This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/bitmap_draw_2d.c
Campbell Barton 9e365069af Cleanup: move public doc-strings into headers for 'blenlib'
- Added space below non doc-string comments to make it clear
  these aren't comments for the symbols directly below them.
- Use doxy sections for some headers.
- Minor improvements to doc-strings.

Ref T92709
2021-12-09 20:01:44 +11:00

494 lines
13 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*/
/** \file
* \ingroup bli
*
* Utility functions for primitive drawing operations.
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "BLI_bitmap_draw_2d.h"
#include "BLI_math_base.h"
#include "BLI_sort.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
/* -------------------------------------------------------------------- */
/** \name Draw Line
* \{ */
void BLI_bitmap_draw_2d_line_v2v2i(const int p1[2],
const int p2[2],
bool (*callback)(int, int, void *),
void *user_data)
{
/* Bresenham's line algorithm. */
int x1 = p1[0];
int y1 = p1[1];
int x2 = p2[0];
int y2 = p2[1];
if (callback(x1, y1, user_data) == 0) {
return;
}
/* if x1 == x2 or y1 == y2, then it does not matter what we set here */
const int sign_x = (x2 > x1) ? 1 : -1;
const int sign_y = (y2 > y1) ? 1 : -1;
const int delta_x = (sign_x == 1) ? (x2 - x1) : (x1 - x2);
const int delta_y = (sign_y == 1) ? (y2 - y1) : (y1 - y2);
const int delta_x_step = delta_x * 2;
const int delta_y_step = delta_y * 2;
if (delta_x >= delta_y) {
/* error may go below zero */
int error = delta_y_step - delta_x;
while (x1 != x2) {
if (error >= 0) {
if (error || (sign_x == 1)) {
y1 += sign_y;
error -= delta_x_step;
}
/* else do nothing */
}
/* else do nothing */
x1 += sign_x;
error += delta_y_step;
if (callback(x1, y1, user_data) == 0) {
return;
}
}
}
else {
/* error may go below zero */
int error = delta_x_step - delta_y;
while (y1 != y2) {
if (error >= 0) {
if (error || (sign_y == 1)) {
x1 += sign_x;
error -= delta_y_step;
}
/* else do nothing */
}
/* else do nothing */
y1 += sign_y;
error += delta_x_step;
if (callback(x1, y1, user_data) == 0) {
return;
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Filled Triangle
* \{ */
/**
* Fill a triangle
*
* Standard algorithm,
* See: http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
*
* Changes to the basic implementation:
*
* - Reuse slope calculation when drawing the second triangle.
* - Don't calculate the 4th point at all for the triangle split.
* - Order line drawing from left to right (minor detail).
* - 1-pixel offsets are applied so adjacent triangles don't overlap.
*
* This is not clipped, a clipped version can be added if needed.
*/
/* Macros could be moved to a shared location. */
#define ORDERED_SWAP(ty, a, b) \
if (a > b) { \
SWAP(ty, a, b); \
} \
((void)0)
#define ORDERED_SWAP_BY(ty, a, b, by) \
if ((a by) > (b by)) { \
SWAP(ty, a, b); \
} \
((void)0)
#define ORDER_VARS2(ty, a, b) \
{ \
ORDERED_SWAP(ty, a, b); \
} \
((void)0)
#define ORDER_VARS3_BY(ty, a, b, c, by) \
{ \
ORDERED_SWAP_BY(ty, b, c, by); \
ORDERED_SWAP_BY(ty, a, c, by); \
ORDERED_SWAP_BY(ty, a, b, by); \
} \
((void)0)
static float inv_slope(const int a[2], const int b[2])
{
return ((float)(a[0] - b[0]) / (float)(a[1] - b[1]));
}
/**
* <pre>
* *---*
* \ /
* *
* </pre>
*/
static void draw_tri_flat_max(const int p[2],
const int max_y,
const float inv_slope1,
const float inv_slope2,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
float cur_x1 = (float)p[0];
float cur_x2 = cur_x1;
/* start-end inclusive */
const int min_y = p[1];
const int max_y_end = max_y + 1;
for (int scanline_y = min_y; scanline_y != max_y_end; scanline_y += 1) {
callback((int)cur_x1, 1 + (int)cur_x2, scanline_y, user_data);
cur_x1 += inv_slope1;
cur_x2 += inv_slope2;
}
}
/**
* <pre>
* *
* / \
* *---*
* </pre>
*/
static void draw_tri_flat_min(const int p[2],
const int min_y,
const float inv_slope1,
const float inv_slope2,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
float cur_x1 = (float)p[0];
float cur_x2 = cur_x1;
/* start-end inclusive */
const int max_y = p[1];
const int min_y_end = min_y - 1;
for (int scanline_y = max_y; scanline_y != min_y_end; scanline_y -= 1) {
callback((int)cur_x1, 1 + (int)cur_x2, scanline_y, user_data);
cur_x1 -= inv_slope1;
cur_x2 -= inv_slope2;
}
}
void BLI_bitmap_draw_2d_tri_v2i(
/* all 2d */
const int p1[2],
const int p2[2],
const int p3[2],
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
/* At first sort the three vertices by y-coordinate ascending so p1 is the top-most vertice */
ORDER_VARS3_BY(const int *, p1, p2, p3, [1]);
BLI_assert(p1[1] <= p2[1] && p2[1] <= p3[1]);
/* Check for trivial case of bottom-flat triangle. */
if (p2[1] == p3[1]) {
float inv_slope1 = inv_slope(p2, p1);
float inv_slope2 = inv_slope(p3, p1);
ORDER_VARS2(float, inv_slope1, inv_slope2);
BLI_assert(!(inv_slope1 > inv_slope2));
draw_tri_flat_max(p1, p2[1], inv_slope1, inv_slope2, callback, user_data);
}
else if (p1[1] == p2[1]) {
/* Check for trivial case of top-flat triangle. */
float inv_slope1 = inv_slope(p3, p1);
float inv_slope2 = inv_slope(p3, p2);
ORDER_VARS2(float, inv_slope2, inv_slope1);
BLI_assert(!(inv_slope1 < inv_slope2));
draw_tri_flat_min(p3,
p2[1] + 1, /* avoid overlap */
inv_slope1,
inv_slope2,
callback,
user_data);
}
else {
/* General case - split the triangle in a top-flat and bottom-flat one. */
const float inv_slope_p21 = inv_slope(p2, p1);
const float inv_slope_p31 = inv_slope(p3, p1);
const float inv_slope_p32 = inv_slope(p3, p2);
float inv_slope1_max, inv_slope2_max;
float inv_slope2_min, inv_slope1_min;
if (inv_slope_p21 < inv_slope_p31) {
inv_slope1_max = inv_slope_p21;
inv_slope2_max = inv_slope_p31;
inv_slope2_min = inv_slope_p31;
inv_slope1_min = inv_slope_p32;
}
else {
inv_slope1_max = inv_slope_p31;
inv_slope2_max = inv_slope_p21;
inv_slope2_min = inv_slope_p32;
inv_slope1_min = inv_slope_p31;
}
draw_tri_flat_max(p1, p2[1], inv_slope1_max, inv_slope2_max, callback, user_data);
draw_tri_flat_min(p3,
p2[1] + 1, /* avoid overlap */
inv_slope1_min,
inv_slope2_min,
callback,
user_data);
}
}
#undef ORDERED_SWAP
#undef ORDERED_SWAP_BY
#undef ORDER_VARS2
#undef ORDER_VARS3_BY
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Filled Polygon
* \{ */
/* sort edge-segments on y, then x axis */
static int draw_poly_v2i_n__span_y_sort(const void *a_p, const void *b_p, void *verts_p)
{
const int(*verts)[2] = verts_p;
const int *a = a_p;
const int *b = b_p;
const int *co_a = verts[a[0]];
const int *co_b = verts[b[0]];
if (co_a[1] < co_b[1]) {
return -1;
}
if (co_a[1] > co_b[1]) {
return 1;
}
if (co_a[0] < co_b[0]) {
return -1;
}
if (co_a[0] > co_b[0]) {
return 1;
}
/* co_a & co_b are identical, use the line closest to the x-min */
const int *co = co_a;
co_a = verts[a[1]];
co_b = verts[b[1]];
int ord = (((co_b[0] - co[0]) * (co_a[1] - co[1])) - ((co_a[0] - co[0]) * (co_b[1] - co[1])));
if (ord > 0) {
return -1;
}
if (ord < 0) {
return 1;
}
return 0;
}
void BLI_bitmap_draw_2d_poly_v2i_n(const int xmin,
const int ymin,
const int xmax,
const int ymax,
const int verts[][2],
const int verts_len,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
/* Originally by Darel Rex Finley, 2007.
* Optimized by Campbell Barton, 2016 to track sorted intersections. */
int(*span_y)[2] = MEM_mallocN(sizeof(*span_y) * (size_t)verts_len, __func__);
int span_y_len = 0;
for (int i_curr = 0, i_prev = verts_len - 1; i_curr < verts_len; i_prev = i_curr++) {
const int *co_prev = verts[i_prev];
const int *co_curr = verts[i_curr];
if (co_prev[1] != co_curr[1]) {
/* Any segments entirely above or below the area of interest can be skipped. */
if ((min_ii(co_prev[1], co_curr[1]) >= ymax) || (max_ii(co_prev[1], co_curr[1]) < ymin)) {
continue;
}
int *s = span_y[span_y_len++];
if (co_prev[1] < co_curr[1]) {
s[0] = i_prev;
s[1] = i_curr;
}
else {
s[0] = i_curr;
s[1] = i_prev;
}
}
}
BLI_qsort_r(
span_y, (size_t)span_y_len, sizeof(*span_y), draw_poly_v2i_n__span_y_sort, (void *)verts);
struct NodeX {
int span_y_index;
int x;
} *node_x = MEM_mallocN(sizeof(*node_x) * (size_t)(verts_len + 1), __func__);
int node_x_len = 0;
int span_y_index = 0;
if (span_y_len != 0 && verts[span_y[0][0]][1] < ymin) {
while ((span_y_index < span_y_len) && (verts[span_y[span_y_index][0]][1] < ymin)) {
BLI_assert(verts[span_y[span_y_index][0]][1] < verts[span_y[span_y_index][1]][1]);
if (verts[span_y[span_y_index][1]][1] >= ymin) {
struct NodeX *n = &node_x[node_x_len++];
n->span_y_index = span_y_index;
}
span_y_index += 1;
}
}
/* Loop through the rows of the image. */
for (int pixel_y = ymin; pixel_y < ymax; pixel_y++) {
bool is_sorted = true;
bool do_remove = false;
for (int i = 0, x_ix_prev = INT_MIN; i < node_x_len; i++) {
struct NodeX *n = &node_x[i];
const int *s = span_y[n->span_y_index];
const int *co_prev = verts[s[0]];
const int *co_curr = verts[s[1]];
BLI_assert(co_prev[1] < pixel_y && co_curr[1] >= pixel_y);
const double x = (co_prev[0] - co_curr[0]);
const double y = (co_prev[1] - co_curr[1]);
const double y_px = (pixel_y - co_curr[1]);
const int x_ix = (int)((double)co_curr[0] + ((y_px / y) * x));
n->x = x_ix;
if (is_sorted && (x_ix_prev > x_ix)) {
is_sorted = false;
}
if (do_remove == false && co_curr[1] == pixel_y) {
do_remove = true;
}
x_ix_prev = x_ix;
}
/* Sort the nodes, via a simple "Bubble" sort. */
if (is_sorted == false) {
int i = 0;
const int node_x_end = node_x_len - 1;
while (i < node_x_end) {
if (node_x[i].x > node_x[i + 1].x) {
SWAP(struct NodeX, node_x[i], node_x[i + 1]);
if (i != 0) {
i -= 1;
}
}
else {
i += 1;
}
}
}
/* Fill the pixels between node pairs. */
for (int i = 0; i < node_x_len; i += 2) {
int x_src = node_x[i].x;
int x_dst = node_x[i + 1].x;
if (x_src >= xmax) {
break;
}
if (x_dst > xmin) {
if (x_src < xmin) {
x_src = xmin;
}
if (x_dst > xmax) {
x_dst = xmax;
}
/* for single call per x-span */
if (x_src < x_dst) {
callback(x_src - xmin, x_dst - xmin, pixel_y - ymin, user_data);
}
}
}
/* Clear finalized nodes in one pass, only when needed
* (avoids excessive array-resizing). */
if (do_remove == true) {
int i_dst = 0;
for (int i_src = 0; i_src < node_x_len; i_src += 1) {
const int *s = span_y[node_x[i_src].span_y_index];
const int *co = verts[s[1]];
if (co[1] != pixel_y) {
if (i_dst != i_src) {
/* x is initialized for the next pixel_y (no need to adjust here) */
node_x[i_dst].span_y_index = node_x[i_src].span_y_index;
}
i_dst += 1;
}
}
node_x_len = i_dst;
}
/* Scan for new x-nodes */
while ((span_y_index < span_y_len) && (verts[span_y[span_y_index][0]][1] == pixel_y)) {
/* NOTE: node_x these are just added at the end,
* not ideal but sorting once will resolve. */
/* x is initialized for the next pixel_y */
struct NodeX *n = &node_x[node_x_len++];
n->span_y_index = span_y_index;
span_y_index += 1;
}
}
MEM_freeN(span_y);
MEM_freeN(node_x);
}
/** \} */