The Pose FK mode assings the rotation origin to the boundary of the last visited face set in the floodfill operation. In some cases, the topology of the model may make the flood fill operation to visit a face set as the first one (assinging it to target) and visit it again as the last one (assinging it to origin). This will make the pose brush to default the origin and target to the brush location and not to the face sets as it considers that there is only one possible boundary. This adds a GSet to ensure that a particular face set is not visited twice in the flood fill, fixing these cases. Reviewed By: sergey Differential Revision: https://developer.blender.org/D7984
1233 lines
42 KiB
C
1233 lines
42 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2020 Blender Foundation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup edsculpt
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_task.h"
|
|
|
|
#include "DNA_brush_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "BKE_brush.h"
|
|
#include "BKE_ccg.h"
|
|
#include "BKE_colortools.h"
|
|
#include "BKE_context.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_multires.h"
|
|
#include "BKE_node.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_paint.h"
|
|
#include "BKE_pbvh.h"
|
|
#include "BKE_scene.h"
|
|
|
|
#include "paint_intern.h"
|
|
#include "sculpt_intern.h"
|
|
|
|
#include "bmesh.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
static void pose_solve_ik_chain(SculptPoseIKChain *ik_chain,
|
|
const float initial_target[3],
|
|
const bool use_anchor)
|
|
{
|
|
SculptPoseIKChainSegment *segments = ik_chain->segments;
|
|
int tot_segments = ik_chain->tot_segments;
|
|
|
|
float target[3];
|
|
|
|
/* Set the initial target. */
|
|
copy_v3_v3(target, initial_target);
|
|
|
|
/* Solve the positions and rotations of all segments in the chain. */
|
|
for (int i = 0; i < tot_segments; i++) {
|
|
float initial_orientation[3];
|
|
float current_orientation[3];
|
|
float current_head_position[3];
|
|
float current_origin_position[3];
|
|
|
|
/* Calculate the rotation to orientate the segment to the target from its initial state. */
|
|
sub_v3_v3v3(current_orientation, target, segments[i].orig);
|
|
normalize_v3(current_orientation);
|
|
sub_v3_v3v3(initial_orientation, segments[i].initial_head, segments[i].initial_orig);
|
|
normalize_v3(initial_orientation);
|
|
rotation_between_vecs_to_quat(segments[i].rot, initial_orientation, current_orientation);
|
|
|
|
/* Rotate the segment by calculating a new head position. */
|
|
madd_v3_v3v3fl(current_head_position, segments[i].orig, current_orientation, segments[i].len);
|
|
|
|
/* Move the origin of the segment towards the target. */
|
|
sub_v3_v3v3(current_origin_position, target, current_head_position);
|
|
|
|
/* Store the new head and origin positions to the segment. */
|
|
copy_v3_v3(segments[i].head, current_head_position);
|
|
add_v3_v3(segments[i].orig, current_origin_position);
|
|
|
|
/* Use the origin of this segment as target for the next segment in the chain. */
|
|
copy_v3_v3(target, segments[i].orig);
|
|
}
|
|
|
|
/* Move back the whole chain to preserve the anchor point. */
|
|
if (use_anchor) {
|
|
float anchor_diff[3];
|
|
sub_v3_v3v3(
|
|
anchor_diff, segments[tot_segments - 1].initial_orig, segments[tot_segments - 1].orig);
|
|
|
|
for (int i = 0; i < tot_segments; i++) {
|
|
add_v3_v3(segments[i].orig, anchor_diff);
|
|
add_v3_v3(segments[i].head, anchor_diff);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pose_solve_roll_chain(SculptPoseIKChain *ik_chain,
|
|
const Brush *brush,
|
|
const float roll)
|
|
{
|
|
SculptPoseIKChainSegment *segments = ik_chain->segments;
|
|
int tot_segments = ik_chain->tot_segments;
|
|
|
|
for (int i = 0; i < tot_segments; i++) {
|
|
float initial_orientation[3];
|
|
float initial_rotation[4];
|
|
float current_rotation[4];
|
|
|
|
sub_v3_v3v3(initial_orientation, segments[i].initial_head, segments[i].initial_orig);
|
|
normalize_v3(initial_orientation);
|
|
|
|
/* Calculate the current roll angle using the brush curve. */
|
|
float current_roll = roll * BKE_brush_curve_strength(brush, i, tot_segments);
|
|
|
|
axis_angle_normalized_to_quat(initial_rotation, initial_orientation, 0.0f);
|
|
axis_angle_normalized_to_quat(current_rotation, initial_orientation, current_roll);
|
|
|
|
/* Store the difference of the rotations in the segment rotation. */
|
|
rotation_between_quats_to_quat(segments[i].rot, current_rotation, initial_rotation);
|
|
}
|
|
}
|
|
|
|
static void pose_solve_translate_chain(SculptPoseIKChain *ik_chain, const float delta[3])
|
|
{
|
|
SculptPoseIKChainSegment *segments = ik_chain->segments;
|
|
const int tot_segments = ik_chain->tot_segments;
|
|
|
|
for (int i = 0; i < tot_segments; i++) {
|
|
/* Move the origin and head of each segment by delta. */
|
|
add_v3_v3v3(segments[i].head, segments[i].initial_head, delta);
|
|
add_v3_v3v3(segments[i].orig, segments[i].initial_orig, delta);
|
|
|
|
/* Reset the segment rotation. */
|
|
unit_qt(segments[i].rot);
|
|
}
|
|
}
|
|
|
|
static void pose_solve_scale_chain(SculptPoseIKChain *ik_chain, const float scale[3])
|
|
{
|
|
SculptPoseIKChainSegment *segments = ik_chain->segments;
|
|
const int tot_segments = ik_chain->tot_segments;
|
|
|
|
for (int i = 0; i < tot_segments; i++) {
|
|
/* Assign the scale to each segment. */
|
|
copy_v3_v3(segments[i].scale, scale);
|
|
}
|
|
}
|
|
|
|
static void do_pose_brush_task_cb_ex(void *__restrict userdata,
|
|
const int n,
|
|
const TaskParallelTLS *__restrict UNUSED(tls))
|
|
{
|
|
SculptThreadedTaskData *data = userdata;
|
|
SculptSession *ss = data->ob->sculpt;
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
SculptPoseIKChainSegment *segments = ik_chain->segments;
|
|
|
|
PBVHVertexIter vd;
|
|
float disp[3], new_co[3];
|
|
float final_pos[3];
|
|
|
|
SculptOrigVertData orig_data;
|
|
SCULPT_orig_vert_data_init(&orig_data, data->ob, data->nodes[n]);
|
|
|
|
BKE_pbvh_vertex_iter_begin(ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE)
|
|
{
|
|
SCULPT_orig_vert_data_update(&orig_data, &vd);
|
|
|
|
float total_disp[3];
|
|
zero_v3(total_disp);
|
|
|
|
ePaintSymmetryAreas symm_area = SCULPT_get_vertex_symm_area(orig_data.co);
|
|
|
|
/* Calculate the displacement of each vertex for all the segments in the chain. */
|
|
for (int ik = 0; ik < ik_chain->tot_segments; ik++) {
|
|
copy_v3_v3(new_co, orig_data.co);
|
|
|
|
/* Get the transform matrix for the vertex symmetry area to calculate a displacement in the
|
|
* vertex. */
|
|
mul_m4_v3(segments[ik].pivot_mat_inv[(int)symm_area], new_co);
|
|
mul_m4_v3(segments[ik].trans_mat[(int)symm_area], new_co);
|
|
mul_m4_v3(segments[ik].pivot_mat[(int)symm_area], new_co);
|
|
|
|
/* Apply the segment weight of the vertex to the displacement. */
|
|
sub_v3_v3v3(disp, new_co, orig_data.co);
|
|
mul_v3_fl(disp, segments[ik].weights[vd.index]);
|
|
|
|
/* Apply the vertex mask to the displacement. */
|
|
float mask = vd.mask ? *vd.mask : 0.0f;
|
|
mul_v3_fl(disp, 1.0f - mask);
|
|
|
|
/* Accumulate the displacement. */
|
|
add_v3_v3(total_disp, disp);
|
|
}
|
|
|
|
/* Apply the accumulated displacement to the vertex. */
|
|
add_v3_v3v3(final_pos, orig_data.co, total_disp);
|
|
copy_v3_v3(vd.co, final_pos);
|
|
|
|
if (vd.mvert) {
|
|
vd.mvert->flag |= ME_VERT_PBVH_UPDATE;
|
|
}
|
|
}
|
|
BKE_pbvh_vertex_iter_end;
|
|
}
|
|
|
|
typedef struct PoseGrowFactorTLSData {
|
|
float pos_avg[3];
|
|
int pos_count;
|
|
} PoseGrowFactorTLSData;
|
|
|
|
static void pose_brush_grow_factor_task_cb_ex(void *__restrict userdata,
|
|
const int n,
|
|
const TaskParallelTLS *__restrict tls)
|
|
{
|
|
SculptThreadedTaskData *data = userdata;
|
|
PoseGrowFactorTLSData *gftd = tls->userdata_chunk;
|
|
SculptSession *ss = data->ob->sculpt;
|
|
const char symm = data->sd->paint.symmetry_flags & PAINT_SYMM_AXIS_ALL;
|
|
PBVHVertexIter vd;
|
|
BKE_pbvh_vertex_iter_begin(ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE)
|
|
{
|
|
SculptVertexNeighborIter ni;
|
|
float max = 0.0f;
|
|
|
|
/* Grow the factor. */
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, vd.index, ni) {
|
|
float vmask_f = data->prev_mask[ni.index];
|
|
max = MAX2(vmask_f, max);
|
|
}
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
|
|
|
|
/* Keep the count of the vertices that where added to the factors in this grow iteration. */
|
|
if (max > data->prev_mask[vd.index]) {
|
|
data->pose_factor[vd.index] = max;
|
|
if (SCULPT_check_vertex_pivot_symmetry(vd.co, data->pose_initial_co, symm)) {
|
|
add_v3_v3(gftd->pos_avg, vd.co);
|
|
gftd->pos_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
BKE_pbvh_vertex_iter_end;
|
|
}
|
|
|
|
static void pose_brush_grow_factor_reduce(const void *__restrict UNUSED(userdata),
|
|
void *__restrict chunk_join,
|
|
void *__restrict chunk)
|
|
{
|
|
PoseGrowFactorTLSData *join = chunk_join;
|
|
PoseGrowFactorTLSData *gftd = chunk;
|
|
add_v3_v3(join->pos_avg, gftd->pos_avg);
|
|
join->pos_count += gftd->pos_count;
|
|
}
|
|
|
|
/* Grow the factor until its boundary is near to the offset pose origin or outside the target
|
|
* distance. */
|
|
static void sculpt_pose_grow_pose_factor(Sculpt *sd,
|
|
Object *ob,
|
|
SculptSession *ss,
|
|
float pose_origin[3],
|
|
float pose_target[3],
|
|
float max_len,
|
|
float *r_pose_origin,
|
|
float *pose_factor)
|
|
{
|
|
PBVHNode **nodes;
|
|
PBVH *pbvh = ob->sculpt->pbvh;
|
|
int totnode;
|
|
|
|
BKE_pbvh_search_gather(pbvh, NULL, NULL, &nodes, &totnode);
|
|
SculptThreadedTaskData data = {
|
|
.sd = sd,
|
|
.ob = ob,
|
|
.nodes = nodes,
|
|
.totnode = totnode,
|
|
.pose_factor = pose_factor,
|
|
};
|
|
|
|
data.pose_initial_co = pose_target;
|
|
TaskParallelSettings settings;
|
|
PoseGrowFactorTLSData gftd;
|
|
gftd.pos_count = 0;
|
|
zero_v3(gftd.pos_avg);
|
|
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
|
|
settings.func_reduce = pose_brush_grow_factor_reduce;
|
|
settings.userdata_chunk = &gftd;
|
|
settings.userdata_chunk_size = sizeof(PoseGrowFactorTLSData);
|
|
|
|
bool grow_next_iteration = true;
|
|
float prev_len = FLT_MAX;
|
|
data.prev_mask = MEM_mallocN(SCULPT_vertex_count_get(ss) * sizeof(float), "prev mask");
|
|
while (grow_next_iteration) {
|
|
zero_v3(gftd.pos_avg);
|
|
gftd.pos_count = 0;
|
|
memcpy(data.prev_mask, pose_factor, SCULPT_vertex_count_get(ss) * sizeof(float));
|
|
BLI_task_parallel_range(0, totnode, &data, pose_brush_grow_factor_task_cb_ex, &settings);
|
|
|
|
if (gftd.pos_count != 0) {
|
|
mul_v3_fl(gftd.pos_avg, 1.0f / (float)gftd.pos_count);
|
|
if (pose_origin) {
|
|
/* Test with pose origin. Used when growing the factors to compensate the Origin Offset. */
|
|
/* Stop when the factor's avg_pos starts moving away from the origin instead of getting
|
|
* closer to it. */
|
|
float len = len_v3v3(gftd.pos_avg, pose_origin);
|
|
if (len < prev_len) {
|
|
prev_len = len;
|
|
grow_next_iteration = true;
|
|
}
|
|
else {
|
|
grow_next_iteration = false;
|
|
memcpy(pose_factor, data.prev_mask, SCULPT_vertex_count_get(ss) * sizeof(float));
|
|
}
|
|
}
|
|
else {
|
|
/* Test with length. Used to calculate the origin positions of the IK chain. */
|
|
/* Stops when the factors have grown enough to generate a new segment origin. */
|
|
float len = len_v3v3(gftd.pos_avg, pose_target);
|
|
if (len < max_len) {
|
|
prev_len = len;
|
|
grow_next_iteration = true;
|
|
}
|
|
else {
|
|
grow_next_iteration = false;
|
|
if (r_pose_origin) {
|
|
copy_v3_v3(r_pose_origin, gftd.pos_avg);
|
|
}
|
|
memcpy(pose_factor, data.prev_mask, SCULPT_vertex_count_get(ss) * sizeof(float));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (r_pose_origin) {
|
|
copy_v3_v3(r_pose_origin, pose_target);
|
|
}
|
|
grow_next_iteration = false;
|
|
}
|
|
}
|
|
MEM_freeN(data.prev_mask);
|
|
|
|
MEM_SAFE_FREE(nodes);
|
|
}
|
|
|
|
static bool sculpt_pose_brush_is_vertex_inside_brush_radius(const float vertex[3],
|
|
const float br_co[3],
|
|
float radius,
|
|
char symm)
|
|
{
|
|
for (char i = 0; i <= symm; ++i) {
|
|
if (SCULPT_is_symmetry_iteration_valid(i, symm)) {
|
|
float location[3];
|
|
flip_v3_v3(location, br_co, (char)i);
|
|
if (len_v3v3(location, vertex) < radius) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
typedef struct PoseFloodFillData {
|
|
float pose_initial_co[3];
|
|
float radius;
|
|
int symm;
|
|
|
|
float *pose_factor;
|
|
float pose_origin[3];
|
|
int tot_co;
|
|
|
|
int current_face_set;
|
|
int next_face_set;
|
|
int prev_face_set;
|
|
int next_vertex;
|
|
|
|
bool next_face_set_found;
|
|
|
|
/* Store the visited face sets to avoid going back when calculating the chain. */
|
|
GSet *visited_face_sets;
|
|
|
|
/* In face sets origin mode, each vertex can only be assigned to one face set. */
|
|
BLI_bitmap *is_weighted;
|
|
|
|
bool is_first_iteration;
|
|
|
|
/* In topology mode this stores the furthest point from the stroke origin for cases when a pose
|
|
* origin based on the brush radius can't be set. */
|
|
float fallback_floodfill_origin[3];
|
|
|
|
/* Fallback origin. If we can't find any face set to continue, use the position of all vertices
|
|
* that have the current face set. */
|
|
float fallback_origin[3];
|
|
int fallback_count;
|
|
|
|
/* Face Set FK mode. */
|
|
int *floodfill_it;
|
|
float *fk_weights;
|
|
int initial_face_set;
|
|
int masked_face_set_it;
|
|
int masked_face_set;
|
|
int target_face_set;
|
|
} PoseFloodFillData;
|
|
|
|
static bool pose_topology_floodfill_cb(
|
|
SculptSession *ss, int UNUSED(from_v), int to_v, bool is_duplicate, void *userdata)
|
|
{
|
|
PoseFloodFillData *data = userdata;
|
|
const float *co = SCULPT_vertex_co_get(ss, to_v);
|
|
|
|
if (data->pose_factor) {
|
|
data->pose_factor[to_v] = 1.0f;
|
|
}
|
|
|
|
if (len_squared_v3v3(data->pose_initial_co, data->fallback_floodfill_origin) <
|
|
len_squared_v3v3(data->pose_initial_co, co)) {
|
|
copy_v3_v3(data->fallback_floodfill_origin, co);
|
|
}
|
|
|
|
if (sculpt_pose_brush_is_vertex_inside_brush_radius(
|
|
co, data->pose_initial_co, data->radius, data->symm)) {
|
|
return true;
|
|
}
|
|
if (SCULPT_check_vertex_pivot_symmetry(co, data->pose_initial_co, data->symm)) {
|
|
if (!is_duplicate) {
|
|
add_v3_v3(data->pose_origin, co);
|
|
data->tot_co++;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pose_face_sets_floodfill_cb(
|
|
SculptSession *ss, int UNUSED(from_v), int to_v, bool is_duplicate, void *userdata)
|
|
{
|
|
PoseFloodFillData *data = userdata;
|
|
|
|
const int index = to_v;
|
|
bool visit_next = false;
|
|
|
|
const float *co = SCULPT_vertex_co_get(ss, index);
|
|
const bool symmetry_check = SCULPT_check_vertex_pivot_symmetry(
|
|
co, data->pose_initial_co, data->symm) &&
|
|
!is_duplicate;
|
|
|
|
/* First iteration. Continue expanding using topology until a vertex is outside the brush radius
|
|
* to determine the first face set. */
|
|
if (data->current_face_set == SCULPT_FACE_SET_NONE) {
|
|
|
|
data->pose_factor[index] = 1.0f;
|
|
BLI_BITMAP_ENABLE(data->is_weighted, index);
|
|
|
|
if (sculpt_pose_brush_is_vertex_inside_brush_radius(
|
|
co, data->pose_initial_co, data->radius, data->symm)) {
|
|
const int visited_face_set = SCULPT_vertex_face_set_get(ss, index);
|
|
BLI_gset_add(data->visited_face_sets, POINTER_FROM_INT(visited_face_set));
|
|
}
|
|
else if (symmetry_check) {
|
|
data->current_face_set = SCULPT_vertex_face_set_get(ss, index);
|
|
BLI_gset_add(data->visited_face_sets, POINTER_FROM_INT(data->current_face_set));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* We already have a current face set, so we can start checking the face sets of the vertices. */
|
|
/* In the first iteration we need to check all face sets we already visited as the flood fill may
|
|
* still not be finished in some of them. */
|
|
bool is_vertex_valid = false;
|
|
if (data->is_first_iteration) {
|
|
GSetIterator gs_iter;
|
|
GSET_ITER (gs_iter, data->visited_face_sets) {
|
|
const int visited_face_set = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter));
|
|
is_vertex_valid |= SCULPT_vertex_has_face_set(ss, index, visited_face_set);
|
|
}
|
|
}
|
|
else {
|
|
is_vertex_valid = SCULPT_vertex_has_face_set(ss, index, data->current_face_set);
|
|
}
|
|
|
|
if (is_vertex_valid) {
|
|
|
|
if (!BLI_BITMAP_TEST(data->is_weighted, index)) {
|
|
data->pose_factor[index] = 1.0f;
|
|
BLI_BITMAP_ENABLE(data->is_weighted, index);
|
|
visit_next = true;
|
|
}
|
|
|
|
/* Fallback origin accumulation. */
|
|
if (symmetry_check) {
|
|
add_v3_v3(data->fallback_origin, SCULPT_vertex_co_get(ss, index));
|
|
data->fallback_count++;
|
|
}
|
|
|
|
if (symmetry_check && !SCULPT_vertex_has_unique_face_set(ss, index)) {
|
|
|
|
/* We only add coordinates for calculating the origin when it is possible to go from this
|
|
* vertex to another vertex in a valid face set for the next iteration. */
|
|
bool count_as_boundary = false;
|
|
|
|
SculptVertexNeighborIter ni;
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, index, ni) {
|
|
int next_face_set_candidate = SCULPT_vertex_face_set_get(ss, ni.index);
|
|
|
|
/* Check if we can get a valid face set for the next iteration from this neighbor. */
|
|
if (SCULPT_vertex_has_unique_face_set(ss, ni.index) &&
|
|
!BLI_gset_haskey(data->visited_face_sets, POINTER_FROM_INT(next_face_set_candidate))) {
|
|
if (!data->next_face_set_found) {
|
|
data->next_face_set = next_face_set_candidate;
|
|
data->next_vertex = ni.index;
|
|
data->next_face_set_found = true;
|
|
}
|
|
count_as_boundary = true;
|
|
}
|
|
}
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
|
|
|
|
/* Origin accumulation. */
|
|
if (count_as_boundary) {
|
|
add_v3_v3(data->pose_origin, SCULPT_vertex_co_get(ss, index));
|
|
data->tot_co++;
|
|
}
|
|
}
|
|
}
|
|
return visit_next;
|
|
}
|
|
|
|
/* Public functions. */
|
|
|
|
/* Calculate the pose origin and (Optionaly the pose factor) that is used when using the pose brush
|
|
*
|
|
* r_pose_origin must be a valid pointer. the r_pose_factor is optional. When set to NULL it won't
|
|
* be calculated. */
|
|
void SCULPT_pose_calc_pose_data(Sculpt *sd,
|
|
Object *ob,
|
|
SculptSession *ss,
|
|
float initial_location[3],
|
|
float radius,
|
|
float pose_offset,
|
|
float *r_pose_origin,
|
|
float *r_pose_factor)
|
|
{
|
|
SCULPT_vertex_random_access_init(ss);
|
|
|
|
/* Calculate the pose rotation point based on the boundaries of the brush factor. */
|
|
SculptFloodFill flood;
|
|
SCULPT_floodfill_init(ss, &flood);
|
|
SCULPT_floodfill_add_active(sd, ob, ss, &flood, (r_pose_factor) ? radius : 0.0f);
|
|
|
|
PoseFloodFillData fdata = {
|
|
.radius = radius,
|
|
.symm = sd->paint.symmetry_flags & PAINT_SYMM_AXIS_ALL,
|
|
.pose_factor = r_pose_factor,
|
|
.tot_co = 0,
|
|
};
|
|
zero_v3(fdata.pose_origin);
|
|
copy_v3_v3(fdata.pose_initial_co, initial_location);
|
|
copy_v3_v3(fdata.fallback_floodfill_origin, initial_location);
|
|
SCULPT_floodfill_execute(ss, &flood, pose_topology_floodfill_cb, &fdata);
|
|
SCULPT_floodfill_free(&flood);
|
|
|
|
if (fdata.tot_co > 0) {
|
|
mul_v3_fl(fdata.pose_origin, 1.0f / (float)fdata.tot_co);
|
|
}
|
|
else {
|
|
copy_v3_v3(fdata.pose_origin, fdata.fallback_floodfill_origin);
|
|
}
|
|
|
|
/* Offset the pose origin. */
|
|
float pose_d[3];
|
|
sub_v3_v3v3(pose_d, fdata.pose_origin, fdata.pose_initial_co);
|
|
normalize_v3(pose_d);
|
|
madd_v3_v3fl(fdata.pose_origin, pose_d, radius * pose_offset);
|
|
copy_v3_v3(r_pose_origin, fdata.pose_origin);
|
|
|
|
/* Do the initial grow of the factors to get the first segment of the chain with Origin Offset.
|
|
*/
|
|
if (pose_offset != 0.0f && r_pose_factor) {
|
|
sculpt_pose_grow_pose_factor(
|
|
sd, ob, ss, fdata.pose_origin, fdata.pose_origin, 0, NULL, r_pose_factor);
|
|
}
|
|
}
|
|
|
|
static void pose_brush_init_task_cb_ex(void *__restrict userdata,
|
|
const int n,
|
|
const TaskParallelTLS *__restrict UNUSED(tls))
|
|
{
|
|
SculptThreadedTaskData *data = userdata;
|
|
SculptSession *ss = data->ob->sculpt;
|
|
PBVHVertexIter vd;
|
|
BKE_pbvh_vertex_iter_begin(ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE)
|
|
{
|
|
SculptVertexNeighborIter ni;
|
|
float avg = 0.0f;
|
|
int total = 0;
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, vd.index, ni) {
|
|
avg += data->pose_factor[ni.index];
|
|
total++;
|
|
}
|
|
SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
|
|
|
|
if (total > 0) {
|
|
data->pose_factor[vd.index] = avg / total;
|
|
}
|
|
}
|
|
BKE_pbvh_vertex_iter_end;
|
|
}
|
|
|
|
/* Init the IK chain with empty weights. */
|
|
static SculptPoseIKChain *pose_ik_chain_new(const int totsegments, const int totverts)
|
|
{
|
|
SculptPoseIKChain *ik_chain = MEM_callocN(sizeof(SculptPoseIKChain), "Pose IK Chain");
|
|
ik_chain->tot_segments = totsegments;
|
|
ik_chain->segments = MEM_callocN(totsegments * sizeof(SculptPoseIKChainSegment),
|
|
"Pose IK Chain Segments");
|
|
for (int i = 0; i < totsegments; i++) {
|
|
ik_chain->segments[i].weights = MEM_callocN(totverts * sizeof(float), "Pose IK weights");
|
|
}
|
|
return ik_chain;
|
|
}
|
|
|
|
/* Init the origin/head pairs of all the segments from the calculated origins. */
|
|
static void pose_ik_chain_origin_heads_init(SculptPoseIKChain *ik_chain,
|
|
const float initial_location[3])
|
|
{
|
|
float origin[3];
|
|
float head[3];
|
|
for (int i = 0; i < ik_chain->tot_segments; i++) {
|
|
if (i == 0) {
|
|
copy_v3_v3(head, initial_location);
|
|
copy_v3_v3(origin, ik_chain->segments[i].orig);
|
|
}
|
|
else {
|
|
copy_v3_v3(head, ik_chain->segments[i - 1].orig);
|
|
copy_v3_v3(origin, ik_chain->segments[i].orig);
|
|
}
|
|
copy_v3_v3(ik_chain->segments[i].orig, origin);
|
|
copy_v3_v3(ik_chain->segments[i].initial_orig, origin);
|
|
copy_v3_v3(ik_chain->segments[i].head, head);
|
|
copy_v3_v3(ik_chain->segments[i].initial_head, head);
|
|
ik_chain->segments[i].len = len_v3v3(head, origin);
|
|
copy_v3_fl(ik_chain->segments[i].scale, 1.0f);
|
|
}
|
|
}
|
|
|
|
static int pose_brush_num_effective_segments(const Brush *brush)
|
|
{
|
|
/* Scaling multiple segments at the same time is not supported as the IK solver can't handle
|
|
* changes in the segment's length. It will also required a better weight distribution to avoid
|
|
* artifacts in the areas affected by multiple segments. */
|
|
if (ELEM(brush->pose_deform_type,
|
|
BRUSH_POSE_DEFORM_SCALE_TRASLATE,
|
|
BRUSH_POSE_DEFORM_SQUASH_STRETCH)) {
|
|
return 1;
|
|
}
|
|
return brush->pose_ik_segments;
|
|
}
|
|
|
|
static SculptPoseIKChain *pose_ik_chain_init_topology(Sculpt *sd,
|
|
Object *ob,
|
|
SculptSession *ss,
|
|
Brush *br,
|
|
const float initial_location[3],
|
|
const float radius)
|
|
{
|
|
|
|
const float chain_segment_len = radius * (1.0f + br->pose_offset);
|
|
float next_chain_segment_target[3];
|
|
|
|
int totvert = SCULPT_vertex_count_get(ss);
|
|
int nearest_vertex_index = SCULPT_nearest_vertex_get(sd, ob, initial_location, FLT_MAX, true);
|
|
|
|
/* Init the buffers used to keep track of the changes in the pose factors as more segments are
|
|
* added to the IK chain. */
|
|
|
|
/* This stores the whole pose factors values as they grow through the mesh. */
|
|
float *pose_factor_grow = MEM_callocN(totvert * sizeof(float), "Pose Factor Grow");
|
|
|
|
/* This stores the previous status of the factors when growing a new iteration. */
|
|
float *pose_factor_grow_prev = MEM_callocN(totvert * sizeof(float),
|
|
"Pose Factor Grow Prev Iteration");
|
|
|
|
pose_factor_grow[nearest_vertex_index] = 1.0f;
|
|
|
|
const int tot_segments = pose_brush_num_effective_segments(br);
|
|
SculptPoseIKChain *ik_chain = pose_ik_chain_new(tot_segments, totvert);
|
|
|
|
/* Calculate the first segment in the chain using the brush radius and the pose origin offset. */
|
|
copy_v3_v3(next_chain_segment_target, initial_location);
|
|
SCULPT_pose_calc_pose_data(sd,
|
|
ob,
|
|
ss,
|
|
next_chain_segment_target,
|
|
radius,
|
|
br->pose_offset,
|
|
ik_chain->segments[0].orig,
|
|
pose_factor_grow);
|
|
|
|
copy_v3_v3(next_chain_segment_target, ik_chain->segments[0].orig);
|
|
|
|
/* Init the weights of this segment and store the status of the pose factors to start calculating
|
|
* new segment origins. */
|
|
for (int j = 0; j < totvert; j++) {
|
|
ik_chain->segments[0].weights[j] = pose_factor_grow[j];
|
|
pose_factor_grow_prev[j] = pose_factor_grow[j];
|
|
}
|
|
|
|
/* Calculate the next segments in the chain growing the pose factors. */
|
|
for (int i = 1; i < ik_chain->tot_segments; i++) {
|
|
|
|
/* Grow the factors to get the new segment origin. */
|
|
sculpt_pose_grow_pose_factor(sd,
|
|
ob,
|
|
ss,
|
|
NULL,
|
|
next_chain_segment_target,
|
|
chain_segment_len,
|
|
ik_chain->segments[i].orig,
|
|
pose_factor_grow);
|
|
copy_v3_v3(next_chain_segment_target, ik_chain->segments[i].orig);
|
|
|
|
/* Create the weights for this segment from the difference between the previous grow factor
|
|
* iteration an the current iteration. */
|
|
for (int j = 0; j < totvert; j++) {
|
|
ik_chain->segments[i].weights[j] = pose_factor_grow[j] - pose_factor_grow_prev[j];
|
|
/* Store the current grow factor status for the next interation. */
|
|
pose_factor_grow_prev[j] = pose_factor_grow[j];
|
|
}
|
|
}
|
|
|
|
pose_ik_chain_origin_heads_init(ik_chain, initial_location);
|
|
|
|
MEM_freeN(pose_factor_grow);
|
|
MEM_freeN(pose_factor_grow_prev);
|
|
|
|
return ik_chain;
|
|
}
|
|
|
|
static SculptPoseIKChain *pose_ik_chain_init_face_sets(
|
|
Sculpt *sd, Object *ob, SculptSession *ss, Brush *br, const float radius)
|
|
{
|
|
|
|
int totvert = SCULPT_vertex_count_get(ss);
|
|
|
|
const int tot_segments = pose_brush_num_effective_segments(br);
|
|
|
|
SculptPoseIKChain *ik_chain = pose_ik_chain_new(tot_segments, totvert);
|
|
|
|
GSet *visited_face_sets = BLI_gset_int_new_ex("visited_face_sets", ik_chain->tot_segments);
|
|
|
|
BLI_bitmap *is_weighted = BLI_BITMAP_NEW(totvert, "weighted");
|
|
|
|
int current_face_set = SCULPT_FACE_SET_NONE;
|
|
int prev_face_set = SCULPT_FACE_SET_NONE;
|
|
|
|
int current_vertex = SCULPT_active_vertex_get(ss);
|
|
|
|
for (int s = 0; s < ik_chain->tot_segments; s++) {
|
|
|
|
SculptFloodFill flood;
|
|
SCULPT_floodfill_init(ss, &flood);
|
|
SCULPT_floodfill_add_initial_with_symmetry(sd, ob, ss, &flood, current_vertex, FLT_MAX);
|
|
|
|
BLI_gset_add(visited_face_sets, POINTER_FROM_INT(current_face_set));
|
|
|
|
PoseFloodFillData fdata = {
|
|
.radius = radius,
|
|
.symm = sd->paint.symmetry_flags & PAINT_SYMM_AXIS_ALL,
|
|
.pose_factor = ik_chain->segments[s].weights,
|
|
.tot_co = 0,
|
|
.fallback_count = 0,
|
|
.current_face_set = current_face_set,
|
|
.prev_face_set = prev_face_set,
|
|
.visited_face_sets = visited_face_sets,
|
|
.is_weighted = is_weighted,
|
|
.next_face_set_found = false,
|
|
.is_first_iteration = s == 0,
|
|
};
|
|
zero_v3(fdata.pose_origin);
|
|
zero_v3(fdata.fallback_origin);
|
|
copy_v3_v3(fdata.pose_initial_co, SCULPT_vertex_co_get(ss, current_vertex));
|
|
SCULPT_floodfill_execute(ss, &flood, pose_face_sets_floodfill_cb, &fdata);
|
|
SCULPT_floodfill_free(&flood);
|
|
|
|
if (fdata.tot_co > 0) {
|
|
mul_v3_fl(fdata.pose_origin, 1.0f / (float)fdata.tot_co);
|
|
copy_v3_v3(ik_chain->segments[s].orig, fdata.pose_origin);
|
|
}
|
|
else if (fdata.fallback_count > 0) {
|
|
mul_v3_fl(fdata.fallback_origin, 1.0f / (float)fdata.fallback_count);
|
|
copy_v3_v3(ik_chain->segments[s].orig, fdata.fallback_origin);
|
|
}
|
|
else {
|
|
zero_v3(ik_chain->segments[s].orig);
|
|
}
|
|
|
|
prev_face_set = fdata.current_face_set;
|
|
current_face_set = fdata.next_face_set;
|
|
current_vertex = fdata.next_vertex;
|
|
}
|
|
|
|
BLI_gset_free(visited_face_sets, NULL);
|
|
|
|
pose_ik_chain_origin_heads_init(ik_chain, SCULPT_active_vertex_co_get(ss));
|
|
|
|
MEM_SAFE_FREE(is_weighted);
|
|
|
|
return ik_chain;
|
|
}
|
|
|
|
static bool pose_face_sets_fk_find_masked_floodfill_cb(
|
|
SculptSession *ss, int from_v, int to_v, bool is_duplicate, void *userdata)
|
|
{
|
|
PoseFloodFillData *data = userdata;
|
|
|
|
if (!is_duplicate) {
|
|
data->floodfill_it[to_v] = data->floodfill_it[from_v] + 1;
|
|
}
|
|
else {
|
|
data->floodfill_it[to_v] = data->floodfill_it[from_v];
|
|
}
|
|
|
|
const int to_face_set = SCULPT_vertex_face_set_get(ss, to_v);
|
|
if (!BLI_gset_haskey(data->visited_face_sets, POINTER_FROM_INT(to_face_set))) {
|
|
if (SCULPT_vertex_has_unique_face_set(ss, to_v) &&
|
|
!SCULPT_vertex_has_unique_face_set(ss, from_v) &&
|
|
SCULPT_vertex_has_face_set(ss, from_v, to_face_set)) {
|
|
|
|
BLI_gset_add(data->visited_face_sets, POINTER_FROM_INT(to_face_set));
|
|
|
|
if (data->floodfill_it[to_v] >= data->masked_face_set_it) {
|
|
data->masked_face_set = to_face_set;
|
|
data->masked_face_set_it = data->floodfill_it[to_v];
|
|
}
|
|
|
|
if (data->target_face_set == SCULPT_FACE_SET_NONE) {
|
|
data->target_face_set = to_face_set;
|
|
}
|
|
}
|
|
}
|
|
|
|
return SCULPT_vertex_has_face_set(ss, to_v, data->initial_face_set);
|
|
}
|
|
|
|
static bool pose_face_sets_fk_set_weights_floodfill_cb(
|
|
SculptSession *ss, int UNUSED(from_v), int to_v, bool UNUSED(is_duplicate), void *userdata)
|
|
{
|
|
PoseFloodFillData *data = userdata;
|
|
data->fk_weights[to_v] = 1.0f;
|
|
return !SCULPT_vertex_has_face_set(ss, to_v, data->masked_face_set);
|
|
}
|
|
|
|
static SculptPoseIKChain *pose_ik_chain_init_face_sets_fk(
|
|
Sculpt *sd, Object *ob, SculptSession *ss, const float radius, const float *initial_location)
|
|
{
|
|
const int totvert = SCULPT_vertex_count_get(ss);
|
|
|
|
SculptPoseIKChain *ik_chain = pose_ik_chain_new(1, totvert);
|
|
|
|
const int active_vertex = SCULPT_active_vertex_get(ss);
|
|
const int active_face_set = SCULPT_active_face_set_get(ss);
|
|
|
|
SculptFloodFill flood;
|
|
SCULPT_floodfill_init(ss, &flood);
|
|
SCULPT_floodfill_add_initial(&flood, active_vertex);
|
|
PoseFloodFillData fdata;
|
|
fdata.floodfill_it = MEM_calloc_arrayN(totvert, sizeof(int), "floodfill iteration");
|
|
fdata.floodfill_it[active_vertex] = 1;
|
|
fdata.initial_face_set = active_face_set;
|
|
fdata.masked_face_set = SCULPT_FACE_SET_NONE;
|
|
fdata.target_face_set = SCULPT_FACE_SET_NONE;
|
|
fdata.masked_face_set_it = 0;
|
|
fdata.visited_face_sets = BLI_gset_int_new_ex("visited_face_sets", 3);
|
|
SCULPT_floodfill_execute(ss, &flood, pose_face_sets_fk_find_masked_floodfill_cb, &fdata);
|
|
SCULPT_floodfill_free(&flood);
|
|
BLI_gset_free(fdata.visited_face_sets, NULL);
|
|
|
|
int origin_count = 0;
|
|
float origin_acc[3] = {0.0f};
|
|
for (int i = 0; i < totvert; i++) {
|
|
if (fdata.floodfill_it[i] != 0 && SCULPT_vertex_has_face_set(ss, i, fdata.initial_face_set) &&
|
|
SCULPT_vertex_has_face_set(ss, i, fdata.masked_face_set)) {
|
|
add_v3_v3(origin_acc, SCULPT_vertex_co_get(ss, i));
|
|
origin_count++;
|
|
}
|
|
}
|
|
|
|
int target_count = 0;
|
|
float target_acc[3] = {0.0f};
|
|
if (fdata.target_face_set != fdata.masked_face_set) {
|
|
for (int i = 0; i < totvert; i++) {
|
|
if (fdata.floodfill_it[i] != 0 &&
|
|
SCULPT_vertex_has_face_set(ss, i, fdata.initial_face_set) &&
|
|
SCULPT_vertex_has_face_set(ss, i, fdata.target_face_set)) {
|
|
add_v3_v3(target_acc, SCULPT_vertex_co_get(ss, i));
|
|
target_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(fdata.floodfill_it);
|
|
|
|
if (origin_count > 0) {
|
|
copy_v3_v3(ik_chain->segments[0].orig, origin_acc);
|
|
mul_v3_fl(ik_chain->segments[0].orig, 1.0f / origin_count);
|
|
}
|
|
else {
|
|
zero_v3(ik_chain->segments[0].orig);
|
|
}
|
|
|
|
if (target_count > 0) {
|
|
copy_v3_v3(ik_chain->segments[0].head, target_acc);
|
|
mul_v3_fl(ik_chain->segments[0].head, 1.0f / target_count);
|
|
sub_v3_v3v3(ik_chain->grab_delta_offset, ik_chain->segments[0].head, initial_location);
|
|
}
|
|
else {
|
|
copy_v3_v3(ik_chain->segments[0].head, initial_location);
|
|
}
|
|
|
|
SCULPT_floodfill_init(ss, &flood);
|
|
SCULPT_floodfill_add_active(sd, ob, ss, &flood, radius);
|
|
fdata.fk_weights = ik_chain->segments[0].weights;
|
|
SCULPT_floodfill_execute(ss, &flood, pose_face_sets_fk_set_weights_floodfill_cb, &fdata);
|
|
SCULPT_floodfill_free(&flood);
|
|
|
|
pose_ik_chain_origin_heads_init(ik_chain, ik_chain->segments[0].head);
|
|
return ik_chain;
|
|
}
|
|
|
|
SculptPoseIKChain *SCULPT_pose_ik_chain_init(Sculpt *sd,
|
|
Object *ob,
|
|
SculptSession *ss,
|
|
Brush *br,
|
|
const float initial_location[3],
|
|
const float radius)
|
|
{
|
|
SculptPoseIKChain *ik_chain = NULL;
|
|
|
|
const bool use_fake_neighbors = !(br->flag2 & BRUSH_USE_CONNECTED_ONLY);
|
|
|
|
if (use_fake_neighbors) {
|
|
SCULPT_fake_neighbors_ensure(sd, ob, br->disconnected_distance_max);
|
|
SCULPT_fake_neighbors_enable(ob);
|
|
}
|
|
|
|
switch (br->pose_origin_type) {
|
|
case BRUSH_POSE_ORIGIN_TOPOLOGY:
|
|
ik_chain = pose_ik_chain_init_topology(sd, ob, ss, br, initial_location, radius);
|
|
break;
|
|
case BRUSH_POSE_ORIGIN_FACE_SETS:
|
|
ik_chain = pose_ik_chain_init_face_sets(sd, ob, ss, br, radius);
|
|
break;
|
|
case BRUSH_POSE_ORIGIN_FACE_SETS_FK:
|
|
ik_chain = pose_ik_chain_init_face_sets_fk(sd, ob, ss, radius, initial_location);
|
|
break;
|
|
}
|
|
|
|
if (use_fake_neighbors) {
|
|
SCULPT_fake_neighbors_disable(ob);
|
|
}
|
|
|
|
return ik_chain;
|
|
}
|
|
|
|
void SCULPT_pose_brush_init(Sculpt *sd, Object *ob, SculptSession *ss, Brush *br)
|
|
{
|
|
PBVHNode **nodes;
|
|
PBVH *pbvh = ob->sculpt->pbvh;
|
|
int totnode;
|
|
|
|
BKE_pbvh_search_gather(pbvh, NULL, NULL, &nodes, &totnode);
|
|
|
|
SculptThreadedTaskData data = {
|
|
.sd = sd,
|
|
.ob = ob,
|
|
.brush = br,
|
|
.nodes = nodes,
|
|
};
|
|
|
|
/* Init the IK chain that is going to be used to deform the vertices. */
|
|
ss->cache->pose_ik_chain = SCULPT_pose_ik_chain_init(
|
|
sd, ob, ss, br, ss->cache->true_location, ss->cache->radius);
|
|
|
|
/* Smooth the weights of each segment for cleaner deformation. */
|
|
for (int ik = 0; ik < ss->cache->pose_ik_chain->tot_segments; ik++) {
|
|
data.pose_factor = ss->cache->pose_ik_chain->segments[ik].weights;
|
|
for (int i = 0; i < br->pose_smooth_iterations; i++) {
|
|
TaskParallelSettings settings;
|
|
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
|
|
BLI_task_parallel_range(0, totnode, &data, pose_brush_init_task_cb_ex, &settings);
|
|
}
|
|
}
|
|
|
|
MEM_SAFE_FREE(nodes);
|
|
}
|
|
|
|
static void sculpt_pose_do_translate_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
BKE_curvemapping_initialize(brush->curve);
|
|
pose_solve_translate_chain(ik_chain, ss->cache->grab_delta);
|
|
}
|
|
|
|
/* Calculate a scale factor based on the grab delta. */
|
|
static float sculpt_pose_get_scale_from_grab_delta(SculptSession *ss, const float ik_target[3])
|
|
{
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
float plane[4];
|
|
float segment_dir[3];
|
|
sub_v3_v3v3(segment_dir, ik_chain->segments[0].initial_head, ik_chain->segments[0].initial_orig);
|
|
normalize_v3(segment_dir);
|
|
plane_from_point_normal_v3(plane, ik_chain->segments[0].initial_head, segment_dir);
|
|
const float segment_len = ik_chain->segments[0].len;
|
|
return segment_len / (segment_len - dist_signed_to_plane_v3(ik_target, plane));
|
|
}
|
|
|
|
static void sculpt_pose_do_scale_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
float ik_target[3];
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
|
|
copy_v3_v3(ik_target, ss->cache->true_location);
|
|
add_v3_v3(ik_target, ss->cache->grab_delta);
|
|
|
|
/* Solve the IK for the first segment to include rotation as part of scale. */
|
|
pose_solve_ik_chain(ik_chain, ik_target, brush->flag2 & BRUSH_POSE_IK_ANCHORED);
|
|
|
|
float scale[3];
|
|
copy_v3_fl(scale, sculpt_pose_get_scale_from_grab_delta(ss, ik_target));
|
|
|
|
/* Write the scale into the segments. */
|
|
pose_solve_scale_chain(ik_chain, scale);
|
|
}
|
|
|
|
static void sculpt_pose_do_twist_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
|
|
/* Calculate the maximum roll. 0.02 radians per pixel works fine. */
|
|
float roll = (ss->cache->initial_mouse[0] - ss->cache->mouse[0]) * ss->cache->bstrength * 0.02f;
|
|
BKE_curvemapping_initialize(brush->curve);
|
|
pose_solve_roll_chain(ik_chain, brush, roll);
|
|
}
|
|
|
|
static void sculpt_pose_do_rotate_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
float ik_target[3];
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
|
|
/* Calculate the IK target. */
|
|
copy_v3_v3(ik_target, ss->cache->true_location);
|
|
add_v3_v3(ik_target, ss->cache->grab_delta);
|
|
add_v3_v3(ik_target, ik_chain->grab_delta_offset);
|
|
|
|
/* Solve the IK positions. */
|
|
pose_solve_ik_chain(ik_chain, ik_target, brush->flag2 & BRUSH_POSE_IK_ANCHORED);
|
|
}
|
|
|
|
static void sculpt_pose_do_rotate_twist_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
if (ss->cache->invert) {
|
|
sculpt_pose_do_twist_deform(ss, brush);
|
|
}
|
|
else {
|
|
sculpt_pose_do_rotate_deform(ss, brush);
|
|
}
|
|
}
|
|
|
|
static void sculpt_pose_do_scale_translate_deform(SculptSession *ss, Brush *brush)
|
|
{
|
|
if (ss->cache->invert) {
|
|
sculpt_pose_do_translate_deform(ss, brush);
|
|
}
|
|
else {
|
|
sculpt_pose_do_scale_deform(ss, brush);
|
|
}
|
|
}
|
|
|
|
static void sculpt_pose_do_squash_stretch_deform(SculptSession *ss, Brush *UNUSED(brush))
|
|
{
|
|
float ik_target[3];
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
|
|
copy_v3_v3(ik_target, ss->cache->true_location);
|
|
add_v3_v3(ik_target, ss->cache->grab_delta);
|
|
|
|
float scale[3];
|
|
scale[2] = sculpt_pose_get_scale_from_grab_delta(ss, ik_target);
|
|
scale[0] = scale[1] = sqrtf(1.0f / scale[2]);
|
|
|
|
/* Write the scale into the segments. */
|
|
pose_solve_scale_chain(ik_chain, scale);
|
|
}
|
|
|
|
static void sculpt_pose_align_pivot_local_space(float r_mat[4][4],
|
|
ePaintSymmetryFlags symm,
|
|
ePaintSymmetryAreas symm_area,
|
|
SculptPoseIKChainSegment *segment,
|
|
const float grab_location[3])
|
|
{
|
|
float segment_origin_head[3];
|
|
float symm_head[3];
|
|
float symm_orig[3];
|
|
|
|
copy_v3_v3(symm_head, segment->head);
|
|
copy_v3_v3(symm_orig, segment->orig);
|
|
|
|
SCULPT_flip_v3_by_symm_area(symm_head, symm, symm_area, grab_location);
|
|
SCULPT_flip_v3_by_symm_area(symm_orig, symm, symm_area, grab_location);
|
|
|
|
sub_v3_v3v3(segment_origin_head, symm_head, symm_orig);
|
|
normalize_v3(segment_origin_head);
|
|
|
|
copy_v3_v3(r_mat[2], segment_origin_head);
|
|
ortho_basis_v3v3_v3(r_mat[0], r_mat[1], r_mat[2]);
|
|
}
|
|
|
|
/* Main Brush Function. */
|
|
void SCULPT_do_pose_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode)
|
|
{
|
|
SculptSession *ss = ob->sculpt;
|
|
Brush *brush = BKE_paint_brush(&sd->paint);
|
|
const ePaintSymmetryFlags symm = sd->paint.symmetry_flags & PAINT_SYMM_AXIS_ALL;
|
|
|
|
/* The pose brush applies all enabled symmetry axis in a single iteration, so the rest can be
|
|
* ignored. */
|
|
if (ss->cache->mirror_symmetry_pass != 0) {
|
|
return;
|
|
}
|
|
|
|
SculptPoseIKChain *ik_chain = ss->cache->pose_ik_chain;
|
|
|
|
switch (brush->pose_deform_type) {
|
|
case BRUSH_POSE_DEFORM_ROTATE_TWIST:
|
|
sculpt_pose_do_rotate_twist_deform(ss, brush);
|
|
break;
|
|
case BRUSH_POSE_DEFORM_SCALE_TRASLATE:
|
|
sculpt_pose_do_scale_translate_deform(ss, brush);
|
|
break;
|
|
case BRUSH_POSE_DEFORM_SQUASH_STRETCH:
|
|
sculpt_pose_do_squash_stretch_deform(ss, brush);
|
|
break;
|
|
}
|
|
|
|
/* Flip the segment chain in all symmetry axis and calculate the transform matrices for each
|
|
* possible combination. */
|
|
/* This can be optimized by skipping the calculation of matrices where the symmetry is not
|
|
* enabled. */
|
|
for (int symm_it = 0; symm_it < PAINT_SYMM_AREAS; symm_it++) {
|
|
for (int i = 0; i < ik_chain->tot_segments; i++) {
|
|
float symm_rot[4];
|
|
float symm_orig[3];
|
|
float symm_initial_orig[3];
|
|
|
|
ePaintSymmetryAreas symm_area = symm_it;
|
|
|
|
copy_qt_qt(symm_rot, ik_chain->segments[i].rot);
|
|
copy_v3_v3(symm_orig, ik_chain->segments[i].orig);
|
|
copy_v3_v3(symm_initial_orig, ik_chain->segments[i].initial_orig);
|
|
|
|
/* Flip the origins and rotation quats of each segment. */
|
|
SCULPT_flip_quat_by_symm_area(symm_rot, symm, symm_area, ss->cache->orig_grab_location);
|
|
SCULPT_flip_v3_by_symm_area(symm_orig, symm, symm_area, ss->cache->orig_grab_location);
|
|
SCULPT_flip_v3_by_symm_area(
|
|
symm_initial_orig, symm, symm_area, ss->cache->orig_grab_location);
|
|
|
|
float pivot_local_space[4][4];
|
|
unit_m4(pivot_local_space);
|
|
|
|
/* Align the segment pivot local space to the Z axis. */
|
|
if (brush->pose_deform_type == BRUSH_POSE_DEFORM_SQUASH_STRETCH) {
|
|
sculpt_pose_align_pivot_local_space(pivot_local_space,
|
|
symm,
|
|
symm_area,
|
|
&ik_chain->segments[i],
|
|
ss->cache->orig_grab_location);
|
|
unit_m4(ik_chain->segments[i].trans_mat[symm_it]);
|
|
}
|
|
else {
|
|
quat_to_mat4(ik_chain->segments[i].trans_mat[symm_it], symm_rot);
|
|
}
|
|
|
|
/* Apply segement scale to the transform. */
|
|
for (int scale_i = 0; scale_i < 3; scale_i++) {
|
|
mul_v3_fl(ik_chain->segments[i].trans_mat[symm_it][scale_i],
|
|
ik_chain->segments[i].scale[scale_i]);
|
|
}
|
|
|
|
translate_m4(ik_chain->segments[i].trans_mat[symm_it],
|
|
symm_orig[0] - symm_initial_orig[0],
|
|
symm_orig[1] - symm_initial_orig[1],
|
|
symm_orig[2] - symm_initial_orig[2]);
|
|
|
|
unit_m4(ik_chain->segments[i].pivot_mat[symm_it]);
|
|
translate_m4(
|
|
ik_chain->segments[i].pivot_mat[symm_it], symm_orig[0], symm_orig[1], symm_orig[2]);
|
|
mul_m4_m4_post(ik_chain->segments[i].pivot_mat[symm_it], pivot_local_space);
|
|
|
|
invert_m4_m4(ik_chain->segments[i].pivot_mat_inv[symm_it],
|
|
ik_chain->segments[i].pivot_mat[symm_it]);
|
|
}
|
|
}
|
|
|
|
SculptThreadedTaskData data = {
|
|
.sd = sd,
|
|
.ob = ob,
|
|
.brush = brush,
|
|
.nodes = nodes,
|
|
};
|
|
|
|
TaskParallelSettings settings;
|
|
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
|
|
BLI_task_parallel_range(0, totnode, &data, do_pose_brush_task_cb_ex, &settings);
|
|
}
|
|
|
|
void SCULPT_pose_ik_chain_free(SculptPoseIKChain *ik_chain)
|
|
{
|
|
for (int i = 0; i < ik_chain->tot_segments; i++) {
|
|
MEM_SAFE_FREE(ik_chain->segments[i].weights);
|
|
}
|
|
MEM_SAFE_FREE(ik_chain->segments);
|
|
MEM_SAFE_FREE(ik_chain);
|
|
}
|