringRefBase {
public:
constexpr StringRef() : StringRefBase(nullptr, 0)
{
}
/**
* StringRefNull can be converted into StringRef, but not the other way around.
*/
constexpr StringRef(StringRefNull other) : StringRefBase(other.data(), other.size())
{
}
/**
* Create a StringRef from a null-terminated c-string.
*/
constexpr StringRef(const char *str)
: StringRefBase(str, str ? static_cast<int64_t>(std::char_traits<char>::length(str)) : 0)
{
}
constexpr StringRef(const char *str, const int64_t length) : StringRefBase(str, length)
{
}
/**
* Create a StringRef from a start and end pointer. This invokes undefined behavior when the
* second point points to a smaller address than the first one.
*/
constexpr StringRef(const char *begin, const char *one_after_end)
: StringRefBase(begin, static_cast<int64_t>(one_after_end - begin))
{
BLI_assert(begin <= one_after_end);
}
/**
* Reference a std::string. Remember that when the std::string is destructed, the StringRef
* will point to uninitialized memory.
*/
StringRef(const std::string &str) : StringRefBase(str.data(), static_cast<int64_t>(str.size()))
{
}
constexpr StringRef(std::string_view view)
: StringRefBase(view.data(), static_cast<int64_t>(view.size()))
{
}
/**
* Returns a new StringRef that does not contain the first n chars. This invokes undefined
* behavior when n is negative.
*/
constexpr StringRef drop_prefix(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t clamped_n = std::min(n, size_);
const int64_t new_size = size_ - clamped_n;
return StringRef(data_ + clamped_n, new_size);
}
/**
* Return a new StringRef with the given prefix being skipped. This invokes undefined behavior if
* the string does not begin with the given prefix.
*/
constexpr StringRef drop_known_prefix(StringRef prefix) const
{
BLI_assert(this->startswith(prefix));
return this->drop_prefix(prefix.size());
}
/**
* Return a new StringRef that does not contain the last n chars. This invokes undefined behavior
* when n is negative.
*/
constexpr StringRef drop_suffix(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return StringRef(data_, new_size);
}
/**
* Get the char at the given index.
*/
constexpr char operator[](int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
};
/* More inline functions
***************************************/
inline std::ostream &operator<<(std::ostream &stream, StringRef ref)
{
stream << std::string(ref);
return stream;
}
inline std::ostream &operator<<(std::ostream &stream, StringRefNull ref)
{
stream << std::string(ref.data(), (size_t)ref.size());
return stream;
}
/**
* Adding two #StringRefs will allocate an std::string.
* This is not efficient, but convenient in most cases.
*/
inline std::string operator+(StringRef a, StringRef b)
{
return std::string(a) + std::string(b);
}
/* This does not compare StringRef and std::string_view, because of ambiguous overloads. This is
* not a problem when std::string_view is only used at api boundaries. To compare a StringRef and a
* std::string_view, one should convert the std::string_view to StringRef (which is very cheap).
* Ideally, we only use StringRef in our code to avoid this problem altogether. */
constexpr inline bool operator==(StringRef a, StringRef b)
{
if (a.size() != b.size()) {
return false;
}
return STREQLEN(a.data(), b.data(), (size_t)a.size());
}
constexpr inline bool operator!=(StringRef a, StringRef b)
{
return !(a == b);
}
constexpr inline bool operator<(StringRef a, StringRef b)
{
return std::string_view(a) < std::string_view(b);
}
constexpr inline bool operator>(StringRef a, StringRef b)
{
return std::string_view(a) > std::string_view(b);
}
constexpr inline bool operator<=(StringRef a, StringRef b)
{
return std::string_view(a) <= std::string_view(b);
}
constexpr inline bool operator>=(StringRef a, StringRef b)
{
return std::string_view(a) >= std::string_view(b);
}
/**
* Return true when the string starts with the given prefix.
*/
constexpr inline bool StringRefBase::startswith(StringRef prefix) const
{
if (size_ < prefix.size_) {
return false;
}
for (int64_t i = 0; i < prefix.size_; i++) {
if (data_[i] != prefix.data_[i]) {
return false;
}
}
return true;
}
/**
* Return true when the string ends with the given suffix.
*/
constexpr inline bool StringRefBase::endswith(StringRef suffix) const
{
if (size_ < suffix.size_) {
return false;
}
const int64_t offset = size_ - suffix.size_;
for (int64_t i = 0; i < suffix.size_; i++) {
if (data_[offset + i] != suffix.data_[i]) {
return false;
}
}
return true;
}
/**
* Return a new #StringRef containing only a sub-string of the original string. This invokes
* undefined if the start or max_size is negative.
*/
constexpr inline StringRef StringRefBase::substr(const int64_t start,
const int64_t max_size = INT64_MAX) const
{
BLI_assert(max_size >= 0);
BLI_assert(start >= 0);
const int64_t substr_size = std::min(max_size, size_ - start);
return StringRef(data_ + start, substr_size);
}
constexpr inline int64_t index_or_npos_to_int64(size_t index)
{
/* The compiler will probably optimize this check away. */
if (index == std::string_view::npos) {
return StringRef::not_found;
}
return static_cast<int64_t>(index);
}
constexpr inline int64_t StringRefBase::find(char c, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(std::string_view(*this).find(c, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find(StringRef str, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(std::string_view(*this).find(str, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find_first_of(StringRef chars, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(
std::string_view(*this).find_first_of(chars, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find_first_of(char c, int64_t pos) const
{
return this->find_first_of(StringRef(&c, 1), pos);
}
constexpr inline int64_t StringRefBase::find_last_of(StringRef chars, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(
std::string_view(*this).find_last_of(chars, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find_last_of(char c, int64_t pos) const
{
return this->find_last_of(StringRef(&c, 1), pos);
}
constexpr inline int64_t StringRefBase::find_first_not_of(StringRef chars, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(
std::string_view(*this).find_first_not_of(chars, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find_first_not_of(char c, int64_t pos) const
{
return this->find_first_not_of(StringRef(&c, 1), pos);
}
constexpr inline int64_t StringRefBase::find_last_not_of(StringRef chars, int64_t pos) const
{
BLI_assert(pos >= 0);
return index_or_npos_to_int64(
std::string_view(*this).find_last_not_of(chars, static_cast<size_t>(pos)));
}
constexpr inline int64_t StringRefBase::find_last_not_of(char c, int64_t pos) const
{
return this->find_last_not_of(StringRef(&c, 1), pos);
}
} // namespace blender