This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/src/transform.c
Ton Roosendaal bdb12f23cf Bugfix #4843 revisited
This is a new incarnation of compatible_eul(), a function called:

void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot)

It uses the two euler extraction methods as added by Brecht a while ago,
and checks for compatibility each, and then picks the best of the two
based on minimal difference with 'oldrot'.

Gives for rotation key inserting a much higher hitrate for OK eulers.
2006-08-13 10:03:07 +00:00

2879 lines
65 KiB
C
Executable File

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef WIN32
#include <unistd.h>
#else
#include <io.h>
#endif
#include "MEM_guardedalloc.h"
#include "DNA_armature_types.h"
#include "DNA_ipo_types.h" /* some silly ipo flag */
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "DNA_screen_types.h" /* area dimensions */
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
#include "DNA_view3d_types.h"
#include "DNA_space_types.h"
#include "BIF_editview.h" /* arrows_move_cursor */
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "BIF_mywindow.h"
#include "BIF_resources.h"
#include "BIF_screen.h"
#include "BIF_space.h" /* undo */
#include "BIF_toets.h" /* persptoetsen */
#include "BIF_mywindow.h" /* warp_pointer */
#include "BIF_toolbox.h" /* notice */
#include "BIF_editmesh.h"
#include "BIF_editsima.h"
#include "BIF_drawimage.h" /* uvco_to_areaco_noclip */
#include "BKE_global.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"/* popmenu and error */
#include "BSE_view.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "PIL_time.h" /* sleep */
#include "blendef.h"
#include "mydevice.h"
#include "transform.h"
/* GLOBAL VARIABLE THAT SHOULD MOVED TO SCREEN MEMBER OR SOMETHING */
TransInfo Trans = {TFM_INIT, 0}; // enforce init on first usage
/******************************** Helper functions ************************************/
/* ************************** Dashed help line **************************** */
/* bad frontbuffer call... because it is used in transform after force_draw() */
static void helpline(TransInfo *t, float *vec)
{
float vecrot[3], cent[2];
short mval[2];
VECCOPY(vecrot, vec);
if(t->flag & T_EDIT) {
Object *ob=G.obedit;
if(ob) Mat4MulVecfl(ob->obmat, vecrot);
}
else if(t->flag & T_POSE) {
Object *ob=t->poseobj;
if(ob) Mat4MulVecfl(ob->obmat, vecrot);
}
getmouseco_areawin(mval);
projectFloatView(t, vecrot, cent); // no overflow in extreme cases
if(cent[0]!=IS_CLIPPED) {
persp(PERSP_WIN);
glDrawBuffer(GL_FRONT);
BIF_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2sv(mval);
glVertex2fv(cent);
glEnd();
setlinestyle(0);
persp(PERSP_VIEW);
bglFlush(); // flush display for frontbuffer
glDrawBuffer(GL_BACK);
}
}
/* ************************** INPUT FROM MOUSE *************************** */
float InputScaleRatio(TransInfo *t, short mval[2]) {
float ratio, dx, dy;
if(t->flag & T_SHIFT_MOD) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
dx = (float)(t->center2d[0] - t->shiftmval[0]);
dy = (float)(t->center2d[1] - t->shiftmval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
dx= (float)(t->center2d[0] - mval[0]);
dy= (float)(t->center2d[1] - mval[1]);
ratio+= 0.1f*(float)(sqrt( dx*dx + dy*dy)/t->fac -ratio);
}
else {
dx = (float)(t->center2d[0] - mval[0]);
dy = (float)(t->center2d[1] - mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
}
return ratio;
}
float InputHorizontalRatio(TransInfo *t, short mval[2]) {
int y, pad;
pad = curarea->winx / 10;
if (t->flag & T_SHIFT_MOD) {
/* deal with Shift key by adding motion / 10 to motion before shift press */
y = t->shiftmval[0] + (mval[0] - t->shiftmval[0]) / 10;
}
else {
y = mval[0];
}
return (float)(y - pad) / (float)(curarea->winx - 2 * pad);
}
float InputHorizontalAbsolute(TransInfo *t, short mval[2]) {
float vec[3];
if(t->flag & T_SHIFT_MOD) {
short dx = t->shiftmval[0] + (mval[0] - t->shiftmval[0]) / 10 - t->imval[0];
short dy = t->shiftmval[1] + (mval[1] - t->shiftmval[1]) / 10 - t->imval[1];
convertViewVec(t, t->vec, dx, dy);
}
else {
convertViewVec(t, t->vec, (short)(mval[0] - t->imval[0]), (short)(mval[1] - t->imval[1]));
}
Projf(vec, t->vec, t->viewinv[0]);
return Inpf(t->viewinv[0], vec) * 2.0f;
}
float InputVerticalAbsolute(TransInfo *t, short mval[2]) {
float vec[3];
if(t->flag & T_SHIFT_MOD) {
short dx = t->shiftmval[0] + (mval[0] - t->shiftmval[0]) / 10 - t->imval[0];
short dy = t->shiftmval[1] + (mval[1] - t->shiftmval[1]) / 10 - t->imval[1];
convertViewVec(t, t->vec, dx, dy);
}
else {
convertViewVec(t, t->vec, (short)(mval[0] - t->imval[0]), (short)(mval[1] - t->imval[1]));
}
Projf(vec, t->vec, t->viewinv[1]);
return Inpf(t->viewinv[1], vec) * 2.0f;
}
/* ************************** SPACE DEPENDANT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if(t->spacetype==SPACE_VIEW3D) {
Mat4CpyMat4(t->viewmat, G.vd->viewmat);
Mat4CpyMat4(t->viewinv, G.vd->viewinv);
Mat4CpyMat4(t->persmat, G.vd->persmat);
Mat4CpyMat4(t->persinv, G.vd->persinv);
t->persp= G.vd->persp;
}
else {
Mat4One(t->viewmat);
Mat4One(t->viewinv);
Mat4One(t->persmat);
Mat4One(t->persinv);
t->persp = 0; // ortho
}
calculateCenter2D(t);
}
void convertViewVec(TransInfo *t, float *vec, short dx, short dy)
{
if (t->spacetype==SPACE_VIEW3D) {
window_to_3d(vec, dx, dy);
}
else if(t->spacetype==SPACE_IMAGE) {
float divx, divy, aspx, aspy;
transform_aspect_ratio_tface_uv(&aspx, &aspy);
divx= G.v2d->mask.xmax-G.v2d->mask.xmin;
divy= G.v2d->mask.ymax-G.v2d->mask.ymin;
vec[0]= aspx*(G.v2d->cur.xmax-G.v2d->cur.xmin)*(dx)/divx;
vec[1]= aspy*(G.v2d->cur.ymax-G.v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
}
void projectIntView(TransInfo *t, float *vec, int *adr)
{
if (t->spacetype==SPACE_VIEW3D)
project_int(vec, adr);
else if(t->spacetype==SPACE_IMAGE) {
float aspx, aspy, v[2];
transform_aspect_ratio_tface_uv(&aspx, &aspy);
v[0]= vec[0]/aspx;
v[1]= vec[1]/aspy;
uvco_to_areaco_noclip(v, adr);
}
}
void projectFloatView(TransInfo *t, float *vec, float *adr)
{
if (t->spacetype==SPACE_VIEW3D)
project_float(vec, adr);
else if(t->spacetype==SPACE_IMAGE) {
int a[2];
projectIntView(t, vec, a);
adr[0]= a[0];
adr[1]= a[1];
}
}
void convertVecToDisplayNum(float *vec, float *num)
{
TransInfo *t= BIF_GetTransInfo();
VECCOPY(num, vec);
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((G.sima->flag & SI_COORDFLOATS)==0) {
int width, height;
transform_width_height_tface_uv(&width, &height);
num[0] *= width;
num[1] *= height;
}
transform_aspect_ratio_tface_uv(&aspx, &aspy);
num[0] /= aspx;
num[1] /= aspy;
}
}
void convertDisplayNumToVec(float *num, float *vec)
{
TransInfo *t= BIF_GetTransInfo();
VECCOPY(vec, num);
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((G.sima->flag & SI_COORDFLOATS)==0) {
int width, height;
transform_width_height_tface_uv(&width, &height);
vec[0] /= width;
vec[1] /= height;
}
transform_aspect_ratio_tface_uv(&aspx, &aspy);
vec[0] *= aspx;
vec[1] *= aspy;
}
}
static void viewRedrawForce(TransInfo *t)
{
if(t->spacetype==SPACE_VIEW3D)
force_draw(0);
else if(t->spacetype==SPACE_IMAGE) {
if(G.sima->lock) force_draw_plus(SPACE_VIEW3D, 0);
else force_draw(0);
}
}
static void viewRedrawPost(TransInfo *t)
{
if(t->spacetype==SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if(t->spacetype==SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
scrarea_queue_headredraw(curarea);
}
/* ************************** TRANSFORMATIONS **************************** */
void BIF_selectOrientation() {
short val;
val= pupmenu("Orientation%t|Global|Local|Normal|View");
if(val>0) {
if(val==1) G.vd->twmode= V3D_MANIP_GLOBAL;
else if(val==2) G.vd->twmode= V3D_MANIP_LOCAL;
else if(val==3) G.vd->twmode= V3D_MANIP_NORMAL;
else if(val==4) G.vd->twmode= V3D_MANIP_VIEW;
}
}
static void view_editmove(unsigned short event)
{
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch(event) {
case WHEELUPMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD2);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD4);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD8);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD6);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
}
void checkFirstTime() {
if(Trans.mode==TFM_INIT) {
memset(&Trans, 0, sizeof(TransInfo));
Trans.propsize = 1.0;
}
}
static char *transform_to_undostr(TransInfo *t)
{
switch (t->mode) {
case TFM_TRANSLATION:
return "Translate";
case TFM_ROTATION:
return "Rotate";
case TFM_RESIZE:
return "Scale";
case TFM_TOSPHERE:
return "To Sphere";
case TFM_SHEAR:
return "Shear";
case TFM_WARP:
return "Warp";
case TFM_SHRINKFATTEN:
return "Shrink/Fatten";
case TFM_TILT:
return "Tilt";
case TFM_TRACKBALL:
return "Trackball";
case TFM_PUSHPULL:
return "Push/Pull";
case TFM_CREASE:
return "Crease";
case TFM_BONESIZE:
return "Bone Width";
case TFM_BONE_ENVELOPE:
return "Bone Envelope";
}
return "Transform";
}
/* ************************************************* */
static void transformEvent(unsigned short event, short val) {
float mati[3][3] = {{1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
char cmode = constraintModeToChar(&Trans);
if (val) {
switch (event){
/* enforce redraw of transform when modifiers are used */
case LEFTCTRLKEY:
case RIGHTCTRLKEY:
Trans.redraw = 1;
break;
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
/* shift is modifier for higher resolution transform, works nice to store this mouse position */
getmouseco_areawin(Trans.shiftmval);
Trans.flag |= T_SHIFT_MOD;
Trans.redraw = 1;
break;
case SPACEKEY:
if ((Trans.spacetype==SPACE_VIEW3D) && (G.qual & LR_ALTKEY)) {
short mval[2];
getmouseco_sc(mval);
BIF_selectOrientation();
calc_manipulator_stats(curarea);
Mat3CpyMat4(Trans.spacemtx, G.vd->twmat);
warp_pointer(mval[0], mval[1]);
}
else {
Trans.state = TRANS_CONFIRM;
}
break;
case MIDDLEMOUSE:
if ((Trans.flag & T_NO_CONSTRAINT)==0) {
/* exception for switching to dolly, or trackball, in camera view */
if (Trans.flag & T_CAMERA) {
if (Trans.mode==TFM_TRANSLATION)
setLocalConstraint(&Trans, (CON_AXIS2), "along local Z");
else if (Trans.mode==TFM_ROTATION) {
restoreTransObjects(&Trans);
initTransModeFlags(&Trans, TFM_TRACKBALL);
initTrackball(&Trans);
}
}
else {
Trans.flag |= T_MMB_PRESSED;
if (Trans.con.mode & CON_APPLY) {
stopConstraint(&Trans);
}
else {
if (G.qual & LR_CTRLKEY) {
initSelectConstraint(&Trans, Trans.spacemtx);
}
else {
/* bit hackish... but it prevents mmb select to print the orientation from menu */
strcpy(Trans.spacename, "global");
initSelectConstraint(&Trans, mati);
}
postSelectConstraint(&Trans);
}
}
Trans.redraw = 1;
}
break;
case ESCKEY:
case RIGHTMOUSE:
Trans.state = TRANS_CANCEL;
break;
case LEFTMOUSE:
case PADENTER:
case RETKEY:
Trans.state = TRANS_CONFIRM;
break;
case GKEY:
/* only switch when... */
if( ELEM3(Trans.mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
restoreTransObjects(&Trans);
initTransModeFlags(&Trans, TFM_TRANSLATION);
initTranslation(&Trans);
Trans.redraw = 1;
}
break;
case SKEY:
/* only switch when... */
if( ELEM3(Trans.mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
restoreTransObjects(&Trans);
initTransModeFlags(&Trans, TFM_RESIZE);
initResize(&Trans);
Trans.redraw = 1;
}
break;
case RKEY:
/* only switch when... */
if( ELEM4(Trans.mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
if (Trans.mode == TFM_ROTATION) {
restoreTransObjects(&Trans);
initTransModeFlags(&Trans, TFM_TRACKBALL);
initTrackball(&Trans);
}
else {
restoreTransObjects(&Trans);
initTransModeFlags(&Trans, TFM_ROTATION);
initRotation(&Trans);
}
Trans.redraw = 1;
}
break;
case CKEY:
if (G.qual & LR_ALTKEY) {
Trans.flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(&Trans);
calculatePropRatio(&Trans);
Trans.redraw= 1;
}
else {
stopConstraint(&Trans);
Trans.redraw = 1;
}
break;
case XKEY:
if ((Trans.flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'X') {
if (Trans.con.mode & CON_USER) {
stopConstraint(&Trans);
}
else {
if (G.qual == 0)
setUserConstraint(&Trans, (CON_AXIS0), "along %s X");
else if ((G.qual == LR_SHIFTKEY) && ((Trans.flag & T_2D_EDIT)==0))
setUserConstraint(&Trans, (CON_AXIS1|CON_AXIS2), "locking %s X");
}
}
else {
if (G.qual == 0)
setConstraint(&Trans, mati, (CON_AXIS0), "along global X");
else if ((G.qual == LR_SHIFTKEY) && ((Trans.flag & T_2D_EDIT)==0))
setConstraint(&Trans, mati, (CON_AXIS1|CON_AXIS2), "locking global X");
}
Trans.redraw = 1;
}
break;
case YKEY:
if ((Trans.flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Y') {
if (Trans.con.mode & CON_USER) {
stopConstraint(&Trans);
}
else {
if (G.qual == 0)
setUserConstraint(&Trans, (CON_AXIS1), "along %s Y");
else if ((G.qual == LR_SHIFTKEY) && ((Trans.flag & T_2D_EDIT)==0))
setUserConstraint(&Trans, (CON_AXIS0|CON_AXIS2), "locking %s Y");
}
}
else {
if (G.qual == 0)
setConstraint(&Trans, mati, (CON_AXIS1), "along global Y");
else if ((G.qual == LR_SHIFTKEY) && ((Trans.flag & T_2D_EDIT)==0))
setConstraint(&Trans, mati, (CON_AXIS0|CON_AXIS2), "locking global Y");
}
Trans.redraw = 1;
}
break;
case ZKEY:
if ((Trans.flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Z') {
if (Trans.con.mode & CON_USER) {
stopConstraint(&Trans);
}
else {
if (G.qual == 0)
setUserConstraint(&Trans, (CON_AXIS2), "along %s Z");
else if ((G.qual == LR_SHIFTKEY) && ((Trans.flag & T_2D_EDIT)==0))
setUserConstraint(&Trans, (CON_AXIS0|CON_AXIS1), "locking %s Z");
}
}
else if ((Trans.flag & T_2D_EDIT)==0) {
if (G.qual == 0)
setConstraint(&Trans, mati, (CON_AXIS2), "along global Z");
else if (G.qual == LR_SHIFTKEY)
setConstraint(&Trans, mati, (CON_AXIS0|CON_AXIS1), "locking global Z");
}
Trans.redraw = 1;
}
break;
case OKEY:
if (Trans.flag & T_PROP_EDIT && G.qual==LR_SHIFTKEY) {
G.scene->prop_mode = (G.scene->prop_mode+1)%6;
calculatePropRatio(&Trans);
Trans.redraw= 1;
}
break;
case PADPLUSKEY:
if(G.qual & LR_ALTKEY && Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 1.1f;
calculatePropRatio(&Trans);
}
Trans.redraw= 1;
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if(Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 1.1f;
calculatePropRatio(&Trans);
}
else view_editmove(event);
Trans.redraw= 1;
break;
case PADMINUS:
if(G.qual & LR_ALTKEY && Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 0.90909090f;
calculatePropRatio(&Trans);
}
Trans.redraw= 1;
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if(Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 0.90909090f;
calculatePropRatio(&Trans);
}
else view_editmove(event);
Trans.redraw= 1;
break;
}
Trans.redraw |= handleNumInput(&(Trans.num), event);
arrows_move_cursor(event);
}
else {
switch (event){
/* no redraw on release modifier keys! this makes sure you can assign the 'grid' still
after releasing modifer key */
case MIDDLEMOUSE:
if ((Trans.flag & T_NO_CONSTRAINT)==0) {
Trans.flag &= ~T_MMB_PRESSED;
postSelectConstraint(&Trans);
Trans.redraw = 1;
}
break;
case LEFTMOUSE:
case RIGHTMOUSE:
if (Trans.context & CTX_TWEAK)
Trans.state = TRANS_CONFIRM;
break;
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
/* shift is modifier for higher resolution transform */
Trans.flag &= ~T_SHIFT_MOD;
break;
}
}
}
void initTransform(int mode, int context) {
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
checkFirstTime();
Trans.state = TRANS_RUNNING;
Trans.context = context;
initTrans(&Trans); // internal data, mouse, vectors
if(Trans.spacetype==SPACE_VIEW3D) {
calc_manipulator_stats(curarea);
Mat3CpyMat4(Trans.spacemtx, G.vd->twmat);
}
else
Mat3One(Trans.spacemtx);
initTransModeFlags(&Trans, mode); // modal settings in struct Trans
createTransData(&Trans); // make TransData structs from selection
if (Trans.total == 0) {
postTrans(&Trans);
return;
}
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
mode= Trans.mode;
calculatePropRatio(&Trans);
calculateCenter(&Trans);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(&Trans);
break;
case TFM_ROTATION:
initRotation(&Trans);
break;
case TFM_RESIZE:
initResize(&Trans);
break;
case TFM_TOSPHERE:
initToSphere(&Trans);
break;
case TFM_SHEAR:
initShear(&Trans);
break;
case TFM_WARP:
initWarp(&Trans);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(&Trans);
break;
case TFM_TILT:
initTilt(&Trans);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(&Trans);
break;
case TFM_TRACKBALL:
initTrackball(&Trans);
break;
case TFM_PUSHPULL:
initPushPull(&Trans);
break;
case TFM_CREASE:
initCrease(&Trans);
break;
case TFM_BONESIZE:
{ /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
bArmature *arm= Trans.poseobj->data;
if(arm->drawtype==ARM_ENVELOPE)
initBoneEnvelope(&Trans);
else
initBoneSize(&Trans);
}
break;
case TFM_BONE_ENVELOPE:
initBoneEnvelope(&Trans);
break;
}
}
void Transform()
{
short pmval[2] = {0, 0}, mval[2], val;
unsigned short event;
if(Trans.total==0) return; // added, can happen now! (ton)
// Emptying event queue
while( qtest() ) {
event= extern_qread(&val);
}
Trans.redraw = 1; /* initial draw */
while (Trans.state == TRANS_RUNNING) {
getmouseco_areawin(mval);
if (mval[0] != pmval[0] || mval[1] != pmval[1]) {
if (Trans.flag & T_MMB_PRESSED)
Trans.con.mode |= CON_SELECT;
Trans.redraw = 1;
}
if (Trans.redraw) {
pmval[0] = mval[0];
pmval[1] = mval[1];
selectConstraint(&Trans);
if (Trans.transform) {
Trans.transform(&Trans, mval); // calls recalcData()
}
Trans.redraw = 0;
}
/* essential for idling subloop */
if( qtest()==0) PIL_sleep_ms(2);
while( qtest() ) {
event= extern_qread(&val);
transformEvent(event, val);
}
}
/* handle restoring objects */
if(Trans.state == TRANS_CANCEL)
restoreTransObjects(&Trans); // calls recalcData()
/* free data */
postTrans(&Trans);
/* aftertrans does insert ipos and action channels, and clears base flags, doesnt read transdata */
special_aftertrans_update(&Trans);
/* send events out for redraws */
viewRedrawPost(&Trans);
/* Undo as last, certainly after special_trans_update! */
if(Trans.state == TRANS_CANCEL) {
if(Trans.undostr) BIF_undo_push(Trans.undostr);
}
else {
if(Trans.undostr) BIF_undo_push(Trans.undostr);
else BIF_undo_push(transform_to_undostr(&Trans));
}
Trans.undostr= NULL;
}
/* ************************** Manipulator init and main **************************** */
void initManipulator(int mode)
{
Trans.state = TRANS_RUNNING;
Trans.context = CTX_NONE;
/* automatic switch to scaling bone envelopes */
if(mode==TFM_RESIZE && G.obedit && G.obedit->type==OB_ARMATURE) {
bArmature *arm= G.obedit->data;
if(arm->drawtype==ARM_ENVELOPE)
mode= TFM_BONE_ENVELOPE;
}
initTrans(&Trans); // internal data, mouse, vectors
initTransModeFlags(&Trans, mode); // modal settings in struct Trans
G.moving |= G_TRANSFORM_MANIP; // signal to draw manipuls while transform
createTransData(&Trans); // make TransData structs from selection
if (Trans.total == 0)
return;
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
mode= Trans.mode;
calculatePropRatio(&Trans);
calculateCenter(&Trans);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(&Trans);
break;
case TFM_ROTATION:
initRotation(&Trans);
break;
case TFM_RESIZE:
initResize(&Trans);
break;
case TFM_TRACKBALL:
initTrackball(&Trans);
break;
}
Trans.flag |= T_USES_MANIPULATOR;
}
void ManipulatorTransform()
{
int mouse_moved = 0;
short pmval[2] = {0, 0}, mval[2], val;
unsigned short event;
if (Trans.total == 0)
return;
Trans.redraw = 1; /* initial draw */
while (Trans.state == TRANS_RUNNING) {
getmouseco_areawin(mval);
if (mval[0] != pmval[0] || mval[1] != pmval[1]) {
Trans.redraw = 1;
}
if (Trans.redraw) {
pmval[0] = mval[0];
pmval[1] = mval[1];
//selectConstraint(&Trans); needed?
if (Trans.transform) {
Trans.transform(&Trans, mval);
}
Trans.redraw = 0;
}
/* essential for idling subloop */
if( qtest()==0) PIL_sleep_ms(2);
while( qtest() ) {
event= extern_qread(&val);
switch (event){
case MOUSEX:
case MOUSEY:
mouse_moved = 1;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTCTRLKEY:
case RIGHTCTRLKEY:
if(val) Trans.redraw = 1;
break;
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
/* shift is modifier for higher resolution transform, works nice to store this mouse position */
if(val) {
getmouseco_areawin(Trans.shiftmval);
Trans.flag |= T_SHIFT_MOD;
Trans.redraw = 1;
}
else Trans.flag &= ~T_SHIFT_MOD;
break;
case ESCKEY:
case RIGHTMOUSE:
Trans.state = TRANS_CANCEL;
break;
case LEFTMOUSE:
if(mouse_moved==0 && val==0) break;
// else we pass on event to next, which cancels
case SPACEKEY:
case PADENTER:
case RETKEY:
Trans.state = TRANS_CONFIRM;
break;
}
if(val) {
switch(event) {
case WHEELDOWNMOUSE:
case PADPLUSKEY:
if(Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 1.1f;
calculatePropRatio(&Trans);
Trans.redraw= 1;
}
break;
case WHEELUPMOUSE:
case PADMINUS:
if(Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 0.90909090f;
calculatePropRatio(&Trans);
Trans.redraw= 1;
}
break;
}
}
}
}
if(Trans.state == TRANS_CANCEL) {
restoreTransObjects(&Trans);
}
else {
BIF_undo_push(transform_to_undostr(&Trans));
}
/* free data, reset vars */
postTrans(&Trans);
/* aftertrans does insert ipos and action channels, and clears base flags */
special_aftertrans_update(&Trans);
/* send events out for redraws */
viewRedrawPost(&Trans);
}
/* ************************** TRANSFORMATIONS **************************** */
static void protectedTransBits(short protectflag, float *vec)
{
if(protectflag & OB_LOCK_LOCX)
vec[0]= 0.0f;
if(protectflag & OB_LOCK_LOCY)
vec[1]= 0.0f;
if(protectflag & OB_LOCK_LOCZ)
vec[2]= 0.0f;
}
static void protectedSizeBits(short protectflag, float *size)
{
if(protectflag & OB_LOCK_SCALEX)
size[0]= 1.0f;
if(protectflag & OB_LOCK_SCALEY)
size[1]= 1.0f;
if(protectflag & OB_LOCK_SCALEZ)
size[2]= 1.0f;
}
static void protectedRotateBits(short protectflag, float *eul, float *oldeul)
{
if(protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if(protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if(protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
}
static void protectedQuaternionBits(short protectflag, float *quat, float *oldquat)
{
/* quaternions get limited with euler... */
/* this function only does the delta rotation */
if(protectflag) {
float eul[3], oldeul[3], quat1[4];
QUATCOPY(quat1, quat);
QuatToEul(quat, eul);
QuatToEul(oldquat, oldeul);
if(protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if(protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if(protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
EulToQuat(eul, quat);
/* quaternions flip w sign to accumulate rotations correctly */
if( (quat1[0]<0.0f && quat[0]>0.0f) || (quat1[0]>0.0f && quat[0]<0.0f) ) {
QuatMulf(quat, -1.0f);
}
}
}
/* ************************** WARP *************************** */
/* warp is done fully in view space */
void initWarp(TransInfo *t)
{
float max[3], min[3];
int i;
calculateCenterCursor(t);
t->idx_max = 0;
t->num.idx_max = 0;
t->transform = Warp;
t->snap[0] = 0.0f;
t->snap[1] = 5.0f;
t->snap[2] = 1.0f;
t->fac = (float)(t->center2d[0] - t->imval[0]);
/* we need min/max in view space */
for(i = 0; i < t->total; i++) {
float center[3];
VECCOPY(center, t->data[i].center);
Mat3MulVecfl(t->data[i].mtx, center);
Mat4MulVecfl(t->viewmat, center);
VecSubf(center, center, t->viewmat[3]);
if (i)
MinMax3(min, max, center);
else {
VECCOPY(max, center);
VECCOPY(min, center);
}
}
t->center[0]= (min[0]+max[0])/2.0f;
t->center[1]= (min[1]+max[1])/2.0f;
t->center[2]= (min[2]+max[2])/2.0f;
t->val= (max[0]-min[0])/2.0f; // t->val is free variable
}
int Warp(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3], circumfac, dist, phi0, co, si, *curs, cursor[3], gcursor[3];
int i;
char str[50];
curs= give_cursor();
/*
* gcursor is the one used for helpline.
* It has to be in the same space as the drawing loop
* (that means it needs to be in the object's space when in edit mode and
* in global space in object mode)
*
* cursor is used for calculations.
* It needs to be in view space, but we need to take object's offset
* into account if in Edit mode.
*/
VECCOPY(cursor, curs);
VECCOPY(gcursor, cursor);
if (t->flag & T_EDIT) {
VecSubf(cursor, cursor, G.obedit->obmat[3]);
VecSubf(gcursor, gcursor, G.obedit->obmat[3]);
Mat3MulVecfl(t->data->smtx, gcursor);
}
Mat4MulVecfl(t->viewmat, cursor);
VecSubf(cursor, cursor, t->viewmat[3]);
// amount of degrees for warp, 450 = allow to create 360 degree warp
circumfac= 450.0f*(mval[1] - t->imval[1]) / (float)(curarea->winy);
circumfac+= 90.0f;
snapGrid(t, &circumfac);
applyNumInput(&t->num, &circumfac);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Warp: %s", c);
}
else {
/* default header print */
sprintf(str, "Warp: %.3f", circumfac);
}
circumfac*= (float)(-M_PI/360.0);
for(i = 0 ; i < t->total; i++, td++) {
float loc[3];
if (td->flag & TD_NOACTION)
break;
/* translate point to centre, rotate in such a way that outline==distance */
VECCOPY(vec, td->iloc);
Mat3MulVecfl(td->mtx, vec);
Mat4MulVecfl(t->viewmat, vec);
VecSubf(vec, vec, t->viewmat[3]);
dist= vec[0]-cursor[0];
phi0= (circumfac*dist/t->val); // t->val is X dimension projected boundbox
vec[1]= (vec[1]-cursor[1]);
co= (float)cos(phi0);
si= (float)sin(phi0);
loc[0]= -si*vec[1]+cursor[0];
loc[1]= co*vec[1]+cursor[1];
loc[2]= vec[2];
Mat4MulVecfl(t->viewinv, loc);
VecSubf(loc, loc, t->viewinv[3]);
Mat3MulVecfl(td->smtx, loc);
VecSubf(loc, loc, td->iloc);
VecMulf(loc, td->factor);
VecAddf(td->loc, td->iloc, loc);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
helpline(t, gcursor);
return 1;
}
/* ************************** SHEAR *************************** */
void initShear(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = Shear;
}
int Shear(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3];
float value;
int i;
char str[50];
Mat3CpyMat4(persmat, t->viewmat);
Mat3Inv(persinv, persmat);
value = 0.05f * InputHorizontalAbsolute(t, mval);
snapGrid(t, &value);
applyNumInput(&t->num, &value);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shear: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shear: %.3f %s", value, t->proptext);
}
Mat3One(smat);
smat[1][0] = value;
Mat3MulMat3(tmat, smat, persmat);
Mat3MulMat3(totmat, persinv, tmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (G.obedit) {
float mat3[3][3];
Mat3MulMat3(mat3, totmat, td->mtx);
Mat3MulMat3(tmat, td->smtx, mat3);
}
else {
Mat3CpyMat3(tmat, totmat);
}
VecSubf(vec, td->center, t->center);
Mat3MulVecfl(tmat, vec);
VecAddf(vec, vec, t->center);
VecSubf(vec, vec, td->center);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
helpline (t, t->center);
return 1;
}
/* ************************** RESIZE *************************** */
void initResize(TransInfo *t)
{
t->fac = (float)sqrt(
(
((float)(t->center2d[1] - t->imval[1]))*((float)(t->center2d[1] - t->imval[1]))
+
((float)(t->center2d[0] - t->imval[0]))*((float)(t->center2d[0] - t->imval[0]))
) );
if(t->fac==0.0f) t->fac= 1.0f; // prevent Inf
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = Resize;
}
static void headerResize(TransInfo *t, float vec[3], char *str) {
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[20], "%.4f", vec[1]);
sprintf(&tvec[40], "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "Scale: %s%s %s", &tvec[0], t->con.text, t->proptext);
break;
case 1:
sprintf(str, "Scale: %s : %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
break;
case 2:
sprintf(str, "Scale: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
else {
if (t->flag & T_2D_EDIT)
sprintf(str, "Scale X: %s Y: %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
else
sprintf(str, "Scale X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
#define SIGN(a) (a<-FLT_EPSILON?1:a>FLT_EPSILON?2:3)
#define VECSIGNFLIP(a, b) ((SIGN(a[0]) & SIGN(b[0]))==0 || (SIGN(a[1]) & SIGN(b[1]))==0 || (SIGN(a[2]) & SIGN(b[2]))==0)
/* smat is reference matrix, only scaled */
static void TransMat3ToSize( float mat[][3], float smat[][3], float *size)
{
float vec[3];
VecCopyf(vec, mat[0]);
size[0]= Normalise(vec);
VecCopyf(vec, mat[1]);
size[1]= Normalise(vec);
VecCopyf(vec, mat[2]);
size[2]= Normalise(vec);
/* first tried with dotproduct... but the sign flip is crucial */
if( VECSIGNFLIP(mat[0], smat[0]) ) size[0]= -size[0];
if( VECSIGNFLIP(mat[1], smat[1]) ) size[1]= -size[1];
if( VECSIGNFLIP(mat[2], smat[2]) ) size[2]= -size[2];
}
static void ElementResize(TransInfo *t, TransData *td, float mat[3][3]) {
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
Mat3MulMat3(smat, mat, td->mtx);
Mat3MulMat3(tmat, td->smtx, smat);
}
else {
Mat3CpyMat3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* local constraint shouldn't alter center */
if (t->around == V3D_LOCAL) {
if (t->flag & T_OBJECT) {
VECCOPY(center, td->center);
}
else if (t->flag & T_EDIT) {
if(G.vd->around==V3D_LOCAL && (G.scene->selectmode & SCE_SELECT_FACE)) {
VECCOPY(center, td->center);
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
if (td->ext) {
float fsize[3];
if (t->flag & (T_OBJECT|T_TEXTURE)) {
float obsizemat[3][3];
// Reorient the size mat to fit the oriented object.
Mat3MulMat3(obsizemat, tmat, td->axismtx);
//printmatrix3("obsizemat", obsizemat);
TransMat3ToSize(obsizemat, td->axismtx, fsize);
//printvecf("fsize", fsize);
}
else {
Mat3ToSize(tmat, fsize);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
/* handle ipokeys? */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
/* calculate delta size (equal for size and dsize) */
vec[0]= (tdi->oldsize[0])*(fsize[0] -1.0f) * td->factor;
vec[1]= (tdi->oldsize[1])*(fsize[1] -1.0f) * td->factor;
vec[2]= (tdi->oldsize[2])*(fsize[2] -1.0f) * td->factor;
add_tdi_poin(tdi->sizex, tdi->oldsize, vec[0]);
add_tdi_poin(tdi->sizey, tdi->oldsize+1, vec[1]);
add_tdi_poin(tdi->sizez, tdi->oldsize+2, vec[2]);
}
else if((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)){
/* scale val and reset size */
*td->val = td->ival * fsize[0] * td->factor;
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
*td->val = td->ival;
td->ext->size[0] = td->ext->isize[0] * (fsize[0]) * td->factor;
td->ext->size[1] = td->ext->isize[1] * (fsize[1]) * td->factor;
td->ext->size[2] = td->ext->isize[2] * (fsize[2]) * td->factor;
}
}
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS)
VecSubf(vec, td->iloc, center);
else
VecSubf(vec, td->center, center);
Mat3MulVecfl(tmat, vec);
VecAddf(vec, vec, center);
if (t->flag & T_POINTS)
VecSubf(vec, vec, td->iloc);
else
VecSubf(vec, vec, td->center);
VecMulf(vec, td->factor);
if (t->flag & T_OBJECT) {
Mat3MulVecfl(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, vec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, vec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, vec[2]);
}
else VecAddf(td->loc, td->iloc, vec);
}
int Resize(TransInfo *t, short mval[2])
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[200];
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else {
ratio = InputScaleRatio(t, mval);
/* flip scale, but not for manipulator center handle */
if ((t->center2d[0] - mval[0]) * (t->center2d[0] - t->imval[0]) +
(t->center2d[1] - mval[1]) * (t->center2d[1] - t->imval[1]) < 0)
ratio *= -1.0f;
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
SizeToMat3(size, mat);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
Mat3CpyMat3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
ElementResize(t, td, mat);
}
/* evil hack - redo resize if cliiping needeed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) {
SizeToMat3(size, mat);
if (t->con.applySize)
t->con.applySize(t, NULL, mat);
for(i = 0, td=t->data; i < t->total; i++, td++)
ElementResize(t, td, mat);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
/* ************************** TOSPHERE *************************** */
void initToSphere(TransInfo *t)
{
TransData *td = t->data;
int i;
// Calculate average radius
for(i = 0 ; i < t->total; i++, td++) {
t->val += VecLenf(t->center, td->iloc);
}
t->val /= (float)t->total;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = ToSphere;
}
int ToSphere(TransInfo *t, short mval[2])
{
float vec[3];
float ratio, radius;
int i;
char str[50];
TransData *td = t->data;
ratio = InputHorizontalRatio(t, mval);
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
if (ratio < 0)
ratio = 0.0f;
else if (ratio > 1)
ratio = 1.0f;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "To Sphere: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "To Sphere: %.4f %s", ratio, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
float tratio;
if (td->flag & TD_NOACTION)
break;
VecSubf(vec, td->iloc, t->center);
radius = Normalise(vec);
tratio = ratio * td->factor;
VecMulf(vec, radius * (1.0f - tratio) + t->val * tratio);
VecAddf(td->loc, t->center, vec);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
return 1;
}
/* ************************** ROTATION *************************** */
void initRotation(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->fac = 0;
t->transform = Rotation;
}
static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3]) {
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
if (t->flag & T_POINTS) {
Mat3MulMat3(totmat, mat, td->mtx);
Mat3MulMat3(smat, td->smtx, totmat);
VecSubf(vec, td->iloc, t->center);
Mat3MulVecfl(smat, vec);
VecAddf(td->loc, vec, t->center);
if(td->flag & TD_USEQUAT) {
Mat3MulSerie(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
Mat3ToQuat(fmat, quat); // Actual transform
QuatMul(td->ext->quat, quat, td->ext->iquat);
}
}
else {
/* translation */
VecSubf(vec, td->center, t->center);
Mat3MulVecfl(mat, vec);
VecAddf(vec, vec, t->center);
/* vec now is the location where the object has to be */
VecSubf(vec, vec, td->center);
Mat3MulVecfl(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, vec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, vec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, vec[2]);
}
else VecAddf(td->loc, td->iloc, vec);
/* rotation */
if(td->flag & TD_USEQUAT) {
Mat3MulSerie(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
Mat3ToQuat(fmat, quat); // Actual transform
QuatMul(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
float obmat[3][3];
/* are there ipo keys? */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
float rot[3];
/* calculate the total rotatation in eulers */
VecAddf(eul, td->ext->irot, td->ext->drot);
EulToMat3(eul, obmat);
/* mat = transform, obmat = object rotation */
Mat3MulMat3(fmat, mat, obmat);
Mat3ToCompatibleEul(fmat, eul, td->ext->irot);
/* correct back for delta rot */
if(tdi->flag & TOB_IPODROT) {
VecSubf(rot, eul, td->ext->irot);
}
else {
VecSubf(rot, eul, td->ext->drot);
}
VecMulf(rot, (float)(9.0/M_PI_2));
VecSubf(rot, rot, tdi->oldrot);
protectedRotateBits(td->protectflag, rot, tdi->oldrot);
add_tdi_poin(tdi->rotx, tdi->oldrot, rot[0]);
add_tdi_poin(tdi->roty, tdi->oldrot+1, rot[1]);
add_tdi_poin(tdi->rotz, tdi->oldrot+2, rot[2]);
}
else {
Mat3MulMat3(totmat, mat, td->mtx);
Mat3MulMat3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
VecAddf(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */
EulToMat3(eul, obmat);
/* mat = transform, obmat = object rotation */
Mat3MulMat3(fmat, smat, obmat);
Mat3ToCompatibleEul(fmat, eul, td->ext->irot);
/* correct back for delta rot */
VecSubf(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
VECCOPY(td->ext->rot, eul);
}
}
}
}
static void applyRotation(TransInfo *t, float angle, float axis[3])
{
TransData *td = t->data;
float mat[3][3], center[3];
int i;
/* saving original center */
if (t->around == V3D_LOCAL) {
VECCOPY(center, t->center);
}
VecRotToMat3(axis, angle, mat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
/* local constraint shouldn't alter center */
if (t->around == V3D_LOCAL) {
if (t->flag & (T_OBJECT|T_POSE)) {
VECCOPY(t->center, td->center);
}
else {
if(G.vd->around==V3D_LOCAL && (G.scene->selectmode & SCE_SELECT_FACE)) {
VECCOPY(t->center, td->center);
}
}
}
if (t->con.applyRot) {
t->con.applyRot(t, td, axis);
VecRotToMat3(axis, angle * td->factor, mat);
}
else if (t->flag & T_PROP_EDIT) {
VecRotToMat3(axis, angle * td->factor, mat);
}
ElementRotation(t, td, mat);
}
/* restoring original center */
if (t->around == V3D_LOCAL) {
VECCOPY(t->center, center);
}
}
int Rotation(TransInfo *t, short mval[2])
{
TransData *td = t->data;
char str[50];
float final;
int dx2 = t->center2d[0] - mval[0];
int dy2 = t->center2d[1] - mval[1];
double B = sqrt(dx2*dx2+dy2*dy2);
int dx1 = t->center2d[0] - t->imval[0];
int dy1 = t->center2d[1] - t->imval[1];
double A = sqrt(dx1*dx1+dy1*dy1);
int dx3 = mval[0] - t->imval[0];
int dy3 = mval[1] - t->imval[1];
/* use doubles here, to make sure a "1.0" (no rotation) doesnt become 9.999999e-01, which gives 0.02 for acos */
double deler= ((double)((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3) ))
/ (2.0 * (A*B?A*B:1.0));
/* (A*B?A*B:1.0f) this takes care of potential divide by zero errors */
float dphi;
float axis[3];
float mat[3][3];
VECCOPY(axis, t->viewinv[2]);
VecMulf(axis, -1.0f);
Normalise(axis);
dphi = saacos((float)deler);
if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
if(G.qual & LR_SHIFTKEY) t->fac += dphi/30.0f;
else t->fac += dphi;
/*
clamping angle between -2 PI and 2 PI (not sure if useful so commented out - theeth)
if (t->fac >= 2 * M_PI)
t->fac -= 2 * M_PI;
else if (t->fac <= -2 * M_PI)
t->fac -= -2 * M_PI;
*/
final = t->fac;
snapGrid(t, &final);
t->imval[0] = mval[0];
t->imval[1] = mval[1];
if (t->con.applyRot) {
t->con.applyRot(t, NULL, axis);
}
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Rot: %s %s", &c[0], t->proptext);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Rot: %.2f%s %s", 180.0*final/M_PI, t->con.text, t->proptext);
}
VecRotToMat3(axis, final * td->factor, mat);
t->val = final; // used in manipulator
Mat3CpyMat3(t->mat, mat); // used in manipulator
applyRotation(t, final, axis);
recalcData(t);
headerprint(str);
viewRedrawForce(t);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
/* ************************** TRACKBALL *************************** */
void initTrackball(TransInfo *t)
{
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->fac = 0;
t->transform = Trackball;
t->flag |= T_NO_CONSTRAINT; /* making sure the flag is always set */
}
static void applyTrackball(TransInfo *t, float axis1[3], float axis2[3], float angles[2])
{
TransData *td = t->data;
float mat[3][3], smat[3][3], totmat[3][3];
int i;
VecRotToMat3(axis1, angles[0], smat);
VecRotToMat3(axis2, angles[1], totmat);
Mat3MulMat3(mat, smat, totmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (t->around == V3D_LOCAL) {
if (t->flag & T_OBJECT)
VECCOPY(t->center, td->center); // not supported in editmode yet
}
if (t->flag & T_PROP_EDIT) {
VecRotToMat3(axis1, td->factor * angles[0], smat);
VecRotToMat3(axis2, td->factor * angles[1], totmat);
Mat3MulMat3(mat, smat, totmat);
}
ElementRotation(t, td, mat);
}
}
int Trackball(TransInfo *t, short mval[2])
{
char str[80];
float axis1[3], axis2[3];
float mat[3][3], totmat[3][3], smat[3][3];
float phi[2];
VECCOPY(axis1, t->persinv[0]);
VECCOPY(axis2, t->persinv[1]);
Normalise(axis1);
Normalise(axis2);
/* factore has to become setting or so */
phi[0]= 0.01f*(float)( t->imval[1] - mval[1] );
phi[1]= 0.01f*(float)( mval[0] - t->imval[0] );
//if(G.qual & LR_SHIFTKEY) t->fac += dphi/30.0f;
//else t->fac += dphi;
snapGrid(t, phi);
if (hasNumInput(&t->num)) {
char c[40];
applyNumInput(&t->num, phi);
outputNumInput(&(t->num), c);
sprintf(str, "Trackball: %s %s %s", &c[0], &c[20], t->proptext);
phi[0] *= (float)(M_PI / 180.0);
phi[1] *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Trackball: %.2f %.2f %s", 180.0*phi[0]/M_PI, 180.0*phi[1]/M_PI, t->proptext);
}
VecRotToMat3(axis1, phi[0], smat);
VecRotToMat3(axis2, phi[1], totmat);
Mat3MulMat3(mat, smat, totmat);
Mat3CpyMat3(t->mat, mat); // used in manipulator
applyTrackball(t, axis1, axis2, phi);
recalcData(t);
headerprint(str);
viewRedrawForce(t);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
/* ************************** TRANSLATION *************************** */
void initTranslation(TransInfo *t)
{
t->idx_max = (t->flag & T_2D_EDIT)? 1: 2;
t->num.idx_max = t->idx_max;
t->transform = Translation;
if(t->spacetype == SPACE_VIEW3D) {
/* initgrabz() defines a factor for perspective depth correction, used in window_to_3d() */
if(t->flag & (T_EDIT|T_POSE)) {
Object *ob= G.obedit?G.obedit:t->poseobj;
float vec[3];
VECCOPY(vec, t->center);
Mat4MulVecfl(ob->obmat, vec);
initgrabz(vec[0], vec[1], vec[2]);
}
else initgrabz(t->center[0], t->center[1], t->center[2]);
t->snap[0] = 0.0f;
t->snap[1] = G.vd->gridview * 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
else if(t->spacetype == SPACE_IMAGE) {
t->snap[0] = 0.0f;
t->snap[1] = 0.125f;
t->snap[2] = 0.0625f;
}
else {
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
}
static void headerTranslation(TransInfo *t, float vec[3], char *str) {
char tvec[60];
char distvec[20];
float dvec[3];
float dist;
convertVecToDisplayNum(vec, dvec);
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
dist = VecLength(t->num.val);
}
else {
dist = VecLength(vec);
sprintf(&tvec[0], "%.4f", dvec[0]);
sprintf(&tvec[20], "%.4f", dvec[1]);
sprintf(&tvec[40], "%.4f", dvec[2]);
}
if( dist > 1e10 || dist < -1e10 ) /* prevent string buffer overflow */
sprintf(distvec, "%.4e", dist);
else
sprintf(distvec, "%.4f", dist);
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "D: %s (%s)%s %s", &tvec[0], distvec, t->con.text, t->proptext);
break;
case 1:
sprintf(str, "D: %s D: %s (%s)%s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext);
break;
case 2:
sprintf(str, "D: %s D: %s D: %s (%s)%s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext);
}
}
else {
if(t->flag & T_2D_EDIT)
sprintf(str, "Dx: %s Dy: %s (%s)%s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext);
else
sprintf(str, "Dx: %s Dy: %s Dz: %s (%s)%s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext);
}
}
static void applyTranslation(TransInfo *t, float vec[3]) {
TransData *td = t->data;
float tvec[3];
int i;
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, td, vec, tvec, pvec);
}
else {
VECCOPY(tvec, vec);
}
Mat3MulVecfl(td->smtx, tvec);
VecMulf(tvec, td->factor);
protectedTransBits(td->protectflag, tvec);
/* transdata ipokey */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, tvec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, tvec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, tvec[2]);
}
else VecAddf(td->loc, td->iloc, tvec);
}
}
/* uses t->vec to store actual translation in */
int Translation(TransInfo *t, short mval[2])
{
float tvec[3];
char str[200];
if(t->flag & T_SHIFT_MOD) {
float dvec[3];
/* calculate the main translation and the precise one separate */
convertViewVec(t, dvec, (short)(mval[0] - t->shiftmval[0]), (short)(mval[1] - t->shiftmval[1]));
VecMulf(dvec, 0.1f);
convertViewVec(t, t->vec, (short)(t->shiftmval[0] - t->imval[0]), (short)(t->shiftmval[1] - t->imval[1]));
VecAddf(t->vec, t->vec, dvec);
}
else convertViewVec(t, t->vec, (short)(mval[0] - t->imval[0]), (short)(mval[1] - t->imval[1]));
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
t->con.applyVec(t, NULL, t->vec, tvec, pvec);
VECCOPY(t->vec, tvec);
headerTranslation(t, pvec, str);
}
else {
snapGrid(t, t->vec);
applyNumInput(&t->num, t->vec);
headerTranslation(t, t->vec, str);
}
applyTranslation(t, t->vec);
/* evil hack - redo translation if cliiping needeed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->vec, 0))
applyTranslation(t, t->vec);
recalcData(t);
headerprint(str);
viewRedrawForce(t);
return 1;
}
/* ************************** SHRINK/FATTEN *************************** */
void initShrinkFatten(TransInfo *t)
{
if (G.obedit==NULL || G.obedit->type != OB_MESH) {
initTransModeFlags(t, TFM_RESIZE);
initResize(t);
return;
}
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = ShrinkFatten;
}
int ShrinkFatten(TransInfo *t, short mval[2])
{
float vec[3];
float distance;
int i;
char str[50];
TransData *td = t->data;
distance = -InputVerticalAbsolute(t, mval);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shrink/Fatten: %.4f %s", distance, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
VECCOPY(vec, td->axismtx[2]);
VecMulf(vec, distance);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
return 1;
}
/* ************************** TILT *************************** */
void initTilt(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->fac = 0;
t->transform = Tilt;
}
int Tilt(TransInfo *t, short mval[2])
{
TransData *td = t->data;
int i;
char str[50];
float final;
int dx2 = t->center2d[0] - mval[0];
int dy2 = t->center2d[1] - mval[1];
float B = (float)sqrt(dx2*dx2+dy2*dy2);
int dx1 = t->center2d[0] - t->imval[0];
int dy1 = t->center2d[1] - t->imval[1];
float A = (float)sqrt(dx1*dx1+dy1*dy1);
int dx3 = mval[0] - t->imval[0];
int dy3 = mval[1] - t->imval[1];
float deler= ((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3))
/ (2 * A * B);
float dphi;
dphi = saacos(deler);
if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
if(G.qual & LR_SHIFTKEY) t->fac += dphi/30.0f;
else t->fac += dphi;
final = t->fac;
snapGrid(t, &final);
t->imval[0] = mval[0];
t->imval[1] = mval[1];
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Tilt: %s %s", &c[0], t->proptext);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Tilt: %.2f %s", 180.0*final/M_PI, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
helpline (t, t->center);
return 1;
}
/* ******************** Curve Shrink/Fatten *************** */
int CurveShrinkFatten(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
if(t->flag & T_SHIFT_MOD) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
float dx= (float)(t->center2d[0] - t->shiftmval[0]);
float dy= (float)(t->center2d[1] - t->shiftmval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
dx= (float)(t->center2d[0] - mval[0]);
dy= (float)(t->center2d[1] - mval[1]);
ratio+= 0.1f*(float)(sqrt( dx*dx + dy*dy)/t->fac -ratio);
}
else {
float dx= (float)(t->center2d[0] - mval[0]);
float dy= (float)(t->center2d[1] - mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
}
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s", c);
}
else {
sprintf(str, "Shrink/Fatten: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if(td->val) {
//*td->val= ratio;
*td->val= td->ival*ratio;
if (*td->val <= 0.0f) *td->val = 0.0001f;
}
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
void initCurveShrinkFatten(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = CurveShrinkFatten;
t->fac = (float)sqrt( (
((float)(t->center2d[1] - t->imval[1]))*((float)(t->center2d[1] - t->imval[1]))
+
((float)(t->center2d[0] - t->imval[0]))*((float)(t->center2d[0] - t->imval[0]))
) );
}
/* ************************** PUSH/PULL *************************** */
void initPushPull(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = PushPull;
}
int PushPull(TransInfo *t, short mval[2])
{
float vec[3], axis[3];
float distance;
int i;
char str[50];
TransData *td = t->data;
distance = InputVerticalAbsolute(t, mval);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Push/Pull: %s%s %s", c, t->con.text, t->proptext);
}
else {
/* default header print */
sprintf(str, "Push/Pull: %.4f%s %s", distance, t->con.text, t->proptext);
}
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, axis);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
VecSubf(vec, t->center, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, td, axis);
if (isLockConstraint(t)) {
float dvec[3];
Projf(dvec, vec, axis);
VecSubf(vec, vec, dvec);
}
else {
Projf(vec, vec, axis);
}
}
Normalise(vec);
VecMulf(vec, distance);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
return 1;
}
/* ************************** CREASE *************************** */
void initCrease(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = Crease;
t->fac = (float)sqrt(
(
((float)(t->center2d[1] - t->imval[1]))*((float)(t->center2d[1] - t->imval[1]))
+
((float)(t->center2d[0] - t->imval[0]))*((float)(t->center2d[0] - t->imval[0]))
) );
if(t->fac==0.0f) t->fac= 1.0f; // prevent Inf
}
int Crease(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float crease;
int i;
char str[50];
if(t->flag & T_SHIFT_MOD) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
float dx= (float)(t->center2d[0] - t->shiftmval[0]);
float dy= (float)(t->center2d[1] - t->shiftmval[1]);
crease = (float)sqrt( dx*dx + dy*dy)/t->fac;
dx= (float)(t->center2d[0] - mval[0]);
dy= (float)(t->center2d[1] - mval[1]);
crease+= 0.1f*(float)(sqrt( dx*dx + dy*dy)/t->fac -crease);
}
else {
float dx= (float)(t->center2d[0] - mval[0]);
float dy= (float)(t->center2d[1] - mval[1]);
crease = (float)sqrt( dx*dx + dy*dy)/t->fac;
}
crease -= 1.0f;
if (crease > 1.0f) crease = 1.0f;
snapGrid(t, &crease);
applyNumInput(&t->num, &crease);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (crease >= 0.0f)
sprintf(str, "Crease: +%s %s", c, t->proptext);
else
sprintf(str, "Crease: %s %s", c, t->proptext);
}
else {
/* default header print */
if (crease >= 0.0f)
sprintf(str, "Crease: +%.3f %s", crease, t->proptext);
else
sprintf(str, "Crease: %.3f %s", crease, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
helpline (t, t->center);
return 1;
}
/* ************************** MIRROR *************************** */
void Mirror(short mode)
{
TransData *td;
float mati[3][3], matview[3][3], mat[3][3];
float size[3];
int i;
Trans.context = CTX_NO_PET;
initTrans(&Trans); // internal data, mouse, vectors
Mat3One(mati);
Mat3CpyMat4(matview, Trans.viewinv); // t->viewinv was set in initTrans
Mat3Ortho(matview);
initTransModeFlags(&Trans, TFM_MIRROR); // modal settings in struct Trans
createTransData(&Trans); // make TransData structs from selection
calculatePropRatio(&Trans);
calculateCenter(&Trans);
initResize(&Trans);
if (Trans.total == 0) {
postTrans(&Trans);
return;
}
size[0] = size[1] = size[2] = 1.0f;
td = Trans.data;
switch (mode) {
case 1:
size[0] = -1.0f;
setConstraint(&Trans, mati, (CON_AXIS0), "");
break;
case 2:
size[1] = -1.0f;
setConstraint(&Trans, mati, (CON_AXIS1), "");
break;
case 3:
size[2] = -1.0f;
setConstraint(&Trans, mati, (CON_AXIS2), "");
break;
case 4:
size[0] = -1.0f;
setLocalConstraint(&Trans, (CON_AXIS0), "");
break;
case 5:
size[1] = -1.0f;
setLocalConstraint(&Trans, (CON_AXIS1), "");
break;
case 6:
size[2] = -1.0f;
setLocalConstraint(&Trans, (CON_AXIS2), "");
break;
case 7:
size[0] = -1.0f;
setConstraint(&Trans, matview, (CON_AXIS0), "");
break;
case 8:
size[1] = -1.0f;
setConstraint(&Trans, matview, (CON_AXIS1), "");
break;
case 9:
size[2] = -1.0f;
setConstraint(&Trans, matview, (CON_AXIS2), "");
break;
default:
return;
}
SizeToMat3(size, mat);
if (Trans.con.applySize) {
Trans.con.applySize(&Trans, NULL, mat);
}
for(i = 0 ; i < Trans.total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
ElementResize(&Trans, td, mat);
}
recalcData(&Trans);
BIF_undo_push("Mirror");
/* free data, reset vars */
postTrans(&Trans);
/* send events out for redraws */
viewRedrawPost(&Trans);
}
/* ******************** EditBone (B-bone) width scaling *************** */
static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
Mat3MulMat3(smat, mat, td->mtx);
Mat3MulMat3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* we've tucked the scale in loc */
oldy= td->iloc[1];
SizeToMat3(td->iloc, sizemat);
Mat3MulMat3(tmat, tmat, sizemat);
Mat3ToSize(tmat, td->loc);
td->loc[1]= oldy;
}
int BoneSize(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float size[3], mat[3][3];
float ratio;
int i;
char str[50];
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else {
if(t->flag & T_SHIFT_MOD) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
float dx= (float)(t->center2d[0] - t->shiftmval[0]);
float dy= (float)(t->center2d[1] - t->shiftmval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
dx= (float)(t->center2d[0] - mval[0]);
dy= (float)(t->center2d[1] - mval[1]);
ratio+= 0.1f*(float)(sqrt( dx*dx + dy*dy)/t->fac -ratio);
}
else {
float dx= (float)(t->center2d[0] - mval[0]);
float dy= (float)(t->center2d[1] - mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
}
/* flip scale, but not for manipulator center handle */
if ((t->center2d[0] - mval[0]) * (t->center2d[0] - t->imval[0]) +
(t->center2d[1] - mval[1]) * (t->center2d[1] - t->imval[1]) < 0)
ratio *= -1.0f;
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
SizeToMat3(size, mat);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
Mat3CpyMat3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
ElementBoneSize(t, td, mat);
}
recalcData(t);
headerprint(str);
viewRedrawForce(t);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
void initBoneSize(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = BoneSize;
t->fac = (float)sqrt( (
((float)(t->center2d[1] - t->imval[1]))*((float)(t->center2d[1] - t->imval[1]))
+
((float)(t->center2d[0] - t->imval[0]))*((float)(t->center2d[0] - t->imval[0]))
) );
if(t->fac==0.0f) t->fac= 1.0f; // prevent Inf
}
/* ******************** EditBone envelope *************** */
int BoneEnvelope(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
if(t->flag & T_SHIFT_MOD) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
float dx= (float)(t->center2d[0] - t->shiftmval[0]);
float dy= (float)(t->center2d[1] - t->shiftmval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
dx= (float)(t->center2d[0] - mval[0]);
dy= (float)(t->center2d[1] - mval[1]);
ratio+= 0.1f*(float)(sqrt( dx*dx + dy*dy)/t->fac -ratio);
}
else {
float dx= (float)(t->center2d[0] - mval[0]);
float dy= (float)(t->center2d[1] - mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy)/t->fac;
}
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Envelope: %s", c);
}
else {
sprintf(str, "Envelope: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if(td->val) *td->val= td->ival*ratio;
}
recalcData(t);
headerprint(str);
force_draw(0);
if(!(t->flag & T_USES_MANIPULATOR)) helpline (t, t->center);
return 1;
}
void initBoneEnvelope(TransInfo *t)
{
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->transform = BoneEnvelope;
t->fac = (float)sqrt( (
((float)(t->center2d[1] - t->imval[1]))*((float)(t->center2d[1] - t->imval[1]))
+
((float)(t->center2d[0] - t->imval[0]))*((float)(t->center2d[0] - t->imval[0]))
) );
if(t->fac==0.0f) t->fac= 1.0f; // prevent Inf
}
/* ************************************ */
void BIF_TransformSetUndo(char *str)
{
Trans.undostr= str;
}