1023 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1023 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenkernel/intern/effect.c
 | 
						|
 *  \ingroup bke
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "DNA_curve_types.h"
 | 
						|
#include "DNA_effect_types.h"
 | 
						|
#include "DNA_group_types.h"
 | 
						|
#include "DNA_ipo_types.h"
 | 
						|
#include "DNA_key_types.h"
 | 
						|
#include "DNA_lattice_types.h"
 | 
						|
#include "DNA_listBase.h"
 | 
						|
#include "DNA_mesh_types.h"
 | 
						|
#include "DNA_meshdata_types.h"
 | 
						|
#include "DNA_material_types.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_object_force.h"
 | 
						|
#include "DNA_particle_types.h"
 | 
						|
#include "DNA_texture_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_jitter.h"
 | 
						|
#include "BLI_rand.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
 | 
						|
#include "PIL_time.h"
 | 
						|
 | 
						|
#include "BKE_action.h"
 | 
						|
#include "BKE_anim.h"		/* needed for where_on_path */
 | 
						|
#include "BKE_armature.h"
 | 
						|
#include "BKE_blender.h"
 | 
						|
#include "BKE_collision.h"
 | 
						|
#include "BKE_constraint.h"
 | 
						|
#include "BKE_deform.h"
 | 
						|
#include "BKE_depsgraph.h"
 | 
						|
#include "BKE_displist.h"
 | 
						|
#include "BKE_DerivedMesh.h"
 | 
						|
#include "BKE_cdderivedmesh.h"
 | 
						|
#include "BKE_effect.h"
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_group.h"
 | 
						|
#include "BKE_ipo.h"
 | 
						|
#include "BKE_key.h"
 | 
						|
#include "BKE_lattice.h"
 | 
						|
#include "BKE_mesh.h"
 | 
						|
#include "BKE_material.h"
 | 
						|
#include "BKE_main.h"
 | 
						|
#include "BKE_modifier.h"
 | 
						|
#include "BKE_object.h"
 | 
						|
#include "BKE_particle.h"
 | 
						|
#include "BKE_scene.h"
 | 
						|
 | 
						|
 | 
						|
#include "RE_render_ext.h"
 | 
						|
#include "RE_shader_ext.h"
 | 
						|
 | 
						|
/* fluid sim particle import */
 | 
						|
#ifdef WITH_MOD_FLUID
 | 
						|
#include "DNA_object_fluidsim.h"
 | 
						|
#include "LBM_fluidsim.h"
 | 
						|
#include <zlib.h>
 | 
						|
#include <string.h>
 | 
						|
#endif // WITH_MOD_FLUID
 | 
						|
 | 
						|
//XXX #include "BIF_screen.h"
 | 
						|
 | 
						|
EffectorWeights *BKE_add_effector_weights(Group *group)
 | 
						|
{
 | 
						|
	EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i=0; i<NUM_PFIELD_TYPES; i++)
 | 
						|
		weights->weight[i] = 1.0f;
 | 
						|
 | 
						|
	weights->global_gravity = 1.0f;
 | 
						|
 | 
						|
	weights->group = group;
 | 
						|
 | 
						|
	return weights;
 | 
						|
}
 | 
						|
PartDeflect *object_add_collision_fields(int type)
 | 
						|
{
 | 
						|
	PartDeflect *pd;
 | 
						|
 | 
						|
	pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
 | 
						|
 | 
						|
	pd->forcefield = type;
 | 
						|
	pd->pdef_sbdamp = 0.1f;
 | 
						|
	pd->pdef_sbift  = 0.2f;
 | 
						|
	pd->pdef_sboft  = 0.02f;
 | 
						|
	pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
 | 
						|
	pd->f_strength = 1.0f;
 | 
						|
	pd->f_damp = 1.0f;
 | 
						|
 | 
						|
	/* set sensible defaults based on type */
 | 
						|
	switch (type) {
 | 
						|
		case PFIELD_VORTEX:
 | 
						|
			pd->shape = PFIELD_SHAPE_PLANE;
 | 
						|
			break;
 | 
						|
		case PFIELD_WIND:
 | 
						|
			pd->shape = PFIELD_SHAPE_PLANE;
 | 
						|
			pd->f_flow = 1.0f; /* realistic wind behavior */
 | 
						|
			break;
 | 
						|
		case PFIELD_TEXTURE:
 | 
						|
			pd->f_size = 1.0f;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
 | 
						|
 | 
						|
	return pd;
 | 
						|
}
 | 
						|
 | 
						|
/* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
 | 
						|
 | 
						|
typedef struct VeNoCo {
 | 
						|
	float co[3], no[3];
 | 
						|
} VeNoCo;
 | 
						|
 | 
						|
/* ***************** PARTICLES ***************** */
 | 
						|
 | 
						|
/* -------------------------- Effectors ------------------ */
 | 
						|
void free_partdeflect(PartDeflect *pd)
 | 
						|
{
 | 
						|
	if (!pd)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (pd->tex)
 | 
						|
		pd->tex->id.us--;
 | 
						|
 | 
						|
	if (pd->rng)
 | 
						|
		rng_free(pd->rng);
 | 
						|
 | 
						|
	MEM_freeN(pd);
 | 
						|
}
 | 
						|
 | 
						|
static void precalculate_effector(EffectorCache *eff)
 | 
						|
{
 | 
						|
	unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
 | 
						|
	if (!eff->pd->rng)
 | 
						|
		eff->pd->rng = rng_new(eff->pd->seed + cfra);
 | 
						|
	else
 | 
						|
		rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
 | 
						|
 | 
						|
	if (eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
 | 
						|
		Curve *cu= eff->ob->data;
 | 
						|
		if (cu->flag & CU_PATH) {
 | 
						|
			if (cu->path==NULL || cu->path->data==NULL)
 | 
						|
				BKE_displist_make_curveTypes(eff->scene, eff->ob, 0);
 | 
						|
 | 
						|
			if (cu->path && cu->path->data) {
 | 
						|
				where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
 | 
						|
				mul_m4_v3(eff->ob->obmat, eff->guide_loc);
 | 
						|
				mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (eff->pd->shape == PFIELD_SHAPE_SURFACE) {
 | 
						|
		eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
 | 
						|
		if (eff->ob->type == OB_CURVE)
 | 
						|
			eff->flag |= PE_USE_NORMAL_DATA;
 | 
						|
	}
 | 
						|
	else if (eff->psys)
 | 
						|
		psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
 | 
						|
 | 
						|
	/* Store object velocity */
 | 
						|
	if (eff->ob) {
 | 
						|
		float old_vel[3];
 | 
						|
 | 
						|
		BKE_object_where_is_calc_time(eff->scene, eff->ob, cfra - 1.0f);
 | 
						|
		copy_v3_v3(old_vel, eff->ob->obmat[3]);	
 | 
						|
		BKE_object_where_is_calc_time(eff->scene, eff->ob, cfra);
 | 
						|
		sub_v3_v3v3(eff->velocity, eff->ob->obmat[3], old_vel);
 | 
						|
	}
 | 
						|
}
 | 
						|
static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
 | 
						|
{
 | 
						|
	EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
 | 
						|
	eff->scene = scene;
 | 
						|
	eff->ob = ob;
 | 
						|
	eff->psys = psys;
 | 
						|
	eff->pd = pd;
 | 
						|
	eff->frame = -1;
 | 
						|
 | 
						|
	precalculate_effector(eff);
 | 
						|
 | 
						|
	return eff;
 | 
						|
}
 | 
						|
static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
 | 
						|
{
 | 
						|
	EffectorCache *eff = NULL;
 | 
						|
 | 
						|
	if ( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
 | 
						|
		return;
 | 
						|
 | 
						|
	if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
 | 
						|
		return;
 | 
						|
 | 
						|
	if (*effectors == NULL)
 | 
						|
		*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
 | 
						|
 | 
						|
	eff = new_effector_cache(scene, ob, NULL, ob->pd);
 | 
						|
 | 
						|
	/* make sure imat is up to date */
 | 
						|
	invert_m4_m4(ob->imat, ob->obmat);
 | 
						|
 | 
						|
	BLI_addtail(*effectors, eff);
 | 
						|
}
 | 
						|
static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
 | 
						|
{
 | 
						|
	ParticleSettings *part= psys->part;
 | 
						|
 | 
						|
	if ( !psys_check_enabled(ob, psys) )
 | 
						|
		return;
 | 
						|
 | 
						|
	if ( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if ( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
 | 
						|
		if (*effectors == NULL)
 | 
						|
			*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
 | 
						|
 | 
						|
		BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
 | 
						|
	}
 | 
						|
 | 
						|
	if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
 | 
						|
		if (*effectors == NULL)
 | 
						|
			*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
 | 
						|
 | 
						|
		BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* returns ListBase handle with objects taking part in the effecting */
 | 
						|
ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
 | 
						|
{
 | 
						|
	Base *base;
 | 
						|
	unsigned int layer= ob_src->lay;
 | 
						|
	ListBase *effectors = NULL;
 | 
						|
	
 | 
						|
	if (weights->group) {
 | 
						|
		GroupObject *go;
 | 
						|
		
 | 
						|
		for (go= weights->group->gobject.first; go; go= go->next) {
 | 
						|
			if ( (go->ob->lay & layer) ) {
 | 
						|
				if ( go->ob->pd && go->ob->pd->forcefield )
 | 
						|
					add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
 | 
						|
 | 
						|
				if ( go->ob->particlesystem.first ) {
 | 
						|
					ParticleSystem *psys= go->ob->particlesystem.first;
 | 
						|
 | 
						|
					for ( ; psys; psys=psys->next )
 | 
						|
						add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for (base = scene->base.first; base; base= base->next) {
 | 
						|
			if ( (base->lay & layer) ) {
 | 
						|
				if ( base->object->pd && base->object->pd->forcefield )
 | 
						|
				add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
 | 
						|
 | 
						|
				if ( base->object->particlesystem.first ) {
 | 
						|
					ParticleSystem *psys= base->object->particlesystem.first;
 | 
						|
 | 
						|
					for ( ; psys; psys=psys->next )
 | 
						|
						add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return effectors;
 | 
						|
}
 | 
						|
 | 
						|
void pdEndEffectors(ListBase **effectors)
 | 
						|
{
 | 
						|
	if (*effectors) {
 | 
						|
		EffectorCache *eff = (*effectors)->first;
 | 
						|
 | 
						|
		for (; eff; eff=eff->next) {
 | 
						|
			if (eff->guide_data)
 | 
						|
				MEM_freeN(eff->guide_data);
 | 
						|
		}
 | 
						|
 | 
						|
		BLI_freelistN(*effectors);
 | 
						|
		MEM_freeN(*effectors);
 | 
						|
		*effectors = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
 | 
						|
{
 | 
						|
	ParticleSettings *part = sim->psys->part;
 | 
						|
	point->loc = state->co;
 | 
						|
	point->vel = state->vel;
 | 
						|
	point->index = pa - sim->psys->particles;
 | 
						|
	point->size = pa->size;
 | 
						|
	point->charge = 0.0f;
 | 
						|
	
 | 
						|
	if (part->pd && part->pd->forcefield == PFIELD_CHARGE)
 | 
						|
		point->charge += part->pd->f_strength;
 | 
						|
 | 
						|
	if (part->pd2 && part->pd2->forcefield == PFIELD_CHARGE)
 | 
						|
		point->charge += part->pd2->f_strength;
 | 
						|
 | 
						|
	point->vel_to_sec = 1.0f;
 | 
						|
	point->vel_to_frame = psys_get_timestep(sim);
 | 
						|
 | 
						|
	point->flag = 0;
 | 
						|
 | 
						|
	if (sim->psys->part->flag & PART_ROT_DYN) {
 | 
						|
		point->ave = state->ave;
 | 
						|
		point->rot = state->rot;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		point->ave = point->rot = NULL;
 | 
						|
 | 
						|
	point->psys = sim->psys;
 | 
						|
}
 | 
						|
 | 
						|
void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
 | 
						|
{
 | 
						|
	point->loc = loc;
 | 
						|
	point->vel = vel;
 | 
						|
	point->index = index;
 | 
						|
	point->size = 0.0f;
 | 
						|
 | 
						|
	point->vel_to_sec = (float)scene->r.frs_sec;
 | 
						|
	point->vel_to_frame = 1.0f;
 | 
						|
 | 
						|
	point->flag = 0;
 | 
						|
 | 
						|
	point->ave = point->rot = NULL;
 | 
						|
	point->psys = NULL;
 | 
						|
}
 | 
						|
void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
 | 
						|
{
 | 
						|
	point->loc = loc;
 | 
						|
	point->vel = vel;
 | 
						|
	point->index = index;
 | 
						|
	point->size = 0.0f;
 | 
						|
 | 
						|
	point->vel_to_sec = (float)scene->r.frs_sec;
 | 
						|
	point->vel_to_frame = 1.0f;
 | 
						|
 | 
						|
	point->flag = PE_WIND_AS_SPEED;
 | 
						|
 | 
						|
	point->ave = point->rot = NULL;
 | 
						|
 | 
						|
	point->psys = NULL;
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Effectors		*/
 | 
						|
/************************************************/
 | 
						|
 | 
						|
// triangle - ray callback function
 | 
						|
static void eff_tri_ray_hit(void *UNUSED(userData), int UNUSED(index), const BVHTreeRay *UNUSED(ray), BVHTreeRayHit *hit)
 | 
						|
{	
 | 
						|
	/* whenever we hit a bounding box, we don't check further */
 | 
						|
	hit->dist = -1;
 | 
						|
	hit->index = 1;
 | 
						|
}
 | 
						|
 | 
						|
// get visibility of a wind ray
 | 
						|
static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
 | 
						|
{
 | 
						|
	ListBase *colls = colliders;
 | 
						|
	ColliderCache *col;
 | 
						|
	float norm[3], len = 0.0;
 | 
						|
	float visibility = 1.0, absorption = 0.0;
 | 
						|
	
 | 
						|
	if (!(eff->pd->flag & PFIELD_VISIBILITY))
 | 
						|
		return visibility;
 | 
						|
 | 
						|
	if (!colls)
 | 
						|
		colls = get_collider_cache(eff->scene, eff->ob, NULL);
 | 
						|
 | 
						|
	if (!colls)
 | 
						|
		return visibility;
 | 
						|
 | 
						|
	negate_v3_v3(norm, efd->vec_to_point);
 | 
						|
	len = normalize_v3(norm);
 | 
						|
	
 | 
						|
	/* check all collision objects */
 | 
						|
	for (col = colls->first; col; col = col->next) {
 | 
						|
		CollisionModifierData *collmd = col->collmd;
 | 
						|
 | 
						|
		if (col->ob == eff->ob)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (collmd->bvhtree) {
 | 
						|
			BVHTreeRayHit hit;
 | 
						|
 | 
						|
			hit.index = -1;
 | 
						|
			hit.dist = len + FLT_EPSILON;
 | 
						|
 | 
						|
			/* check if the way is blocked */
 | 
						|
			if (BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0) {
 | 
						|
				absorption= col->ob->pd->absorption;
 | 
						|
 | 
						|
				/* visibility is only between 0 and 1, calculated from 1-absorption */
 | 
						|
				visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
 | 
						|
				
 | 
						|
				if (visibility <= 0.0f)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!colliders)
 | 
						|
		free_collider_cache(&colls);
 | 
						|
	
 | 
						|
	return visibility;
 | 
						|
}
 | 
						|
 | 
						|
// noise function for wind e.g.
 | 
						|
static float wind_func(struct RNG *rng, float strength)
 | 
						|
{
 | 
						|
	int random = (rng_getInt(rng)+1) % 128; // max 2357
 | 
						|
	float force = rng_getFloat(rng) + 1.0f;
 | 
						|
	float ret;
 | 
						|
	float sign = 0;
 | 
						|
	
 | 
						|
	sign = ((float)random > 64.0f) ? 1.0f: -1.0f; // dividing by 2 is not giving equal sign distribution
 | 
						|
	
 | 
						|
	ret = sign*((float)random / force)*strength/128.0f;
 | 
						|
	
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* maxdist: zero effect from this distance outwards (if usemax) */
 | 
						|
/* mindist: full effect up to this distance (if usemin) */
 | 
						|
/* power: falloff with formula 1/r^power */
 | 
						|
static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
 | 
						|
{
 | 
						|
	/* first quick checks */
 | 
						|
	if (usemax && fac > maxdist)
 | 
						|
		return 0.0f;
 | 
						|
 | 
						|
	if (usemin && fac < mindist)
 | 
						|
		return 1.0f;
 | 
						|
 | 
						|
	if (!usemin)
 | 
						|
		mindist = 0.0;
 | 
						|
 | 
						|
	return pow((double)(1.0f+fac-mindist), (double)(-power));
 | 
						|
}
 | 
						|
 | 
						|
static float falloff_func_dist(PartDeflect *pd, float fac)
 | 
						|
{
 | 
						|
	return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
 | 
						|
}
 | 
						|
 | 
						|
static float falloff_func_rad(PartDeflect *pd, float fac)
 | 
						|
{
 | 
						|
	return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
 | 
						|
}
 | 
						|
 | 
						|
float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *UNUSED(point), EffectorWeights *weights)
 | 
						|
{
 | 
						|
	float temp[3];
 | 
						|
	float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
 | 
						|
	float fac, r_fac;
 | 
						|
 | 
						|
	fac = dot_v3v3(efd->nor, efd->vec_to_point2);
 | 
						|
 | 
						|
	if (eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
 | 
						|
		falloff=0.0f;
 | 
						|
	else if (eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
 | 
						|
		falloff=0.0f;
 | 
						|
	else {
 | 
						|
		switch (eff->pd->falloff) {
 | 
						|
		case PFIELD_FALL_SPHERE:
 | 
						|
			falloff*= falloff_func_dist(eff->pd, efd->distance);
 | 
						|
			break;
 | 
						|
 | 
						|
		case PFIELD_FALL_TUBE:
 | 
						|
			falloff*= falloff_func_dist(eff->pd, ABS(fac));
 | 
						|
			if (falloff == 0.0f)
 | 
						|
				break;
 | 
						|
 | 
						|
			madd_v3_v3v3fl(temp, efd->vec_to_point, efd->nor, -fac);
 | 
						|
			r_fac= len_v3(temp);
 | 
						|
			falloff*= falloff_func_rad(eff->pd, r_fac);
 | 
						|
			break;
 | 
						|
		case PFIELD_FALL_CONE:
 | 
						|
			falloff*= falloff_func_dist(eff->pd, ABS(fac));
 | 
						|
			if (falloff == 0.0f)
 | 
						|
				break;
 | 
						|
 | 
						|
			r_fac= RAD2DEGF(saacos(fac/len_v3(efd->vec_to_point)));
 | 
						|
			falloff*= falloff_func_rad(eff->pd, r_fac);
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return falloff;
 | 
						|
}
 | 
						|
 | 
						|
int closest_point_on_surface(SurfaceModifierData *surmd, const float co[3], float surface_co[3], float surface_nor[3], float surface_vel[3])
 | 
						|
{
 | 
						|
	BVHTreeNearest nearest;
 | 
						|
 | 
						|
	nearest.index = -1;
 | 
						|
	nearest.dist = FLT_MAX;
 | 
						|
 | 
						|
	BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
 | 
						|
 | 
						|
	if (nearest.index != -1) {
 | 
						|
		copy_v3_v3(surface_co, nearest.co);
 | 
						|
 | 
						|
		if (surface_nor) {
 | 
						|
			copy_v3_v3(surface_nor, nearest.no);
 | 
						|
		}
 | 
						|
 | 
						|
		if (surface_vel) {
 | 
						|
			MFace *mface = CDDM_get_tessface(surmd->dm, nearest.index);
 | 
						|
			
 | 
						|
			copy_v3_v3(surface_vel, surmd->v[mface->v1].co);
 | 
						|
			add_v3_v3(surface_vel, surmd->v[mface->v2].co);
 | 
						|
			add_v3_v3(surface_vel, surmd->v[mface->v3].co);
 | 
						|
			if (mface->v4)
 | 
						|
				add_v3_v3(surface_vel, surmd->v[mface->v4].co);
 | 
						|
 | 
						|
			mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f);
 | 
						|
		}
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
 | 
						|
{
 | 
						|
	float cfra = eff->scene->r.cfra;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
 | 
						|
		/* closest point in the object surface is an effector */
 | 
						|
		float vec[3];
 | 
						|
 | 
						|
		/* using velocity corrected location allows for easier sliding over effector surface */
 | 
						|
		copy_v3_v3(vec, point->vel);
 | 
						|
		mul_v3_fl(vec, point->vel_to_frame);
 | 
						|
		add_v3_v3(vec, point->loc);
 | 
						|
 | 
						|
		ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
 | 
						|
 | 
						|
		efd->size = 0.0f;
 | 
						|
	}
 | 
						|
	else if (eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {
 | 
						|
 | 
						|
		if (eff->ob->derivedFinal) {
 | 
						|
			DerivedMesh *dm = eff->ob->derivedFinal;
 | 
						|
 | 
						|
			dm->getVertCo(dm, *efd->index, efd->loc);
 | 
						|
			dm->getVertNo(dm, *efd->index, efd->nor);
 | 
						|
 | 
						|
			mul_m4_v3(eff->ob->obmat, efd->loc);
 | 
						|
			mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
 | 
						|
 | 
						|
			normalize_v3(efd->nor);
 | 
						|
 | 
						|
			efd->size = 0.0f;
 | 
						|
 | 
						|
			/**/
 | 
						|
			ret = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (eff->psys) {
 | 
						|
		ParticleData *pa = eff->psys->particles + *efd->index;
 | 
						|
		ParticleKey state;
 | 
						|
 | 
						|
		/* exclude the particle itself for self effecting particles */
 | 
						|
		if (eff->psys == point->psys && *efd->index == point->index) {
 | 
						|
			/* pass */
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			ParticleSimulationData sim= {NULL};
 | 
						|
			sim.scene= eff->scene;
 | 
						|
			sim.ob= eff->ob;
 | 
						|
			sim.psys= eff->psys;
 | 
						|
 | 
						|
			/* TODO: time from actual previous calculated frame (step might not be 1) */
 | 
						|
			state.time = cfra - 1.0f;
 | 
						|
			ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
 | 
						|
 | 
						|
			/* TODO */
 | 
						|
			//if (eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
 | 
						|
			//	if (pa->dietime < eff->psys->cfra)
 | 
						|
			//		eff->flag |= PE_VELOCITY_TO_IMPULSE;
 | 
						|
			//}
 | 
						|
 | 
						|
			copy_v3_v3(efd->loc, state.co);
 | 
						|
 | 
						|
			/* rather than use the velocity use rotated x-axis (defaults to velocity) */
 | 
						|
			efd->nor[0] = 1.f;
 | 
						|
			efd->nor[1] = efd->nor[2] = 0.f;
 | 
						|
			mul_qt_v3(state.rot, efd->nor);
 | 
						|
		
 | 
						|
			if (real_velocity)
 | 
						|
				copy_v3_v3(efd->vel, state.vel);
 | 
						|
 | 
						|
			efd->size = pa->size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* use center of object for distance calculus */
 | 
						|
		Object *ob = eff->ob;
 | 
						|
		Object obcopy = *ob;
 | 
						|
 | 
						|
		/* use z-axis as normal*/
 | 
						|
		normalize_v3_v3(efd->nor, ob->obmat[2]);
 | 
						|
 | 
						|
		if (eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
 | 
						|
			float temp[3], translate[3];
 | 
						|
			sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
 | 
						|
			project_v3_v3v3(translate, temp, efd->nor);
 | 
						|
 | 
						|
			/* for vortex the shape chooses between old / new force */
 | 
						|
			if (eff->pd->forcefield == PFIELD_VORTEX)
 | 
						|
				add_v3_v3v3(efd->loc, ob->obmat[3], translate);
 | 
						|
			else /* normally efd->loc is closest point on effector xy-plane */
 | 
						|
				sub_v3_v3v3(efd->loc, point->loc, translate);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			copy_v3_v3(efd->loc, ob->obmat[3]);
 | 
						|
		}
 | 
						|
 | 
						|
		if (real_velocity)
 | 
						|
			copy_v3_v3(efd->vel, eff->velocity);
 | 
						|
 | 
						|
		*eff->ob = obcopy;
 | 
						|
 | 
						|
		efd->size = 0.0f;
 | 
						|
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
 | 
						|
		efd->distance = len_v3(efd->vec_to_point);
 | 
						|
 | 
						|
		/* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
 | 
						|
		if (eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
 | 
						|
			mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);
 | 
						|
 | 
						|
		if (eff->flag & PE_USE_NORMAL_DATA) {
 | 
						|
			copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
 | 
						|
			copy_v3_v3(efd->nor2, efd->nor);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* for some effectors we need the object center every time */
 | 
						|
			sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
 | 
						|
			normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step)
 | 
						|
{
 | 
						|
	if (eff->pd->shape == PFIELD_SHAPE_POINTS) {
 | 
						|
		efd->index = p;
 | 
						|
 | 
						|
		*p = 0;
 | 
						|
		*tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
 | 
						|
 | 
						|
		if (*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
 | 
						|
			*p = point->index % *tot;
 | 
						|
			*tot = *p+1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (eff->psys) {
 | 
						|
		efd->index = p;
 | 
						|
 | 
						|
		*p = 0;
 | 
						|
		*tot = eff->psys->totpart;
 | 
						|
		
 | 
						|
		if (eff->pd->forcefield == PFIELD_CHARGE) {
 | 
						|
			/* Only the charge of the effected particle is used for 
 | 
						|
			 * interaction, not fall-offs. If the fall-offs aren't the	
 | 
						|
			 * same this will be unphysical, but for animation this		
 | 
						|
			 * could be the wanted behavior. If you want physical
 | 
						|
			 * correctness the fall-off should be spherical 2.0 anyways.
 | 
						|
			 */
 | 
						|
			efd->charge = eff->pd->f_strength;
 | 
						|
		}
 | 
						|
		else if (eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) {
 | 
						|
			/* every particle is mapped to only one harmonic effector particle */
 | 
						|
			*p= point->index % eff->psys->totpart;
 | 
						|
			*tot= *p + 1;
 | 
						|
		}
 | 
						|
 | 
						|
		if (eff->psys->part->effector_amount) {
 | 
						|
			int totpart = eff->psys->totpart;
 | 
						|
			int amount = eff->psys->part->effector_amount;
 | 
						|
 | 
						|
			*step = (totpart > amount) ? totpart/amount : 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		*p = 0;
 | 
						|
		*tot = 1;
 | 
						|
	}
 | 
						|
}
 | 
						|
static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
 | 
						|
{
 | 
						|
	TexResult result[4];
 | 
						|
	float tex_co[3], strength, force[3];
 | 
						|
	float nabla = eff->pd->tex_nabla;
 | 
						|
	int hasrgb;
 | 
						|
	short mode = eff->pd->tex_mode;
 | 
						|
 | 
						|
	if (!eff->pd->tex)
 | 
						|
		return;
 | 
						|
 | 
						|
	result[0].nor = result[1].nor = result[2].nor = result[3].nor = NULL;
 | 
						|
 | 
						|
	strength= eff->pd->f_strength * efd->falloff;
 | 
						|
 | 
						|
	copy_v3_v3(tex_co, point->loc);
 | 
						|
 | 
						|
	if (eff->pd->flag & PFIELD_TEX_2D) {
 | 
						|
		float fac=-dot_v3v3(tex_co, efd->nor);
 | 
						|
		madd_v3_v3fl(tex_co, efd->nor, fac);
 | 
						|
	}
 | 
						|
 | 
						|
	if (eff->pd->flag & PFIELD_TEX_OBJECT) {
 | 
						|
		mul_m4_v3(eff->ob->imat, tex_co);
 | 
						|
	}
 | 
						|
 | 
						|
	hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result);
 | 
						|
 | 
						|
	if (hasrgb && mode==PFIELD_TEX_RGB) {
 | 
						|
		force[0] = (0.5f - result->tr) * strength;
 | 
						|
		force[1] = (0.5f - result->tg) * strength;
 | 
						|
		force[2] = (0.5f - result->tb) * strength;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		strength/=nabla;
 | 
						|
 | 
						|
		tex_co[0] += nabla;
 | 
						|
		multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1);
 | 
						|
 | 
						|
		tex_co[0] -= nabla;
 | 
						|
		tex_co[1] += nabla;
 | 
						|
		multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2);
 | 
						|
 | 
						|
		tex_co[1] -= nabla;
 | 
						|
		tex_co[2] += nabla;
 | 
						|
		multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3);
 | 
						|
 | 
						|
		if (mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we don't have rgb fall back to grad */
 | 
						|
			/* generate intensity if texture only has rgb value */
 | 
						|
			if (hasrgb & TEX_RGB) {
 | 
						|
				int i;
 | 
						|
				for (i=0; i<4; i++)
 | 
						|
					result[i].tin = (1.0f / 3.0f) * (result[i].tr + result[i].tg + result[i].tb);
 | 
						|
			}
 | 
						|
			force[0] = (result[0].tin - result[1].tin) * strength;
 | 
						|
			force[1] = (result[0].tin - result[2].tin) * strength;
 | 
						|
			force[2] = (result[0].tin - result[3].tin) * strength;
 | 
						|
		}
 | 
						|
		else { /*PFIELD_TEX_CURL*/
 | 
						|
			float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
 | 
						|
 | 
						|
			dbdy = result[2].tb - result[0].tb;
 | 
						|
			dgdz = result[3].tg - result[0].tg;
 | 
						|
			drdz = result[3].tr - result[0].tr;
 | 
						|
			dbdx = result[1].tb - result[0].tb;
 | 
						|
			dgdx = result[1].tg - result[0].tg;
 | 
						|
			drdy = result[2].tr - result[0].tr;
 | 
						|
 | 
						|
			force[0] = (dbdy - dgdz) * strength;
 | 
						|
			force[1] = (drdz - dbdx) * strength;
 | 
						|
			force[2] = (dgdx - drdy) * strength;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (eff->pd->flag & PFIELD_TEX_2D) {
 | 
						|
		float fac = -dot_v3v3(force, efd->nor);
 | 
						|
		madd_v3_v3fl(force, efd->nor, fac);
 | 
						|
	}
 | 
						|
 | 
						|
	add_v3_v3(total_force, force);
 | 
						|
}
 | 
						|
static void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
 | 
						|
{
 | 
						|
	PartDeflect *pd = eff->pd;
 | 
						|
	RNG *rng = pd->rng;
 | 
						|
	float force[3]={0, 0, 0};
 | 
						|
	float temp[3];
 | 
						|
	float fac;
 | 
						|
	float strength = pd->f_strength;
 | 
						|
	float damp = pd->f_damp;
 | 
						|
	float noise_factor = pd->f_noise;
 | 
						|
 | 
						|
	if (noise_factor > 0.0f) {
 | 
						|
		strength += wind_func(rng, noise_factor);
 | 
						|
 | 
						|
		if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
 | 
						|
			damp += wind_func(rng, noise_factor);
 | 
						|
	}
 | 
						|
 | 
						|
	copy_v3_v3(force, efd->vec_to_point);
 | 
						|
 | 
						|
	switch (pd->forcefield) {
 | 
						|
		case PFIELD_WIND:
 | 
						|
			copy_v3_v3(force, efd->nor);
 | 
						|
			mul_v3_fl(force, strength * efd->falloff);
 | 
						|
			break;
 | 
						|
		case PFIELD_FORCE:
 | 
						|
			normalize_v3(force);
 | 
						|
			mul_v3_fl(force, strength * efd->falloff);
 | 
						|
			break;
 | 
						|
		case PFIELD_VORTEX:
 | 
						|
			/* old vortex force */
 | 
						|
			if (pd->shape == PFIELD_SHAPE_POINT) {
 | 
						|
				cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
 | 
						|
				normalize_v3(force);
 | 
						|
				mul_v3_fl(force, strength * efd->distance * efd->falloff);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* new vortex force */
 | 
						|
				cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
 | 
						|
				mul_v3_fl(temp, strength * efd->falloff);
 | 
						|
				
 | 
						|
				cross_v3_v3v3(force, efd->nor2, temp);
 | 
						|
				mul_v3_fl(force, strength * efd->falloff);
 | 
						|
				
 | 
						|
				madd_v3_v3fl(temp, point->vel, -point->vel_to_sec);
 | 
						|
				add_v3_v3(force, temp);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case PFIELD_MAGNET:
 | 
						|
			if (eff->pd->shape == PFIELD_SHAPE_POINT)
 | 
						|
				/* magnetic field of a moving charge */
 | 
						|
				cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
 | 
						|
			else
 | 
						|
				copy_v3_v3(temp, efd->nor);
 | 
						|
 | 
						|
			normalize_v3(temp);
 | 
						|
			mul_v3_fl(temp, strength * efd->falloff);
 | 
						|
			cross_v3_v3v3(force, point->vel, temp);
 | 
						|
			mul_v3_fl(force, point->vel_to_sec);
 | 
						|
			break;
 | 
						|
		case PFIELD_HARMONIC:
 | 
						|
			mul_v3_fl(force, -strength * efd->falloff);
 | 
						|
			copy_v3_v3(temp, point->vel);
 | 
						|
			mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
 | 
						|
			add_v3_v3(force, temp);
 | 
						|
			break;
 | 
						|
		case PFIELD_CHARGE:
 | 
						|
			mul_v3_fl(force, point->charge * strength * efd->falloff);
 | 
						|
			break;
 | 
						|
		case PFIELD_LENNARDJ:
 | 
						|
			fac = pow((efd->size + point->size) / efd->distance, 6.0);
 | 
						|
			
 | 
						|
			fac = - fac * (1.0f - fac) / efd->distance;
 | 
						|
 | 
						|
			/* limit the repulsive term drastically to avoid huge forces */
 | 
						|
			fac = ((fac>2.0f) ? 2.0f : fac);
 | 
						|
 | 
						|
			mul_v3_fl(force, strength * fac);
 | 
						|
			break;
 | 
						|
		case PFIELD_BOID:
 | 
						|
			/* Boid field is handled completely in boids code. */
 | 
						|
			return;
 | 
						|
		case PFIELD_TURBULENCE:
 | 
						|
			if (pd->flag & PFIELD_GLOBAL_CO) {
 | 
						|
				copy_v3_v3(temp, point->loc);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				add_v3_v3v3(temp, efd->vec_to_point2, efd->nor2);
 | 
						|
			}
 | 
						|
			force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2, 0, 2);
 | 
						|
			force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2, 0, 2);
 | 
						|
			force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2, 0, 2);
 | 
						|
			mul_v3_fl(force, strength * efd->falloff);
 | 
						|
			break;
 | 
						|
		case PFIELD_DRAG:
 | 
						|
			copy_v3_v3(force, point->vel);
 | 
						|
			fac = normalize_v3(force) * point->vel_to_sec;
 | 
						|
 | 
						|
			strength = MIN2(strength, 2.0f);
 | 
						|
			damp = MIN2(damp, 2.0f);
 | 
						|
 | 
						|
			mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pd->flag & PFIELD_DO_LOCATION) {
 | 
						|
		madd_v3_v3fl(total_force, force, 1.0f/point->vel_to_sec);
 | 
						|
 | 
						|
		if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
 | 
						|
			madd_v3_v3fl(total_force, point->vel, -pd->f_flow * efd->falloff);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (point->ave)
 | 
						|
		zero_v3(point->ave);
 | 
						|
	if (pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
 | 
						|
		float xvec[3] = {1.0f, 0.0f, 0.0f};
 | 
						|
		float dave[3];
 | 
						|
		mul_qt_v3(point->rot, xvec);
 | 
						|
		cross_v3_v3v3(dave, xvec, force);
 | 
						|
		if (pd->f_flow != 0.0f) {
 | 
						|
			madd_v3_v3fl(dave, point->ave, -pd->f_flow * efd->falloff);
 | 
						|
		}
 | 
						|
		add_v3_v3(point->ave, dave);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*  -------- pdDoEffectors() --------
 | 
						|
 * generic force/speed system, now used for particles and softbodies
 | 
						|
 * scene       = scene where it runs in, for time and stuff
 | 
						|
 * lb			= listbase with objects that take part in effecting
 | 
						|
 * opco		= global coord, as input
 | 
						|
 * force		= force accumulator
 | 
						|
 * speed		= actual current speed which can be altered
 | 
						|
 * cur_time	= "external" time in frames, is constant for static particles
 | 
						|
 * loc_time	= "local" time in frames, range <0-1> for the lifetime of particle
 | 
						|
 * par_layer	= layer the caller is in
 | 
						|
 * flags		= only used for softbody wind now
 | 
						|
 * guide		= old speed of particle
 | 
						|
 */
 | 
						|
void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
 | 
						|
{
 | 
						|
/*
 | 
						|
 * Modifies the force on a particle according to its
 | 
						|
 * relation with the effector object
 | 
						|
 * Different kind of effectors include:
 | 
						|
 *     Forcefields: Gravity-like attractor
 | 
						|
 *     (force power is related to the inverse of distance to the power of a falloff value)
 | 
						|
 *     Vortex fields: swirling effectors
 | 
						|
 *     (particles rotate around Z-axis of the object. otherwise, same relation as)
 | 
						|
 *     (Forcefields, but this is not done through a force/acceleration)
 | 
						|
 *     Guide: particles on a path
 | 
						|
 *     (particles are guided along a curve bezier or old nurbs)
 | 
						|
 *     (is independent of other effectors)
 | 
						|
 */
 | 
						|
	EffectorCache *eff;
 | 
						|
	EffectorData efd;
 | 
						|
	int p=0, tot = 1, step = 1;
 | 
						|
 | 
						|
	/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
 | 
						|
	/* Check for min distance here? (yes would be cool to add that, ton) */
 | 
						|
	
 | 
						|
	if (effectors) for (eff = effectors->first; eff; eff=eff->next) {
 | 
						|
		/* object effectors were fully checked to be OK to evaluate! */
 | 
						|
 | 
						|
		get_effector_tot(eff, &efd, point, &tot, &p, &step);
 | 
						|
 | 
						|
		for (; p<tot; p+=step) {
 | 
						|
			if (get_effector_data(eff, &efd, point, 0)) {
 | 
						|
				efd.falloff= effector_falloff(eff, &efd, point, weights);
 | 
						|
				
 | 
						|
				if (efd.falloff > 0.0f)
 | 
						|
					efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
 | 
						|
 | 
						|
				if (efd.falloff <= 0.0f)
 | 
						|
					;	/* don't do anything */
 | 
						|
				else if (eff->pd->forcefield == PFIELD_TEXTURE)
 | 
						|
					do_texture_effector(eff, &efd, point, force);
 | 
						|
				else {
 | 
						|
					float temp1[3]={0, 0, 0}, temp2[3];
 | 
						|
					copy_v3_v3(temp1, force);
 | 
						|
 | 
						|
					do_physical_effector(eff, &efd, point, force);
 | 
						|
					
 | 
						|
					/* for softbody backward compatibility */
 | 
						|
					if (point->flag & PE_WIND_AS_SPEED && impulse) {
 | 
						|
						sub_v3_v3v3(temp2, force, temp1);
 | 
						|
						sub_v3_v3v3(impulse, impulse, temp2);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
 | 
						|
				/* special case for harmonic effector */
 | 
						|
				add_v3_v3v3(impulse, impulse, efd.vel);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |