This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/freestyle/intern/geometry/GeomUtils.cpp
Campbell Barton 9ad181a5d0 Cleanup: email address formatting
Match git style email addresses, ignored by the spell checker.
2021-01-24 16:08:17 +11:00

848 lines
22 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup freestyle
* \brief Various tools for geometry
*/
#include "GeomUtils.h"
namespace Freestyle::GeomUtils {
// This internal procedure is defined below.
bool intersect2dSegPoly(Vec2r *seg, Vec2r *poly, unsigned n);
bool intersect2dSeg2dArea(const Vec2r &min, const Vec2r &max, const Vec2r &A, const Vec2r &B)
{
Vec2r seg[2];
seg[0] = A;
seg[1] = B;
Vec2r poly[5];
poly[0][0] = min[0];
poly[0][1] = min[1];
poly[1][0] = max[0];
poly[1][1] = min[1];
poly[2][0] = max[0];
poly[2][1] = max[1];
poly[3][0] = min[0];
poly[3][1] = max[1];
poly[4][0] = min[0];
poly[4][1] = min[1];
return intersect2dSegPoly(seg, poly, 4);
}
bool include2dSeg2dArea(const Vec2r &min, const Vec2r &max, const Vec2r &A, const Vec2r &B)
{
if ((((max[0] > A[0]) && (A[0] > min[0])) && ((max[0] > B[0]) && (B[0] > min[0]))) &&
(((max[1] > A[1]) && (A[1] > min[1])) && ((max[1] > B[1]) && (B[1] > min[1])))) {
return true;
}
return false;
}
intersection_test intersect2dSeg2dSeg(
const Vec2r &p1, const Vec2r &p2, const Vec2r &p3, const Vec2r &p4, Vec2r &res)
{
real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
real r1, r2, r3, r4; // 'Sign' values
real denom, num; // Intermediate values
// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x + b1 y + c1 = 0".
a1 = p2[1] - p1[1];
b1 = p1[0] - p2[0];
c1 = p2[0] * p1[1] - p1[0] * p2[1];
// Compute r3 and r4.
r3 = a1 * p3[0] + b1 * p3[1] + c1;
r4 = a1 * p4[0] + b1 * p4[1] + c1;
// Check signs of r3 and r4. If both point 3 and point 4 lie on same side of line 1,
// the line segments do not intersect.
if (r3 != 0 && r4 != 0 && r3 * r4 > 0.0) {
return DONT_INTERSECT;
}
// Compute a2, b2, c2
a2 = p4[1] - p3[1];
b2 = p3[0] - p4[0];
c2 = p4[0] * p3[1] - p3[0] * p4[1];
// Compute r1 and r2
r1 = a2 * p1[0] + b2 * p1[1] + c2;
r2 = a2 * p2[0] + b2 * p2[1] + c2;
// Check signs of r1 and r2. If both point 1 and point 2 lie on same side of second line
// segment, the line segments do not intersect.
if (r1 != 0 && r2 != 0 && r1 * r2 > 0.0) {
return DONT_INTERSECT;
}
// Line segments intersect: compute intersection point.
denom = a1 * b2 - a2 * b1;
if (fabs(denom) < M_EPSILON) {
return COLINEAR;
}
num = b1 * c2 - b2 * c1;
res[0] = num / denom;
num = a2 * c1 - a1 * c2;
res[1] = num / denom;
return DO_INTERSECT;
}
intersection_test intersect2dLine2dLine(
const Vec2r &p1, const Vec2r &p2, const Vec2r &p3, const Vec2r &p4, Vec2r &res)
{
real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
real denom, num; // Intermediate values
// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x + b1 y + c1 = 0".
a1 = p2[1] - p1[1];
b1 = p1[0] - p2[0];
c1 = p2[0] * p1[1] - p1[0] * p2[1];
// Compute a2, b2, c2
a2 = p4[1] - p3[1];
b2 = p3[0] - p4[0];
c2 = p4[0] * p3[1] - p3[0] * p4[1];
// Line segments intersect: compute intersection point.
denom = a1 * b2 - a2 * b1;
if (fabs(denom) < M_EPSILON) {
return COLINEAR;
}
num = b1 * c2 - b2 * c1;
res[0] = num / denom;
num = a2 * c1 - a1 * c2;
res[1] = num / denom;
return DO_INTERSECT;
}
intersection_test intersect2dSeg2dSegParametric(const Vec2r &p1,
const Vec2r &p2,
const Vec2r &p3,
const Vec2r &p4,
real &t,
real &u,
real epsilon)
{
real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
real r1, r2, r3, r4; // 'Sign' values
real denom, num; // Intermediate values
// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x + b1 y + c1 = 0".
a1 = p2[1] - p1[1];
b1 = p1[0] - p2[0];
c1 = p2[0] * p1[1] - p1[0] * p2[1];
// Compute r3 and r4.
r3 = a1 * p3[0] + b1 * p3[1] + c1;
r4 = a1 * p4[0] + b1 * p4[1] + c1;
// Check signs of r3 and r4. If both point 3 and point 4 lie on same side of line 1,
// the line segments do not intersect.
if (r3 != 0 && r4 != 0 && r3 * r4 > 0.0) {
return DONT_INTERSECT;
}
// Compute a2, b2, c2
a2 = p4[1] - p3[1];
b2 = p3[0] - p4[0];
c2 = p4[0] * p3[1] - p3[0] * p4[1];
// Compute r1 and r2
r1 = a2 * p1[0] + b2 * p1[1] + c2;
r2 = a2 * p2[0] + b2 * p2[1] + c2;
// Check signs of r1 and r2. If both point 1 and point 2 lie on same side of second line
// segment, the line segments do not intersect.
if (r1 != 0 && r2 != 0 && r1 * r2 > 0.0) {
return DONT_INTERSECT;
}
// Line segments intersect: compute intersection point.
denom = a1 * b2 - a2 * b1;
if (fabs(denom) < epsilon) {
return COLINEAR;
}
real d1, e1;
d1 = p1[1] - p3[1];
e1 = p1[0] - p3[0];
num = -b2 * d1 - a2 * e1;
t = num / denom;
num = -b1 * d1 - a1 * e1;
u = num / denom;
return DO_INTERSECT;
}
// AABB-triangle overlap test code by Tomas Akenine-Möller
// Function: int triBoxOverlap(real boxcenter[3], real boxhalfsize[3],real triverts[3][3]);
// History:
// 2001-03-05: released the code in its first version
// 2001-06-18: changed the order of the tests, faster
//
// Acknowledgement: Many thanks to Pierre Terdiman for suggestions and discussions on how to
// optimize code. Thanks to David Hunt for finding a ">="-bug!
#define X 0
#define Y 1
#define Z 2
#define FINDMINMAX(x0, x1, x2, min, max) \
{ \
min = max = x0; \
if (x1 < min) { \
min = x1; \
} \
if (x1 > max) { \
max = x1; \
} \
if (x2 < min) { \
min = x2; \
} \
if (x2 > max) { \
max = x2; \
} \
} \
(void)0
//======================== X-tests ========================//
#define AXISTEST_X01(a, b, fa, fb) \
{ \
p0 = a * v0[Y] - b * v0[Z]; \
p2 = a * v2[Y] - b * v2[Z]; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} \
else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
#define AXISTEST_X2(a, b, fa, fb) \
{ \
p0 = a * v0[Y] - b * v0[Z]; \
p1 = a * v1[Y] - b * v1[Z]; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} \
else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
//======================== Y-tests ========================//
#define AXISTEST_Y02(a, b, fa, fb) \
{ \
p0 = -a * v0[X] + b * v0[Z]; \
p2 = -a * v2[X] + b * v2[Z]; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} \
else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
#define AXISTEST_Y1(a, b, fa, fb) \
{ \
p0 = -a * v0[X] + b * v0[Z]; \
p1 = -a * v1[X] + b * v1[Z]; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} \
else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
//======================== Z-tests ========================//
#define AXISTEST_Z12(a, b, fa, fb) \
{ \
p1 = a * v1[X] - b * v1[Y]; \
p2 = a * v2[X] - b * v2[Y]; \
if (p2 < p1) { \
min = p2; \
max = p1; \
} \
else { \
min = p1; \
max = p2; \
} \
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
#define AXISTEST_Z0(a, b, fa, fb) \
{ \
p0 = a * v0[X] - b * v0[Y]; \
p1 = a * v1[X] - b * v1[Y]; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} \
else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
if (min > rad || max < -rad) { \
return 0; \
} \
} \
(void)0
// This internal procedure is defined below.
bool overlapPlaneBox(Vec3r &normal, real d, Vec3r &maxbox);
// Use separating axis theorem to test overlap between triangle and box need to test for overlap in
// these directions: 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle we
// do not even need to test these) 2) normal of the triangle 3) crossproduct(edge from tri,
// {x,y,z}-directin) this gives 3x3=9 more tests
bool overlapTriangleBox(Vec3r &boxcenter, Vec3r &boxhalfsize, Vec3r triverts[3])
{
Vec3r v0, v1, v2, normal, e0, e1, e2;
real min, max, d, p0, p1, p2, rad, fex, fey, fez;
// This is the fastest branch on Sun
// move everything so that the boxcenter is in (0, 0, 0)
v0 = triverts[0] - boxcenter;
v1 = triverts[1] - boxcenter;
v2 = triverts[2] - boxcenter;
// compute triangle edges
e0 = v1 - v0;
e1 = v2 - v1;
e2 = v0 - v2;
// Bullet 3:
// Do the 9 tests first (this was faster)
fex = fabs(e0[X]);
fey = fabs(e0[Y]);
fez = fabs(e0[Z]);
AXISTEST_X01(e0[Z], e0[Y], fez, fey);
AXISTEST_Y02(e0[Z], e0[X], fez, fex);
AXISTEST_Z12(e0[Y], e0[X], fey, fex);
fex = fabs(e1[X]);
fey = fabs(e1[Y]);
fez = fabs(e1[Z]);
AXISTEST_X01(e1[Z], e1[Y], fez, fey);
AXISTEST_Y02(e1[Z], e1[X], fez, fex);
AXISTEST_Z0(e1[Y], e1[X], fey, fex);
fex = fabs(e2[X]);
fey = fabs(e2[Y]);
fez = fabs(e2[Z]);
AXISTEST_X2(e2[Z], e2[Y], fez, fey);
AXISTEST_Y1(e2[Z], e2[X], fez, fex);
AXISTEST_Z12(e2[Y], e2[X], fey, fex);
// Bullet 1:
// first test overlap in the {x,y,z}-directions
// find min, max of the triangle each direction, and test for overlap in that direction -- this
// is equivalent to testing a minimal AABB around the triangle against the AABB
// test in X-direction
FINDMINMAX(v0[X], v1[X], v2[X], min, max);
if (min > boxhalfsize[X] || max < -boxhalfsize[X]) {
return false;
}
// test in Y-direction
FINDMINMAX(v0[Y], v1[Y], v2[Y], min, max);
if (min > boxhalfsize[Y] || max < -boxhalfsize[Y]) {
return false;
}
// test in Z-direction
FINDMINMAX(v0[Z], v1[Z], v2[Z], min, max);
if (min > boxhalfsize[Z] || max < -boxhalfsize[Z]) {
return false;
}
// Bullet 2:
// test if the box intersects the plane of the triangle
// compute plane equation of triangle: normal * x + d = 0
normal = e0 ^ e1;
d = -(normal * v0); // plane eq: normal.x + d = 0
if (!overlapPlaneBox(normal, d, boxhalfsize)) {
return false;
}
return true; // box and triangle overlaps
}
// Fast, Minimum Storage Ray-Triangle Intersection
//
// Tomas Möller
// Prosolvia Clarus AB
// Sweden
// <tompa@clarus.se>
//
// Ben Trumbore
// Cornell University
// Ithaca, New York
// <wbt@graphics.cornell.edu>
bool intersectRayTriangle(const Vec3r &orig,
const Vec3r &dir,
const Vec3r &v0,
const Vec3r &v1,
const Vec3r &v2,
real &t,
real &u,
real &v,
const real epsilon)
{
Vec3r edge1, edge2, tvec, pvec, qvec;
real det, inv_det;
// find vectors for two edges sharing v0
edge1 = v1 - v0;
edge2 = v2 - v0;
// begin calculating determinant - also used to calculate U parameter
pvec = dir ^ edge2;
// if determinant is near zero, ray lies in plane of triangle
det = edge1 * pvec;
// calculate distance from v0 to ray origin
tvec = orig - v0;
inv_det = 1.0 / det;
qvec = tvec ^ edge1;
if (det > epsilon) {
u = tvec * pvec;
if (u < 0.0 || u > det) {
return false;
}
// calculate V parameter and test bounds
v = dir * qvec;
if (v < 0.0 || u + v > det) {
return false;
}
}
else if (det < -epsilon) {
// calculate U parameter and test bounds
u = tvec * pvec;
if (u > 0.0 || u < det) {
return false;
}
// calculate V parameter and test bounds
v = dir * qvec;
if (v > 0.0 || u + v < det) {
return false;
}
}
else {
return false; // ray is parallel to the plane of the triangle
}
u *= inv_det;
v *= inv_det;
t = (edge2 * qvec) * inv_det;
return true;
}
// Intersection between plane and ray, adapted from Graphics Gems, Didier Badouel
// The plane is represented by a set of points P implicitly defined as dot(norm, P) + d = 0.
// The ray is represented as r(t) = orig + dir * t.
intersection_test intersectRayPlane(const Vec3r &orig,
const Vec3r &dir,
const Vec3r &norm,
const real d,
real &t,
const real epsilon)
{
real denom = norm * dir;
if (fabs(denom) <= epsilon) { // plane and ray are parallel
if (fabs((norm * orig) + d) <= epsilon) {
return COINCIDENT; // plane and ray are coincident
}
return COLINEAR;
}
t = -(d + (norm * orig)) / denom;
if (t < 0.0f) {
return DONT_INTERSECT;
}
return DO_INTERSECT;
}
bool intersectRayBBox(const Vec3r &orig,
const Vec3r &dir, // ray origin and direction
const Vec3r &boxMin,
const Vec3r &boxMax, // the bbox
real t0,
real t1,
real &tmin, // I0 = orig + tmin * dir is the first intersection
real &tmax, // I1 = orig + tmax * dir is the second intersection
real /*epsilon*/)
{
float tymin, tymax, tzmin, tzmax;
Vec3r inv_direction(1.0 / dir[0], 1.0 / dir[1], 1.0 / dir[2]);
int sign[3];
sign[0] = (inv_direction.x() < 0);
sign[1] = (inv_direction.y() < 0);
sign[2] = (inv_direction.z() < 0);
Vec3r bounds[2];
bounds[0] = boxMin;
bounds[1] = boxMax;
tmin = (bounds[sign[0]].x() - orig.x()) * inv_direction.x();
tmax = (bounds[1 - sign[0]].x() - orig.x()) * inv_direction.x();
tymin = (bounds[sign[1]].y() - orig.y()) * inv_direction.y();
tymax = (bounds[1 - sign[1]].y() - orig.y()) * inv_direction.y();
if ((tmin > tymax) || (tymin > tmax)) {
return false;
}
if (tymin > tmin) {
tmin = tymin;
}
if (tymax < tmax) {
tmax = tymax;
}
tzmin = (bounds[sign[2]].z() - orig.z()) * inv_direction.z();
tzmax = (bounds[1 - sign[2]].z() - orig.z()) * inv_direction.z();
if ((tmin > tzmax) || (tzmin > tmax)) {
return false;
}
if (tzmin > tmin) {
tmin = tzmin;
}
if (tzmax < tmax) {
tmax = tzmax;
}
return ((tmin < t1) && (tmax > t0));
}
// Checks whether 3D points p lies inside or outside of the triangle ABC
bool includePointTriangle(const Vec3r &P, const Vec3r &A, const Vec3r &B, const Vec3r &C)
{
Vec3r AB(B - A);
Vec3r BC(C - B);
Vec3r CA(A - C);
Vec3r AP(P - A);
Vec3r BP(P - B);
Vec3r CP(P - C);
Vec3r N(AB ^ BC); // triangle's normal
N.normalize();
Vec3r J(AB ^ AP), K(BC ^ BP), L(CA ^ CP);
J.normalize();
K.normalize();
L.normalize();
if (J * N < 0) {
return false; // on the right of AB
}
if (K * N < 0) {
return false; // on the right of BC
}
if (L * N < 0) {
return false; // on the right of CA
}
return true;
}
void transformVertex(const Vec3r &vert, const Matrix44r &matrix, Vec3r &res)
{
HVec3r hvert(vert), res_tmp;
real scale;
for (unsigned int j = 0; j < 4; j++) {
scale = hvert[j];
for (unsigned int i = 0; i < 4; i++) {
res_tmp[i] += matrix(i, j) * scale;
}
}
res[0] = res_tmp.x();
res[1] = res_tmp.y();
res[2] = res_tmp.z();
}
void transformVertices(const vector<Vec3r> &vertices, const Matrix44r &trans, vector<Vec3r> &res)
{
size_t i;
res.resize(vertices.size());
for (i = 0; i < vertices.size(); i++) {
transformVertex(vertices[i], trans, res[i]);
}
}
Vec3r rotateVector(const Matrix44r &mat, const Vec3r &v)
{
Vec3r res;
for (unsigned int i = 0; i < 3; i++) {
res[i] = 0;
for (unsigned int j = 0; j < 3; j++) {
res[i] += mat(i, j) * v[j];
}
}
res.normalize();
return res;
}
// This internal procedure is defined below.
void fromCoordAToCoordB(const Vec3r &p, Vec3r &q, const real transform[4][4]);
void fromWorldToCamera(const Vec3r &p, Vec3r &q, const real model_view_matrix[4][4])
{
fromCoordAToCoordB(p, q, model_view_matrix);
}
void fromCameraToRetina(const Vec3r &p, Vec3r &q, const real projection_matrix[4][4])
{
fromCoordAToCoordB(p, q, projection_matrix);
}
void fromRetinaToImage(const Vec3r &p, Vec3r &q, const int viewport[4])
{
// winX:
q[0] = viewport[0] + viewport[2] * (p[0] + 1.0) / 2.0;
// winY:
q[1] = viewport[1] + viewport[3] * (p[1] + 1.0) / 2.0;
// winZ:
q[2] = (p[2] + 1.0) / 2.0;
}
void fromWorldToImage(const Vec3r &p,
Vec3r &q,
const real model_view_matrix[4][4],
const real projection_matrix[4][4],
const int viewport[4])
{
Vec3r p1, p2;
fromWorldToCamera(p, p1, model_view_matrix);
fromCameraToRetina(p1, p2, projection_matrix);
fromRetinaToImage(p2, q, viewport);
q[2] = p1[2];
}
void fromWorldToImage(const Vec3r &p, Vec3r &q, const real transform[4][4], const int viewport[4])
{
fromCoordAToCoordB(p, q, transform);
// winX:
q[0] = viewport[0] + viewport[2] * (q[0] + 1.0) / 2.0;
// winY:
q[1] = viewport[1] + viewport[3] * (q[1] + 1.0) / 2.0;
}
void fromImageToRetina(const Vec3r &p, Vec3r &q, const int viewport[4])
{
q = p;
q[0] = 2.0 * (q[0] - viewport[0]) / viewport[2] - 1.0;
q[1] = 2.0 * (q[1] - viewport[1]) / viewport[3] - 1.0;
}
void fromRetinaToCamera(const Vec3r &p, Vec3r &q, real focal, const real projection_matrix[4][4])
{
if (projection_matrix[3][3] == 0.0) { // perspective
q[0] = (-p[0] * focal) / projection_matrix[0][0];
q[1] = (-p[1] * focal) / projection_matrix[1][1];
q[2] = focal;
}
else { // orthogonal
q[0] = p[0] / projection_matrix[0][0];
q[1] = p[1] / projection_matrix[1][1];
q[2] = focal;
}
}
void fromCameraToWorld(const Vec3r &p, Vec3r &q, const real model_view_matrix[4][4])
{
real translation[3] = {
model_view_matrix[0][3],
model_view_matrix[1][3],
model_view_matrix[2][3],
};
for (unsigned short i = 0; i < 3; i++) {
q[i] = 0.0;
for (unsigned short j = 0; j < 3; j++) {
q[i] += model_view_matrix[j][i] * (p[j] - translation[j]);
}
}
}
//
// Internal code
//
/////////////////////////////////////////////////////////////////////////////
// Copyright 2001, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose providing that this copyright notice
// is included with it. SoftSurfer makes no warranty for this code, and cannot be held liable for
// any real or imagined damage resulting from its use. Users of this code must verify correctness
// for their application.
#define PERP(u, v) ((u)[0] * (v)[1] - (u)[1] * (v)[0]) // 2D perp product
inline bool intersect2dSegPoly(Vec2r *seg, Vec2r *poly, unsigned n)
{
if (seg[0] == seg[1]) {
return false;
}
real tE = 0; // the maximum entering segment parameter
real tL = 1; // the minimum leaving segment parameter
real t, N, D; // intersect parameter t = N / D
Vec2r dseg = seg[1] - seg[0]; // the segment direction vector
Vec2r e; // edge vector
for (unsigned int i = 0; i < n; i++) { // process polygon edge poly[i]poly[i+1]
e = poly[i + 1] - poly[i];
N = PERP(e, seg[0] - poly[i]);
D = -PERP(e, dseg);
if (fabs(D) < M_EPSILON) {
if (N < 0) {
return false;
}
continue;
}
t = N / D;
if (D < 0) { // segment seg is entering across this edge
if (t > tE) { // new max tE
tE = t;
if (tE > tL) { // seg enters after leaving polygon
return false;
}
}
}
else { // segment seg is leaving across this edge
if (t < tL) { // new min tL
tL = t;
if (tL < tE) { // seg leaves before entering polygon
return false;
}
}
}
}
// tE <= tL implies that there is a valid intersection subsegment
return true;
}
inline bool overlapPlaneBox(Vec3r &normal, real d, Vec3r &maxbox)
{
Vec3r vmin, vmax;
for (unsigned int q = X; q <= Z; q++) {
if (normal[q] > 0.0f) {
vmin[q] = -maxbox[q];
vmax[q] = maxbox[q];
}
else {
vmin[q] = maxbox[q];
vmax[q] = -maxbox[q];
}
}
if ((normal * vmin) + d > 0.0f) {
return false;
}
if ((normal * vmax) + d >= 0.0f) {
return true;
}
return false;
}
inline void fromCoordAToCoordB(const Vec3r &p, Vec3r &q, const real transform[4][4])
{
HVec3r hp(p);
HVec3r hq(0, 0, 0, 0);
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
hq[i] += transform[i][j] * hp[j];
}
}
if (hq[3] == 0) {
q = p;
return;
}
for (unsigned int k = 0; k < 3; k++) {
q[k] = hq[k] / hq[3];
}
}
} // namespace Freestyle::GeomUtils