This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/intern/DRW_gpu_wrapper.hh
Clément Foucault a0f5240089 EEVEE-Next: Virtual Shadow Map initial implementation
Implements virtual shadow mapping for EEVEE-Next primary shadow solution.
This technique aims to deliver really high precision shadowing for many
lights while keeping a relatively low cost.

The technique works by splitting each shadows in tiles that are only
allocated & updated on demand by visible surfaces and volumes.
Local lights use cubemap projection with mipmap level of detail to adapt
the resolution to the receiver distance.
Sun lights use clipmap distribution or cascade distribution (depending on
which is better) for selecting the level of detail with the distance to
the camera.

Current maximum shadow precision for local light is about 1 pixel per 0.01
degrees.
For sun light, the maximum resolution is based on the camera far clip
distance which sets the most coarse clipmap.

## Limitation:
Alpha Blended surfaces might not get correct shadowing in some corner
casses. This is to be fixed in another commit.
While resolution is greatly increase, it is still finite. It is virtually
equivalent to one 8K shadow per shadow cube face and per clipmap level.
There is no filtering present for now.

## Parameters:
Shadow Pool Size: In bytes, amount of GPU memory to dedicate to the
shadow pool (is allocated per viewport).
Shadow Scaling: Scale the shadow resolution. Base resolution should
target subpixel accuracy (within the limitation of the technique).

Related to #93220
Related to #104472
2023-02-08 21:18:44 +01:00

1213 lines
31 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2022 Blender Foundation. */
#pragma once
/** \file
* \ingroup draw
*
* Wrapper classes that make it easier to use GPU objects in C++.
*
* All Buffers need to be sent to GPU memory before being used. This is done by using the
* `push_update()`.
*
* A Storage[Array]Buffer can hold much more data than a Uniform[Array]Buffer
* which can only holds 16KB of data.
*
* All types are not copyable and Buffers are not Movable.
*
* `draw::UniformArrayBuffer<T, len>`
* Uniform buffer object containing an array of T with len elements.
* Data can be accessed using the [] operator.
*
* `draw::UniformBuffer<T>`
* A uniform buffer object class inheriting from T.
* Data can be accessed just like a normal T object.
*
* `draw::StorageArrayBuffer<T, len>`
* Storage buffer object containing an array of T with len elements.
* The item count can be changed after creation using `resize()`.
* However, this requires the invalidation of the whole buffer and
* discarding all data inside it.
* Data can be accessed using the [] operator.
*
* `draw::StorageVectorBuffer<T, len>`
* Same as `StorageArrayBuffer` but has a length counter and act like a `blender::Vector` you can
* clear and append to.
*
* `draw::StorageBuffer<T>`
* A storage buffer object class inheriting from T.
* Data can be accessed just like a normal T object.
*
* `draw::Texture`
* A simple wrapper to #GPUTexture. A #draw::Texture can be created without allocation.
* The `ensure_[1d|2d|3d|cube][_array]()` method is here to make sure the underlying texture
* will meet the requirements and create (or recreate) the #GPUTexture if needed.
*
* `draw::TextureFromPool`
* A GPUTexture from the viewport texture pool. This texture can be shared with other engines
* and its content is undefined when acquiring it.
* A #draw::TextureFromPool is acquired for rendering using `acquire()` and released once the
* rendering is done using `release()`. The same texture can be acquired & released multiple
* time in one draw loop.
* The `sync()` method *MUST* be called once during the cache populate (aka: Sync) phase.
*
* `draw::Framebuffer`
* Simple wrapper to #GPUFramebuffer that can be moved.
*/
#include "DRW_render.h"
#include "MEM_guardedalloc.h"
#include "draw_manager.h"
#include "draw_texture_pool.h"
#include "BLI_math_vector_types.hh"
#include "BLI_span.hh"
#include "BLI_utildefines.h"
#include "BLI_utility_mixins.hh"
#include "BLI_vector.hh"
#include "GPU_framebuffer.h"
#include "GPU_storage_buffer.h"
#include "GPU_texture.h"
#include "GPU_uniform_buffer.h"
namespace blender::draw {
/* -------------------------------------------------------------------- */
/** \name Implementation Details
* \{ */
namespace detail {
template<
/** Type of the values stored in this uniform buffer. */
typename T,
/** The number of values that can be stored in this uniform buffer. */
int64_t len,
/** True if the buffer only resides on GPU memory and cannot be accessed. */
bool device_only>
class DataBuffer {
protected:
T *data_ = nullptr;
int64_t len_ = len;
BLI_STATIC_ASSERT(((sizeof(T) * len) % 16) == 0,
"Buffer size need to be aligned to size of float4.");
public:
/**
* Get the value at the given index. This invokes undefined behavior when the
* index is out of bounds.
*/
const T &operator[](int64_t index) const
{
BLI_STATIC_ASSERT(!device_only, "");
BLI_assert(index >= 0);
BLI_assert(index < len_);
return data_[index];
}
T &operator[](int64_t index)
{
BLI_STATIC_ASSERT(!device_only, "");
BLI_assert(index >= 0);
BLI_assert(index < len_);
return data_[index];
}
/**
* Get a pointer to the beginning of the array.
*/
const T *data() const
{
BLI_STATIC_ASSERT(!device_only, "");
return data_;
}
T *data()
{
BLI_STATIC_ASSERT(!device_only, "");
return data_;
}
/**
* Iterator
*/
const T *begin() const
{
BLI_STATIC_ASSERT(!device_only, "");
return data_;
}
const T *end() const
{
BLI_STATIC_ASSERT(!device_only, "");
return data_ + len_;
}
T *begin()
{
BLI_STATIC_ASSERT(!device_only, "");
return data_;
}
T *end()
{
BLI_STATIC_ASSERT(!device_only, "");
return data_ + len_;
}
operator Span<T>() const
{
BLI_STATIC_ASSERT(!device_only, "");
return Span<T>(data_, len_);
}
};
template<typename T, int64_t len, bool device_only>
class UniformCommon : public DataBuffer<T, len, false>, NonMovable, NonCopyable {
protected:
GPUUniformBuf *ubo_;
#ifdef DEBUG
const char *name_ = typeid(T).name();
#else
const char *name_ = "UniformBuffer";
#endif
public:
UniformCommon()
{
ubo_ = GPU_uniformbuf_create_ex(sizeof(T) * len, nullptr, name_);
}
~UniformCommon()
{
GPU_uniformbuf_free(ubo_);
}
void push_update()
{
GPU_uniformbuf_update(ubo_, this->data_);
}
/* To be able to use it with DRW_shgroup_*_ref(). */
operator GPUUniformBuf *() const
{
return ubo_;
}
/* To be able to use it with DRW_shgroup_*_ref(). */
GPUUniformBuf **operator&()
{
return &ubo_;
}
};
template<typename T, int64_t len, bool device_only>
class StorageCommon : public DataBuffer<T, len, false>, NonMovable, NonCopyable {
protected:
GPUStorageBuf *ssbo_;
#ifdef DEBUG
const char *name_ = typeid(T).name();
#else
const char *name_ = "StorageBuffer";
#endif
public:
StorageCommon(const char *name = nullptr)
{
if (name) {
name_ = name;
}
this->len_ = len;
constexpr GPUUsageType usage = device_only ? GPU_USAGE_DEVICE_ONLY : GPU_USAGE_DYNAMIC;
ssbo_ = GPU_storagebuf_create_ex(sizeof(T) * this->len_, nullptr, usage, this->name_);
}
~StorageCommon()
{
GPU_storagebuf_free(ssbo_);
}
void push_update()
{
BLI_assert(device_only == false);
GPU_storagebuf_update(ssbo_, this->data_);
}
void clear_to_zero()
{
GPU_storagebuf_clear_to_zero(ssbo_);
}
void read()
{
GPU_storagebuf_read(ssbo_, this->data_);
}
operator GPUStorageBuf *() const
{
return ssbo_;
}
/* To be able to use it with DRW_shgroup_*_ref(). */
GPUStorageBuf **operator&()
{
return &ssbo_;
}
};
} // namespace detail
/** \} */
/* -------------------------------------------------------------------- */
/** \name Uniform Buffers
* \{ */
template<
/** Type of the values stored in this uniform buffer. */
typename T,
/** The number of values that can be stored in this uniform buffer. */
int64_t len
/** True if the buffer only resides on GPU memory and cannot be accessed. */
/* TODO(@fclem): Currently unsupported. */
/* bool device_only = false */>
class UniformArrayBuffer : public detail::UniformCommon<T, len, false> {
public:
UniformArrayBuffer()
{
/* TODO(@fclem): We should map memory instead. */
this->data_ = (T *)MEM_mallocN_aligned(len * sizeof(T), 16, this->name_);
}
~UniformArrayBuffer()
{
MEM_freeN(this->data_);
}
};
template<
/** Type of the values stored in this uniform buffer. */
typename T
/** True if the buffer only resides on GPU memory and cannot be accessed. */
/* TODO(@fclem): Currently unsupported. */
/* bool device_only = false */>
class UniformBuffer : public T, public detail::UniformCommon<T, 1, false> {
public:
UniformBuffer()
{
/* TODO(@fclem): How could we map this? */
this->data_ = static_cast<T *>(this);
}
UniformBuffer<T> &operator=(const T &other)
{
*static_cast<T *>(this) = other;
return *this;
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Storage Buffer
* \{ */
template<
/** Type of the values stored in this uniform buffer. */
typename T,
/** The number of values that can be stored in this storage buffer at creation. */
int64_t len = (512u + (sizeof(T) - 1)) / sizeof(T),
/** True if created on device and no memory host memory is allocated. */
bool device_only = false>
class StorageArrayBuffer : public detail::StorageCommon<T, len, device_only> {
public:
StorageArrayBuffer(const char *name = nullptr) : detail::StorageCommon<T, len, device_only>(name)
{
/* TODO(@fclem): We should map memory instead. */
this->data_ = (T *)MEM_mallocN_aligned(len * sizeof(T), 16, this->name_);
}
~StorageArrayBuffer()
{
MEM_freeN(this->data_);
}
/* Resize to \a new_size elements. */
void resize(int64_t new_size)
{
BLI_assert(new_size > 0);
if (new_size != this->len_) {
/* Manual realloc since MEM_reallocN_aligned does not exists. */
T *new_data_ = (T *)MEM_mallocN_aligned(new_size * sizeof(T), 16, this->name_);
memcpy(new_data_, this->data_, min_uu(this->len_, new_size) * sizeof(T));
MEM_freeN(this->data_);
this->data_ = new_data_;
GPU_storagebuf_free(this->ssbo_);
this->len_ = new_size;
constexpr GPUUsageType usage = device_only ? GPU_USAGE_DEVICE_ONLY : GPU_USAGE_DYNAMIC;
this->ssbo_ = GPU_storagebuf_create_ex(sizeof(T) * this->len_, nullptr, usage, this->name_);
}
}
/* Resize on access. */
T &get_or_resize(int64_t index)
{
BLI_assert(index >= 0);
if (index >= this->len_) {
size_t size = power_of_2_max_u(index + 1);
this->resize(size);
}
return this->data_[index];
}
int64_t size() const
{
return this->len_;
}
static void swap(StorageArrayBuffer &a, StorageArrayBuffer &b)
{
SWAP(T *, a.data_, b.data_);
SWAP(GPUStorageBuf *, a.ssbo_, b.ssbo_);
SWAP(int64_t, a.len_, b.len_);
SWAP(const char *, a.name_, b.name_);
}
};
template<
/** Type of the values stored in this uniform buffer. */
typename T,
/** The number of values that can be stored in this storage buffer at creation. */
int64_t len = (512u + (sizeof(T) - 1)) / sizeof(T)>
class StorageVectorBuffer : public StorageArrayBuffer<T, len, false> {
private:
/* Number of items, not the allocated length. */
int64_t item_len_ = 0;
public:
StorageVectorBuffer(const char *name = nullptr) : StorageArrayBuffer<T, len, false>(name){};
~StorageVectorBuffer(){};
/**
* Set item count to zero but does not free memory or resize the buffer.
*/
void clear()
{
item_len_ = 0;
}
/**
* Insert a new element at the end of the vector.
* This might cause a reallocation with the capacity is exceeded.
*
* This is similar to std::vector::push_back.
*/
void append(const T &value)
{
this->append_as(value);
}
void append(T &&value)
{
this->append_as(std::move(value));
}
template<typename... ForwardT> void append_as(ForwardT &&...value)
{
if (item_len_ >= this->len_) {
size_t size = power_of_2_max_u(item_len_ + 1);
this->resize(size);
}
T *ptr = &this->data_[item_len_++];
new (ptr) T(std::forward<ForwardT>(value)...);
}
int64_t size() const
{
return item_len_;
}
bool is_empty() const
{
return this->size() == 0;
}
/* Avoid confusion with the other clear. */
void clear_to_zero() = delete;
static void swap(StorageVectorBuffer &a, StorageVectorBuffer &b)
{
StorageArrayBuffer<T, len, false>::swap(a, b);
SWAP(int64_t, a.item_len_, b.item_len_);
}
};
template<
/** Type of the values stored in this uniform buffer. */
typename T,
/** True if created on device and no memory host memory is allocated. */
bool device_only = false>
class StorageBuffer : public T, public detail::StorageCommon<T, 1, device_only> {
public:
StorageBuffer(const char *name = nullptr) : detail::StorageCommon<T, 1, device_only>(name)
{
/* TODO(@fclem): How could we map this? */
this->data_ = static_cast<T *>(this);
}
StorageBuffer<T> &operator=(const T &other)
{
*static_cast<T *>(this) = other;
return *this;
}
static void swap(StorageBuffer<T> &a, StorageBuffer<T> &b)
{
/* Swap content, but not `data_` pointers since they point to `this`. */
SWAP(T, static_cast<T>(a), static_cast<T>(b));
std::swap(a.ssbo_, b.ssbo_);
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Texture
* \{ */
class Texture : NonCopyable {
protected:
GPUTexture *tx_ = nullptr;
GPUTexture *stencil_view_ = nullptr;
Vector<GPUTexture *, 0> mip_views_;
Vector<GPUTexture *, 0> layer_views_;
const char *name_;
public:
Texture(const char *name = "gpu::Texture") : name_(name)
{
}
Texture(const char *name,
eGPUTextureFormat format,
eGPUTextureUsage usage,
int extent,
float *data = nullptr,
bool cubemap = false,
int mip_len = 1)
: name_(name)
{
tx_ = create(extent, 0, 0, mip_len, format, usage, data, false, cubemap);
}
Texture(const char *name,
eGPUTextureFormat format,
eGPUTextureUsage usage,
int extent,
int layers,
float *data = nullptr,
bool cubemap = false,
int mip_len = 1)
: name_(name)
{
tx_ = create(extent, layers, 0, mip_len, format, usage, data, true, cubemap);
}
Texture(const char *name,
eGPUTextureFormat format,
eGPUTextureUsage usage,
int2 extent,
float *data = nullptr,
int mip_len = 1)
: name_(name)
{
tx_ = create(UNPACK2(extent), 0, mip_len, format, usage, data, false, false);
}
Texture(const char *name,
eGPUTextureFormat format,
eGPUTextureUsage usage,
int2 extent,
int layers,
float *data = nullptr,
int mip_len = 1)
: name_(name)
{
tx_ = create(UNPACK2(extent), layers, mip_len, format, usage, data, true, false);
}
Texture(const char *name,
eGPUTextureFormat format,
eGPUTextureUsage usage,
int3 extent,
float *data = nullptr,
int mip_len = 1)
: name_(name)
{
tx_ = create(UNPACK3(extent), mip_len, format, usage, data, false, false);
}
~Texture()
{
free();
}
/* To be able to use it with DRW_shgroup_uniform_texture(). */
operator GPUTexture *() const
{
BLI_assert(tx_ != nullptr);
return tx_;
}
/* To be able to use it with DRW_shgroup_uniform_texture_ref(). */
GPUTexture **operator&()
{
return &tx_;
}
Texture &operator=(Texture &&a)
{
if (this != std::addressof(a)) {
this->free();
this->tx_ = a.tx_;
this->name_ = a.name_;
this->stencil_view_ = a.stencil_view_;
this->mip_views_ = std::move(a.mip_views_);
this->layer_views_ = std::move(a.layer_views_);
a.tx_ = nullptr;
a.name_ = nullptr;
a.stencil_view_ = nullptr;
a.mip_views_.clear();
a.layer_views_.clear();
}
return *this;
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_1d(eGPUTextureFormat format,
int extent,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(extent, 0, 0, mip_len, format, usage, data, false, false);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_1d_array(eGPUTextureFormat format,
int extent,
int layers,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(extent, layers, 0, mip_len, format, usage, data, true, false);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_2d(eGPUTextureFormat format,
int2 extent,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(UNPACK2(extent), 0, mip_len, format, usage, data, false, false);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_2d_array(eGPUTextureFormat format,
int2 extent,
int layers,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(UNPACK2(extent), layers, mip_len, format, usage, data, true, false);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_3d(eGPUTextureFormat format,
int3 extent,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(UNPACK3(extent), mip_len, format, usage, data, false, false);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_cube(eGPUTextureFormat format,
int extent,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(extent, extent, 0, mip_len, format, usage, data, false, true);
}
/**
* Ensure the texture has the correct properties. Recreating it if needed.
* Return true if a texture has been created.
*/
bool ensure_cube_array(eGPUTextureFormat format,
int extent,
int layers,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
int mip_len = 1)
{
return ensure_impl(extent, extent, layers, mip_len, format, usage, data, false, true);
}
/**
* Ensure the availability of mipmap views.
* MIP view covers all layers of array textures.
*/
bool ensure_mip_views(bool cube_as_array = false)
{
int mip_len = GPU_texture_mip_count(tx_);
if (mip_views_.size() != mip_len) {
for (GPUTexture *&view : mip_views_) {
GPU_TEXTURE_FREE_SAFE(view);
}
eGPUTextureFormat format = GPU_texture_format(tx_);
for (auto i : IndexRange(mip_len)) {
mip_views_.append(
GPU_texture_create_view(name_, tx_, format, i, 1, 0, 9999, cube_as_array));
}
return true;
}
return false;
}
GPUTexture *mip_view(int miplvl)
{
BLI_assert_msg(miplvl < mip_views_.size(),
"Incorrect mip level requested. "
"Might be missing call to ensure_mip_views().");
return mip_views_[miplvl];
}
int mip_count() const
{
return GPU_texture_mip_count(tx_);
}
/**
* Ensure the availability of mipmap views.
* Layer views covers all layers of array textures.
* Returns true if the views were (re)created.
*/
bool ensure_layer_views(bool cube_as_array = false)
{
int layer_len = GPU_texture_layer_count(tx_);
if (layer_views_.size() != layer_len) {
for (GPUTexture *&view : layer_views_) {
GPU_TEXTURE_FREE_SAFE(view);
}
eGPUTextureFormat format = GPU_texture_format(tx_);
for (auto i : IndexRange(layer_len)) {
layer_views_.append(
GPU_texture_create_view(name_, tx_, format, 0, 9999, i, 1, cube_as_array));
}
return true;
}
return false;
}
GPUTexture *layer_view(int layer)
{
return layer_views_[layer];
}
GPUTexture *stencil_view(bool cube_as_array = false)
{
if (stencil_view_ == nullptr) {
eGPUTextureFormat format = GPU_texture_format(tx_);
stencil_view_ = GPU_texture_create_view(name_, tx_, format, 0, 9999, 0, 9999, cube_as_array);
GPU_texture_stencil_texture_mode_set(stencil_view_, true);
}
return stencil_view_;
}
/**
* Returns true if the texture has been allocated or acquired from the pool.
*/
bool is_valid() const
{
return tx_ != nullptr;
}
int width() const
{
return GPU_texture_width(tx_);
}
int height() const
{
return GPU_texture_height(tx_);
}
int pixel_count() const
{
return GPU_texture_width(tx_) * GPU_texture_height(tx_);
}
bool depth() const
{
return GPU_texture_depth(tx_);
}
bool is_stencil() const
{
return GPU_texture_stencil(tx_);
}
bool is_integer() const
{
return GPU_texture_integer(tx_);
}
bool is_cube() const
{
return GPU_texture_cube(tx_);
}
bool is_array() const
{
return GPU_texture_array(tx_);
}
int3 size(int miplvl = 0) const
{
int3 size(1);
GPU_texture_get_mipmap_size(tx_, miplvl, size);
return size;
}
/**
* Clear the entirety of the texture using one pixel worth of data.
*/
void clear(float4 values)
{
GPU_texture_clear(tx_, GPU_DATA_FLOAT, &values[0]);
}
/**
* Clear the entirety of the texture using one pixel worth of data.
*/
void clear(uint4 values)
{
GPU_texture_clear(tx_, GPU_DATA_UINT, &values[0]);
}
/**
* Clear the entirety of the texture using one pixel worth of data.
*/
void clear(int4 values)
{
GPU_texture_clear(tx_, GPU_DATA_INT, &values[0]);
}
/**
* Returns a buffer containing the texture data for the specified miplvl.
* The memory block needs to be manually freed by MEM_freeN().
*/
template<typename T> T *read(eGPUDataFormat format, int miplvl = 0)
{
return reinterpret_cast<T *>(GPU_texture_read(tx_, format, miplvl));
}
void filter_mode(bool do_filter)
{
GPU_texture_filter_mode(tx_, do_filter);
}
/**
* Free the internal texture but not the #draw::Texture itself.
*/
void free()
{
GPU_TEXTURE_FREE_SAFE(tx_);
for (GPUTexture *&view : mip_views_) {
GPU_TEXTURE_FREE_SAFE(view);
}
for (GPUTexture *&view : layer_views_) {
GPU_TEXTURE_FREE_SAFE(view);
}
GPU_TEXTURE_FREE_SAFE(stencil_view_);
mip_views_.clear();
}
/**
* Swap the content of the two textures.
*/
static void swap(Texture &a, Texture &b)
{
SWAP(GPUTexture *, a.tx_, b.tx_);
SWAP(const char *, a.name_, b.name_);
}
private:
bool ensure_impl(int w,
int h = 0,
int d = 0,
int mip_len = 1,
eGPUTextureFormat format = GPU_RGBA8,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL,
float *data = nullptr,
bool layered = false,
bool cubemap = false)
{
/* TODO(@fclem): In the future, we need to check if mip_count did not change.
* For now it's ok as we always define all MIP level. */
if (tx_) {
int3 size(0);
GPU_texture_get_mipmap_size(tx_, 0, size);
if (size != int3(w, h, d) || GPU_texture_format(tx_) != format ||
GPU_texture_cube(tx_) != cubemap || GPU_texture_array(tx_) != layered) {
free();
}
}
if (tx_ == nullptr) {
tx_ = create(w, h, d, mip_len, format, usage, data, layered, cubemap);
return true;
}
return false;
}
GPUTexture *create(int w,
int h,
int d,
int mip_len,
eGPUTextureFormat format,
eGPUTextureUsage usage,
float *data,
bool layered,
bool cubemap)
{
if (h == 0) {
return GPU_texture_create_1d_ex(name_, w, mip_len, format, usage, data);
}
else if (cubemap) {
if (layered) {
return GPU_texture_create_cube_array_ex(name_, w, d, mip_len, format, usage, data);
}
else {
return GPU_texture_create_cube_ex(name_, w, mip_len, format, usage, data);
}
}
else if (d == 0) {
if (layered) {
return GPU_texture_create_1d_array_ex(name_, w, h, mip_len, format, usage, data);
}
else {
return GPU_texture_create_2d_ex(name_, w, h, mip_len, format, usage, data);
}
}
else {
if (layered) {
return GPU_texture_create_2d_array_ex(name_, w, h, d, mip_len, format, usage, data);
}
else {
return GPU_texture_create_3d_ex(
name_, w, h, d, mip_len, format, GPU_DATA_FLOAT, usage, data);
}
}
}
};
class TextureFromPool : public Texture, NonMovable {
public:
TextureFromPool(const char *name = "gpu::Texture") : Texture(name){};
/* Always use `release()` after rendering. */
void acquire(int2 extent,
eGPUTextureFormat format,
eGPUTextureUsage usage = GPU_TEXTURE_USAGE_GENERAL)
{
BLI_assert(this->tx_ == nullptr);
this->tx_ = DRW_texture_pool_texture_acquire(
DST.vmempool->texture_pool, UNPACK2(extent), format, usage);
}
void release()
{
/* Allows multiple release. */
if (this->tx_ == nullptr) {
return;
}
DRW_texture_pool_texture_release(DST.vmempool->texture_pool, this->tx_);
this->tx_ = nullptr;
}
/**
* Swap the content of the two textures.
* Also change ownership accordingly if needed.
*/
static void swap(TextureFromPool &a, Texture &b)
{
Texture::swap(a, b);
DRW_texture_pool_give_texture_ownership(DST.vmempool->texture_pool, a);
DRW_texture_pool_take_texture_ownership(DST.vmempool->texture_pool, b);
}
static void swap(Texture &a, TextureFromPool &b)
{
swap(b, a);
}
static void swap(TextureFromPool &a, TextureFromPool &b)
{
Texture::swap(a, b);
}
/** Remove methods that are forbidden with this type of textures. */
bool ensure_1d(int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_1d_array(int, int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_2d(int, int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_2d_array(int, int, int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_3d(int, int, int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_cube(int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
bool ensure_cube_array(int, int, int, eGPUTextureFormat, eGPUTextureUsage, float *) = delete;
void filter_mode(bool) = delete;
void free() = delete;
GPUTexture *mip_view(int) = delete;
GPUTexture *layer_view(int) = delete;
GPUTexture *stencil_view() = delete;
};
class TextureRef : public Texture {
public:
TextureRef() = default;
~TextureRef()
{
this->tx_ = nullptr;
}
void wrap(GPUTexture *tex)
{
this->tx_ = tex;
}
/** Remove methods that are forbidden with this type of textures. */
bool ensure_1d(int, int, eGPUTextureFormat, float *) = delete;
bool ensure_1d_array(int, int, int, eGPUTextureFormat, float *) = delete;
bool ensure_2d(int, int, int, eGPUTextureFormat, float *) = delete;
bool ensure_2d_array(int, int, int, int, eGPUTextureFormat, float *) = delete;
bool ensure_3d(int, int, int, int, eGPUTextureFormat, float *) = delete;
bool ensure_cube(int, int, eGPUTextureFormat, float *) = delete;
bool ensure_cube_array(int, int, int, eGPUTextureFormat, float *) = delete;
void filter_mode(bool) = delete;
void free() = delete;
GPUTexture *mip_view(int) = delete;
GPUTexture *layer_view(int) = delete;
GPUTexture *stencil_view() = delete;
};
/**
* Dummy type to bind texture as image.
* It is just a GPUTexture in disguise.
*/
class Image {
};
static inline Image *as_image(GPUTexture *tex)
{
return reinterpret_cast<Image *>(tex);
}
static inline Image **as_image(GPUTexture **tex)
{
return reinterpret_cast<Image **>(tex);
}
static inline GPUTexture *as_texture(Image *img)
{
return reinterpret_cast<GPUTexture *>(img);
}
static inline GPUTexture **as_texture(Image **img)
{
return reinterpret_cast<GPUTexture **>(img);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Framebuffer
* \{ */
class Framebuffer : NonCopyable {
private:
GPUFrameBuffer *fb_ = nullptr;
const char *name_;
public:
Framebuffer() : name_(""){};
Framebuffer(const char *name) : name_(name){};
~Framebuffer()
{
GPU_FRAMEBUFFER_FREE_SAFE(fb_);
}
void ensure(GPUAttachment depth = GPU_ATTACHMENT_NONE,
GPUAttachment color1 = GPU_ATTACHMENT_NONE,
GPUAttachment color2 = GPU_ATTACHMENT_NONE,
GPUAttachment color3 = GPU_ATTACHMENT_NONE,
GPUAttachment color4 = GPU_ATTACHMENT_NONE,
GPUAttachment color5 = GPU_ATTACHMENT_NONE,
GPUAttachment color6 = GPU_ATTACHMENT_NONE,
GPUAttachment color7 = GPU_ATTACHMENT_NONE,
GPUAttachment color8 = GPU_ATTACHMENT_NONE)
{
if (fb_ == NULL) {
fb_ = GPU_framebuffer_create(name_);
}
GPUAttachment config[] = {
depth, color1, color2, color3, color4, color5, color6, color7, color8};
GPU_framebuffer_config_array(fb_, config, sizeof(config) / sizeof(GPUAttachment));
}
/**
* Empty frame-buffer configuration.
*/
void ensure(int2 target_size)
{
if (fb_ == NULL) {
fb_ = GPU_framebuffer_create(name_);
}
GPU_framebuffer_default_size(fb_, UNPACK2(target_size));
}
void bind()
{
GPU_framebuffer_bind(fb_);
}
void clear_depth(float depth)
{
GPU_framebuffer_clear_depth(fb_, depth);
}
Framebuffer &operator=(Framebuffer &&a)
{
if (*this != a) {
this->fb_ = a.fb_;
this->name_ = a.name_;
a.fb_ = nullptr;
}
return *this;
}
operator GPUFrameBuffer *() const
{
return fb_;
}
GPUFrameBuffer **operator&()
{
return &fb_;
}
/**
* Swap the content of the two framebuffer.
*/
static void swap(Framebuffer &a, Framebuffer &b)
{
SWAP(GPUFrameBuffer *, a.fb_, b.fb_);
SWAP(const char *, a.name_, b.name_);
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Double & Triple buffering util
*
* This is not strictly related to a GPU type and could be moved elsewhere.
* \{ */
template<typename T, int64_t len> class SwapChain {
private:
BLI_STATIC_ASSERT(len > 1, "A swap-chain needs more than 1 unit in length.");
std::array<T, len> chain_;
public:
void swap()
{
for (auto i : IndexRange(len - 1)) {
auto i_next = (i + 1) % len;
if constexpr (std::is_trivial_v<T>) {
SWAP(T, chain_[i], chain_[i_next]);
}
else {
T::swap(chain_[i], chain_[i_next]);
}
}
}
constexpr int64_t size()
{
return len;
}
T &current()
{
return chain_[0];
}
T &previous()
{
/* Avoid modulo operation with negative numbers. */
return chain_[(0 + len - 1) % len];
}
T &next()
{
return chain_[(0 + 1) % len];
}
const T &current() const
{
return chain_[0];
}
const T &previous() const
{
/* Avoid modulo operation with negative numbers. */
return chain_[(0 + len - 1) % len];
}
const T &next() const
{
return chain_[(0 + 1) % len];
}
};
/** \} */
} // namespace blender::draw