This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/multires_reshape.c
Bastien Montagne ab0bc65c24 Refactor CDData masks, to have one mask per mesh elem type.
We already have different storages for cddata of verts, edges etc.,
'simply' do the same for the mask flags we use all around Blender code
to request some data, or limit some operation to some layers, etc.

Reason we need this is that some cddata types (like Normals) are
actually shared between verts/polys/loops, and we don’t want to generate
clnors everytime we request vnors!

As a side note, this also does final fix to T59338, which was the
trigger for this patch (need to request computed loop normals for
another mesh than evaluated one).

Reviewers: brecht, campbellbarton, sergey

Differential Revision: https://developer.blender.org/D4407
2019-03-07 11:29:50 +01:00

1164 lines
40 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2018 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_scene_types.h"
#include "BLI_utildefines.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"
#include "BKE_ccg.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_modifier.h"
#include "BKE_multires.h"
#include "BKE_subdiv.h"
#include "BKE_subdiv_ccg.h"
#include "BKE_subdiv_eval.h"
#include "BKE_subdiv_foreach.h"
#include "BKE_subdiv_mesh.h"
#include "DEG_depsgraph_query.h"
static void multires_reshape_init_mmd(
MultiresModifierData *reshape_mmd,
const MultiresModifierData *mmd)
{
*reshape_mmd = *mmd;
}
static void multires_reshape_init_mmd_top_level(
MultiresModifierData *reshape_mmd,
const MultiresModifierData *mmd)
{
*reshape_mmd = *mmd;
reshape_mmd->lvl = reshape_mmd->totlvl;
}
/* =============================================================================
* General reshape implementation, reused by all particular cases.
*/
typedef struct MultiresReshapeContext {
Subdiv *subdiv;
const Mesh *coarse_mesh;
MDisps *mdisps;
GridPaintMask *grid_paint_mask;
int top_grid_size;
int top_level;
/* Indexed by coarse face index, returns first ptex face index corresponding
* to that coarse face. */
int *face_ptex_offset;
} MultiresReshapeContext;
static void multires_reshape_allocate_displacement_grid(
MDisps *displacement_grid, const int level)
{
const int grid_size = BKE_subdiv_grid_size_from_level(level);
const int grid_area = grid_size * grid_size;
float (*disps)[3] = MEM_calloc_arrayN(
grid_area, 3 * sizeof(float), "multires disps");
if (displacement_grid->disps != NULL) {
MEM_freeN(displacement_grid->disps);
}
displacement_grid->disps = disps;
displacement_grid->totdisp = grid_area;
displacement_grid->level = level;
}
static void multires_reshape_ensure_displacement_grid(
MDisps *displacement_grid, const int level)
{
if (displacement_grid->disps != NULL && displacement_grid->level == level) {
return;
}
multires_reshape_allocate_displacement_grid(
displacement_grid, level);
}
static void multires_reshape_ensure_displacement_grids(
Mesh *mesh,
const int grid_level)
{
const int num_grids = mesh->totloop;
MDisps *mdisps = CustomData_get_layer(&mesh->ldata, CD_MDISPS);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
multires_reshape_ensure_displacement_grid(
&mdisps[grid_index], grid_level);
}
}
static void multires_reshape_ensure_mask_grids(Mesh *mesh, const int grid_level)
{
GridPaintMask *grid_paint_masks =
CustomData_get_layer(&mesh->ldata, CD_GRID_PAINT_MASK);
if (grid_paint_masks == NULL) {
return;
}
const int num_grids = mesh->totloop;
const int grid_size = BKE_subdiv_grid_size_from_level(grid_level);
const int grid_area = grid_size * grid_size;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
GridPaintMask *grid_paint_mask = &grid_paint_masks[grid_index];
if (grid_paint_mask->level == grid_level) {
continue;
}
grid_paint_mask->level = grid_level;
if (grid_paint_mask->data) {
MEM_freeN(grid_paint_mask->data);
}
grid_paint_mask->data = MEM_calloc_arrayN(
grid_area, sizeof(float), "gpm.data");
}
}
static void multires_reshape_ensure_grids(Mesh *mesh, const int grid_level)
{
multires_reshape_ensure_displacement_grids(mesh, grid_level);
multires_reshape_ensure_mask_grids(mesh, grid_level);
}
/* Convert normalized coordinate within a grid to a normalized coordinate within
* a ptex face. */
static void multires_reshape_corner_coord_to_ptex(
const MPoly *coarse_poly,
const int corner, const float corner_u, const float corner_v,
float *r_ptex_face_u, float *r_ptex_face_v)
{
if (coarse_poly->totloop == 4) {
float grid_u, grid_v;
BKE_subdiv_ptex_face_uv_to_grid_uv(
corner_u, corner_v, &grid_u, &grid_v);
BKE_subdiv_rotate_grid_to_quad(corner, grid_u, grid_v,
r_ptex_face_u, r_ptex_face_v);
}
else {
*r_ptex_face_u = corner_u;
*r_ptex_face_v = corner_v;
}
}
/* NOTE: The tangent vectors are measured in ptex face normalized coordinates,
* which is different from grid tangent. */
static void multires_reshape_sample_surface(
Subdiv *subdiv,
const MPoly *coarse_poly,
const int corner, const float corner_u, const float corner_v,
const int ptex_face_index,
float r_P[3], float r_dPdu[3], float r_dPdv[3])
{
float ptex_face_u, ptex_face_v;
multires_reshape_corner_coord_to_ptex(
coarse_poly, corner, corner_u, corner_v,
&ptex_face_u, &ptex_face_v);
BKE_subdiv_eval_limit_point_and_derivatives(
subdiv,
ptex_face_index, ptex_face_u, ptex_face_v,
r_P, r_dPdu, r_dPdv);
}
static void multires_reshape_tangent_matrix_for_corner(
const MPoly *coarse_poly,
const int coarse_corner,
const float dPdu[3], const float dPdv[3],
float r_tangent_matrix[3][3])
{
/* For a quad faces we would need to flip the tangent, since they will use
* use different coordinates within displacement grid comparent to ptex
* face. */
const bool is_quad = (coarse_poly->totloop == 4);
const int tangent_corner = is_quad ? coarse_corner : 0;
BKE_multires_construct_tangent_matrix(
r_tangent_matrix, dPdu, dPdv, tangent_corner);
}
static void multires_reshape_vertex_from_final_data(
MultiresReshapeContext *ctx,
const int ptex_face_index,
const float corner_u, const float corner_v,
const int coarse_poly_index,
const int coarse_corner,
const float final_P[3], const float final_mask)
{
Subdiv *subdiv = ctx->subdiv;
const int grid_size = ctx->top_grid_size;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
const int loop_index = coarse_poly->loopstart + coarse_corner;
/* Evaluate limit surface. */
float P[3], dPdu[3], dPdv[3];
multires_reshape_sample_surface(
subdiv,
coarse_poly,
coarse_corner, corner_u, corner_v,
ptex_face_index,
P, dPdu, dPdv);
/* Construct tangent matrix which matches orientation of the current
* displacement grid. */
float tangent_matrix[3][3], inv_tangent_matrix[3][3];
multires_reshape_tangent_matrix_for_corner(coarse_poly, coarse_corner,
dPdu, dPdv,
tangent_matrix);
invert_m3_m3(inv_tangent_matrix, tangent_matrix);
/* Convert object coordinate to a tangent space of displacement grid. */
float D[3];
sub_v3_v3v3(D, final_P, P);
float tangent_D[3];
mul_v3_m3v3(tangent_D, inv_tangent_matrix, D);
/* Calculate index of element within the grid. */
float grid_u, grid_v;
BKE_subdiv_ptex_face_uv_to_grid_uv(corner_u, corner_v, &grid_u, &grid_v);
const int grid_x = (grid_u * (grid_size - 1) + 0.5f);
const int grid_y = (grid_v * (grid_size - 1) + 0.5f);
const int index = grid_y * grid_size + grid_x;
/* Write tangent displacement. */
MDisps *displacement_grid = &ctx->mdisps[loop_index];
copy_v3_v3(displacement_grid->disps[index], tangent_D);
/* Write mask grid. */
if (ctx->grid_paint_mask != NULL) {
GridPaintMask *grid_paint_mask = &ctx->grid_paint_mask[loop_index];
BLI_assert(grid_paint_mask->level == displacement_grid->level);
grid_paint_mask->data[index] = final_mask;
}
}
/* =============================================================================
* Helpers to propagate displacement to higher levels.
*/
typedef struct MultiresPropagateData {
/* Number of displacement grids. */
int num_grids;
/* Resolution level up to which displacement is known. */
int reshape_level;
/* Resolution up to which propagation is happening, affecting all the
* levels in [reshape_level + 1, top_level]. */
int top_level;
/* Grid sizes at the corresponding levels. */
int reshape_grid_size;
int top_grid_size;
/* Keys to access CCG at different levels. */
CCGKey reshape_level_key;
CCGKey top_level_key;
/* Original grid data, before any updates for reshape.
* Contains data at the reshape_level resolution level. */
CCGElem **orig_grids_data;
/* Custom data layers from a coarse mesh. */
MDisps *mdisps;
GridPaintMask *grid_paint_mask;
} MultiresPropagateData;
static CCGElem **allocate_grids(CCGKey *key, int num_grids)
{
CCGElem **grids = MEM_calloc_arrayN(
num_grids, sizeof(CCGElem *), "reshape grids*");
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
grids[grid_index] = MEM_calloc_arrayN(
key->elem_size,
key->grid_area,
"reshape orig_grids_data elems");
}
return grids;
}
static void free_grids(CCGElem **grids, int num_grids)
{
if (grids == NULL) {
return;
}
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
MEM_freeN(grids[grid_index]);
}
MEM_freeN(grids);
}
/* Initialize element sizes and offsets. */
static void multires_reshape_init_key_layers(
CCGKey *key,
const MultiresPropagateData *data)
{
key->elem_size = 3 * sizeof(float);
if (data->grid_paint_mask != NULL) {
key->mask_offset = 3 * sizeof(float);
key->elem_size += sizeof(float);
key->has_mask = true;
}
else {
key->mask_offset = -1;
key->has_mask = false;
}
/* We never have normals in original grids. */
key->normal_offset = -1;
key->has_normals = false;
}
/* Initialize key used to access reshape grids at given level. */
static void multires_reshape_init_level_key(
CCGKey *key,
const MultiresPropagateData *data,
const int level)
{
key->level = level;
/* Init layers. */
multires_reshape_init_key_layers(key, data);
/* By default, only 3 floats for coordinate, */
key->grid_size = BKE_subdiv_grid_size_from_level(key->level);
key->grid_area = key->grid_size * key->grid_size;
key->grid_bytes = key->elem_size * key->grid_area;
}
static void multires_reshape_store_original_grids(
MultiresPropagateData *data)
{
const int num_grids = data->num_grids;
/* Original data to be backed up. */
const MDisps *mdisps = data->mdisps;
const GridPaintMask *grid_paint_mask = data->grid_paint_mask;
/* Allocate grids for backup. */
CCGKey *orig_key = &data->reshape_level_key;
CCGElem **orig_grids_data = allocate_grids(orig_key, num_grids);
/* Fill in grids. */
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *orig_grid = orig_grids_data[grid_index];
for (int y = 0; y < orig_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < orig_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * top_grid_size + top_x;
memcpy(CCG_grid_elem_co(orig_key, orig_grid, x, y),
mdisps[grid_index].disps[top_index],
sizeof(float) * 3);
if (orig_key->has_mask) {
*CCG_grid_elem_mask(orig_key, orig_grid, x, y) =
grid_paint_mask[grid_index].data[top_index];
}
}
}
}
/* Store in the context. */
data->orig_grids_data = orig_grids_data;
}
static void multires_reshape_propagate_prepare(
MultiresPropagateData *data,
Mesh *coarse_mesh,
const int reshape_level,
const int top_level)
{
BLI_assert(reshape_level <= top_level);
memset(data, 0, sizeof(*data));
data->num_grids = coarse_mesh->totloop;
data->reshape_level = reshape_level;
data->top_level = top_level;
if (reshape_level == top_level) {
/* Nothing to do, reshape will happen on the whole grid content. */
return;
}
data->mdisps = CustomData_get_layer(&coarse_mesh->ldata, CD_MDISPS);
data->grid_paint_mask =
CustomData_get_layer(&coarse_mesh->ldata, CD_GRID_PAINT_MASK);
data->top_grid_size = BKE_subdiv_grid_size_from_level(top_level);
data->reshape_grid_size = BKE_subdiv_grid_size_from_level(reshape_level);
/* Initialize keys to access CCG at different levels. */
multires_reshape_init_level_key(
&data->reshape_level_key, data, data->reshape_level);
multires_reshape_init_level_key(
&data->top_level_key, data, data->top_level);
/* Make a copy of grids before reshaping, so we can calculate deltas
* later on. */
multires_reshape_store_original_grids(data);
}
static void multires_reshape_propagate_prepare_from_mmd(
MultiresPropagateData *data,
struct Depsgraph *depsgraph,
Object *object,
const MultiresModifierData *mmd,
const int top_level,
const bool use_render_params)
{
/* TODO(sergey): Find mode reliable way of getting current level. */
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
Mesh *mesh = object->data;
const int level = multires_get_level(
scene_eval, object, mmd, use_render_params, true);
multires_reshape_propagate_prepare(data, mesh, level, top_level);
}
/* Calculate delta of changed reshape level data layers. Delta goes to a
* grids at top level (meaning, the result grids are only partially filled
* in). */
static void multires_reshape_calculate_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int num_grids = data->num_grids;
/* At this point those custom data layers has updated data for the
* level we are propagating from. */
const MDisps *mdisps = data->mdisps;
const GridPaintMask *grid_paint_mask = data->grid_paint_mask;
CCGKey *reshape_key = &data->reshape_level_key;
CCGKey *delta_level_key = &data->top_level_key;
/* Calculate delta. */
const int top_grid_size = data->top_grid_size;
const int reshape_grid_size = data->reshape_grid_size;
const int delta_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (reshape_grid_size - 1);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
/*const*/ CCGElem *orig_grid = data->orig_grids_data[grid_index];
CCGElem *delta_grid = delta_grids_data[grid_index];
for (int y = 0; y < reshape_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < reshape_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * delta_grid_size + top_x;
sub_v3_v3v3(
CCG_grid_elem_co(
delta_level_key, delta_grid, top_x, top_y),
mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(reshape_key, orig_grid, x, y));
if (delta_level_key->has_mask) {
const float old_mask_value = *CCG_grid_elem_mask(
reshape_key, orig_grid, x, y);
const float new_mask_value =
grid_paint_mask[grid_index].data[top_index];
*CCG_grid_elem_mask(
delta_level_key, delta_grid, top_x, top_y) =
new_mask_value - old_mask_value;
}
}
}
}
}
/* Makes it so delta is propagated onto all the higher levels, but is also
* that this delta is smoothed in a way that it does not cause artifacts on
* boundaries. */
typedef struct MultiresPropagateCornerData {
float coord_delta[3];
float mask_delta;
} MultiresPropagateCornerData;
BLI_INLINE void multires_reshape_propagate_init_patch_corners(
MultiresPropagateData *data,
CCGElem *delta_grid,
const int patch_x, const int patch_y,
MultiresPropagateCornerData r_corners[4])
{
CCGKey *delta_level_key = &data->top_level_key;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
const int x = patch_x * skip;
const int y = patch_y * skip;
/* Store coordinate deltas. */
copy_v3_v3(r_corners[0].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x, y));
copy_v3_v3(r_corners[1].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x + skip, y));
copy_v3_v3(r_corners[2].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x, y + skip));
copy_v3_v3(r_corners[3].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid,
x + skip, y + skip));
if (delta_level_key->has_mask) {
r_corners[0].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid, x, y);
r_corners[1].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x + skip, y);
r_corners[2].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x, y + skip);
r_corners[3].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x + skip, y + skip);
}
}
BLI_INLINE void multires_reshape_propagate_interpolate_coord(
float delta[3],
const MultiresPropagateCornerData corners[4],
const float weights[4])
{
interp_v3_v3v3v3v3(
delta,
corners[0].coord_delta, corners[1].coord_delta,
corners[2].coord_delta, corners[3].coord_delta,
weights);
}
BLI_INLINE float multires_reshape_propagate_interpolate_mask(
const MultiresPropagateCornerData corners[4],
const float weights[4])
{
return corners[0].mask_delta * weights[0] +
corners[1].mask_delta * weights[1] +
corners[2].mask_delta * weights[2] +
corners[3].mask_delta * weights[3];
}
BLI_INLINE void multires_reshape_propagate_and_smooth_delta_grid_patch(
MultiresPropagateData *data,
CCGElem *delta_grid,
const int patch_x, const int patch_y)
{
CCGKey *delta_level_key = &data->top_level_key;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
const float skip_inv = 1.0f / (float)skip;
MultiresPropagateCornerData corners[4];
multires_reshape_propagate_init_patch_corners(
data, delta_grid, patch_x, patch_y, corners);
const int start_x = patch_x * skip;
const int start_y = patch_y * skip;
for (int y = 0; y <= skip; y++) {
const float v = (float)y * skip_inv;
const int final_y = start_y + y;
for (int x = 0; x <= skip; x++) {
const float u = (float)x * skip_inv;
const int final_x = start_x + x;
const float linear_weights[4] = {(1.0f - u) * (1.0f - v),
u * (1.0f - v),
(1.0f - u) * v,
u * v};
multires_reshape_propagate_interpolate_coord(
CCG_grid_elem_co(delta_level_key, delta_grid,
final_x, final_y),
corners,
linear_weights);
if (delta_level_key->has_mask) {
float *mask = CCG_grid_elem_mask(delta_level_key, delta_grid,
final_x, final_y);
*mask = multires_reshape_propagate_interpolate_mask(
corners, linear_weights);
}
}
}
}
BLI_INLINE void multires_reshape_propagate_and_smooth_delta_grid(
MultiresPropagateData *data,
CCGElem *delta_grid)
{
const int orig_grid_size = data->reshape_grid_size;
for (int patch_y = 0; patch_y < orig_grid_size - 1; patch_y++) {
for (int patch_x = 0; patch_x < orig_grid_size - 1; patch_x++) {
multires_reshape_propagate_and_smooth_delta_grid_patch(
data, delta_grid, patch_x, patch_y);
}
}
}
/* Entry point to propagate+smooth. */
static void multires_reshape_propagate_and_smooth_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int num_grids = data->num_grids;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *delta_grid = delta_grids_data[grid_index];
multires_reshape_propagate_and_smooth_delta_grid(data, delta_grid);
}
}
/* Apply smoothed deltas on the actual data layers. */
static void multires_reshape_propagate_apply_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int num_grids = data->num_grids;
/* At this point those custom data layers has updated data for the
* level we are propagating from. */
MDisps *mdisps = data->mdisps;
GridPaintMask *grid_paint_mask = data->grid_paint_mask;
CCGKey *orig_key = &data->reshape_level_key;
CCGKey *delta_level_key = &data->top_level_key;
CCGElem **orig_grids_data = data->orig_grids_data;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
/* Restore grid values at the reshape level. Those values are to be changed
* to the accommodate for the smooth delta. */
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *orig_grid = orig_grids_data[grid_index];
for (int y = 0; y < orig_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < orig_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * top_grid_size + top_x;
copy_v3_v3(mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(orig_key, orig_grid, x, y));
if (grid_paint_mask != NULL) {
grid_paint_mask[grid_index].data[top_index] =
*CCG_grid_elem_mask(orig_key, orig_grid, x, y);
}
}
}
}
/* Add smoothed delta to all the levels. */
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *delta_grid = delta_grids_data[grid_index];
for (int y = 0; y < top_grid_size; y++) {
for (int x = 0; x < top_grid_size; x++) {
const int top_index = y * top_grid_size + x;
add_v3_v3(mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(delta_level_key, delta_grid, x, y));
if (delta_level_key->has_mask) {
grid_paint_mask[grid_index].data[top_index] +=
*CCG_grid_elem_mask(
delta_level_key, delta_grid, x, y);
}
}
}
}
}
static void multires_reshape_propagate(MultiresPropagateData *data)
{
if (data->reshape_level == data->top_level) {
return;
}
const int num_grids = data->num_grids;
/* Calculate delta made at the reshape level. */
CCGKey *delta_level_key = &data->top_level_key;
CCGElem **delta_grids_data = allocate_grids(delta_level_key, num_grids);
multires_reshape_calculate_delta(data, delta_grids_data);
/* Propagate deltas to the higher levels. */
multires_reshape_propagate_and_smooth_delta(data, delta_grids_data);
/* Finally, apply smoothed deltas. */
multires_reshape_propagate_apply_delta(data, delta_grids_data);
/* Cleanup. */
free_grids(delta_grids_data, num_grids);
}
static void multires_reshape_propagate_free(MultiresPropagateData *data)
{
free_grids(data->orig_grids_data, data->num_grids);
}
/* =============================================================================
* Reshape from deformed vertex coordinates.
*/
typedef struct MultiresReshapeFromDeformedVertsContext {
MultiresReshapeContext reshape_ctx;
const float (*deformed_verts)[3];
int num_deformed_verts;
} MultiresReshapeFromDeformedVertsContext;
static bool multires_reshape_topology_info(
const SubdivForeachContext *foreach_context,
const int num_vertices,
const int UNUSED(num_edges),
const int UNUSED(num_loops),
const int UNUSED(num_polygons))
{
MultiresReshapeFromDeformedVertsContext *ctx = foreach_context->user_data;
if (num_vertices != ctx->num_deformed_verts) {
return false;
}
return true;
}
/* Will run reshaping for all grid elements which are adjacent to the given
* one. This is the way to ensure continuity of displacement stored in the
* grids across the inner boundaries of the grids. */
static void multires_reshape_neighour_boundary_vertices(
MultiresReshapeContext *ctx,
const int UNUSED(ptex_face_index),
const float corner_u, const float corner_v,
const int coarse_poly_index,
const int coarse_corner,
const float final_P[3], const float final_mask)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
const int num_corners = coarse_poly->totloop;
const int start_ptex_face_index = ctx->face_ptex_offset[coarse_poly_index];
const bool is_quad = (coarse_poly->totloop == 4);
if (corner_u == 1.0f && corner_v == 1.0f) {
for (int current_corner = 0;
current_corner < num_corners;
++current_corner)
{
if (current_corner == coarse_corner) {
continue;
}
const int current_ptex_face_index =
is_quad ? start_ptex_face_index
: start_ptex_face_index + current_corner;
multires_reshape_vertex_from_final_data(
ctx,
current_ptex_face_index, 1.0f, 1.0f,
coarse_poly_index,
current_corner,
final_P, final_mask);
}
}
else if (corner_u == 1.0f) {
const float next_corner_index = (coarse_corner + 1) % num_corners;
const float next_corner_u = corner_v;
const float next_corner_v = 1.0f;
const int next_ptex_face_index =
is_quad ? start_ptex_face_index
: start_ptex_face_index + next_corner_index;
multires_reshape_vertex_from_final_data(
ctx,
next_ptex_face_index, next_corner_u, next_corner_v,
coarse_poly_index,
next_corner_index,
final_P, final_mask);
}
else if (corner_v == 1.0f) {
const float prev_corner_index =
(coarse_corner + num_corners - 1) % num_corners;
const float prev_corner_u = 1.0f;
const float prev_corner_v = corner_u;
const int prev_ptex_face_index =
is_quad ? start_ptex_face_index
: start_ptex_face_index + prev_corner_index;
multires_reshape_vertex_from_final_data(
ctx,
prev_ptex_face_index, prev_corner_u, prev_corner_v,
coarse_poly_index,
prev_corner_index,
final_P, final_mask);
}
}
static void multires_reshape_vertex(
MultiresReshapeFromDeformedVertsContext *ctx,
const int ptex_face_index,
const float u, const float v,
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
const float *final_P = ctx->deformed_verts[subdiv_vertex_index];
const Mesh *coarse_mesh = ctx->reshape_ctx.coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
const bool is_quad = (coarse_poly->totloop == 4);
float corner_u, corner_v;
int actual_coarse_corner;
if (is_quad) {
actual_coarse_corner = BKE_subdiv_rotate_quad_to_corner(
u, v, &corner_u, &corner_v);
}
else {
actual_coarse_corner = coarse_corner;
corner_u = u;
corner_v = v;
}
multires_reshape_vertex_from_final_data(
&ctx->reshape_ctx,
ptex_face_index, corner_u, corner_v,
coarse_poly_index,
actual_coarse_corner,
final_P, 0.0f);
multires_reshape_neighour_boundary_vertices(
&ctx->reshape_ctx,
ptex_face_index, corner_u, corner_v,
coarse_poly_index,
actual_coarse_corner,
final_P, 0.0f);
}
static void multires_reshape_vertex_inner(
const SubdivForeachContext *foreach_context,
void *UNUSED(tls_v),
const int ptex_face_index,
const float u, const float v,
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
MultiresReshapeFromDeformedVertsContext *ctx = foreach_context->user_data;
multires_reshape_vertex(
ctx,
ptex_face_index, u, v,
coarse_poly_index,
coarse_corner,
subdiv_vertex_index);
}
static void multires_reshape_vertex_every_corner(
const struct SubdivForeachContext *foreach_context,
void *UNUSED(tls_v),
const int ptex_face_index,
const float u, const float v,
const int UNUSED(coarse_vertex_index),
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
MultiresReshapeFromDeformedVertsContext *ctx = foreach_context->user_data;
multires_reshape_vertex(
ctx,
ptex_face_index, u, v,
coarse_poly_index,
coarse_corner,
subdiv_vertex_index);
}
static void multires_reshape_vertex_every_edge(
const struct SubdivForeachContext *foreach_context,
void *UNUSED(tls_v),
const int ptex_face_index,
const float u, const float v,
const int UNUSED(coarse_edge_index),
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
MultiresReshapeFromDeformedVertsContext *ctx = foreach_context->user_data;
multires_reshape_vertex(
ctx,
ptex_face_index, u, v,
coarse_poly_index,
coarse_corner,
subdiv_vertex_index);
}
static Subdiv *multires_create_subdiv_for_reshape(
struct Depsgraph *depsgraph,
/*const*/ Object *object,
const MultiresModifierData *mmd)
{
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
Object *object_eval = DEG_get_evaluated_object(depsgraph, object);
Mesh *deformed_mesh = mesh_get_eval_deform(
depsgraph, scene_eval, object_eval, &CD_MASK_BAREMESH);
SubdivSettings subdiv_settings;
BKE_multires_subdiv_settings_init(&subdiv_settings, mmd);
Subdiv *subdiv = BKE_subdiv_new_from_mesh(&subdiv_settings, deformed_mesh);
if (!BKE_subdiv_eval_update_from_mesh(subdiv, deformed_mesh)) {
BKE_subdiv_free(subdiv);
return NULL;
}
return subdiv;
}
static bool multires_reshape_from_vertcos(
struct Depsgraph *depsgraph,
Object *object,
const MultiresModifierData *mmd,
const float (*deformed_verts)[3],
const int num_deformed_verts,
const bool use_render_params)
{
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
Mesh *coarse_mesh = object->data;
MDisps *mdisps = CustomData_get_layer(&coarse_mesh->ldata, CD_MDISPS);
/* Pick maximum between multires level and dispalcement level.
* This is because mesh can be used by objects with multires at different
* levels.
*
* TODO(sergey): At this point it should be possible to always use
* mdisps->level. */
const int top_level = max_ii(mmd->totlvl, mdisps->level);
/* Make sure displacement grids are ready. */
multires_reshape_ensure_grids(coarse_mesh, top_level);
/* Initialize subdivision surface. */
Subdiv *subdiv = multires_create_subdiv_for_reshape(depsgraph, object, mmd);
if (subdiv == NULL) {
return false;
}
/* Construct context. */
MultiresReshapeFromDeformedVertsContext reshape_deformed_verts_ctx = {
.reshape_ctx = {
.subdiv = subdiv,
.coarse_mesh = coarse_mesh,
.mdisps = mdisps,
.grid_paint_mask = NULL,
.top_grid_size = BKE_subdiv_grid_size_from_level(top_level),
.top_level = top_level,
.face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv),
},
.deformed_verts = deformed_verts,
.num_deformed_verts = num_deformed_verts,
};
SubdivForeachContext foreach_context = {
.topology_info = multires_reshape_topology_info,
.vertex_inner = multires_reshape_vertex_inner,
.vertex_every_edge = multires_reshape_vertex_every_edge,
.vertex_every_corner = multires_reshape_vertex_every_corner,
.user_data = &reshape_deformed_verts_ctx,
};
/* Initialize mesh rasterization settings. */
SubdivToMeshSettings mesh_settings;
BKE_multires_subdiv_mesh_settings_init(
&mesh_settings, scene_eval, object, mmd, use_render_params, true);
/* Initialize propagation to higher levels. */
MultiresPropagateData propagate_data;
multires_reshape_propagate_prepare_from_mmd(
&propagate_data, depsgraph, object, mmd, top_level, use_render_params);
/* Run all the callbacks. */
BKE_subdiv_foreach_subdiv_geometry(
subdiv,
&foreach_context,
&mesh_settings,
coarse_mesh);
BKE_subdiv_free(subdiv);
/* Update higher levels if needed. */
multires_reshape_propagate(&propagate_data);
multires_reshape_propagate_free(&propagate_data);
return true;
}
/* =============================================================================
* Reshape from object.
*/
/* Returns truth on success, false otherwise.
*
* This function might fail in cases like source and destination not having
* matched amount of vertices. */
bool multiresModifier_reshapeFromObject(
struct Depsgraph *depsgraph,
MultiresModifierData *mmd,
Object *dst,
Object *src)
{
/* Would be cool to support this eventually, but it is very tricky to match
* vertices order even for meshes, when mixing meshes and other objects it's
* even more tricky. */
if (src->type != OB_MESH) {
return false;
}
MultiresModifierData reshape_mmd;
multires_reshape_init_mmd(&reshape_mmd, mmd);
/* Get evaluated vertices locations to reshape to. */
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
Object *src_eval = DEG_get_evaluated_object(depsgraph, src);
Mesh *src_mesh_eval = mesh_get_eval_final(
depsgraph, scene_eval, src_eval, &CD_MASK_BAREMESH);
int num_deformed_verts;
float (*deformed_verts)[3] = BKE_mesh_vertexCos_get(
src_mesh_eval, &num_deformed_verts);
bool result = multires_reshape_from_vertcos(
depsgraph,
dst,
&reshape_mmd,
deformed_verts,
num_deformed_verts,
false);
MEM_freeN(deformed_verts);
return result;
}
/* =============================================================================
* Reshape from modifier.
*/
bool multiresModifier_reshapeFromDeformModifier(
struct Depsgraph *depsgraph,
MultiresModifierData *mmd,
Object *object,
ModifierData *md)
{
MultiresModifierData highest_mmd;
/* It is possible that the current subdivision level of multires is lower
* that it's maximum possible one (i.e., viewport is set to a lower level
* for the performance purposes). But even then, we want all the multires
* levels to be reshaped. Most accurate way to do so is to ignore all
* simplifications and calculate deformation modifier for the highest
* possible multires level.
* Alternative would be propagate displacement from current level to a
* higher ones, but that is likely to cause artifacts. */
multires_reshape_init_mmd_top_level(&highest_mmd, mmd);
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
/* Perform sanity checks and early output. */
if (multires_get_level(
scene_eval, object, &highest_mmd, false, true) == 0)
{
return false;
}
/* Create mesh for the multires, ignoring any further modifiers (leading
* deformation modifiers will be applied though). */
Mesh *multires_mesh = BKE_multires_create_mesh(
depsgraph, scene_eval, &highest_mmd, object);
int num_deformed_verts;
float (*deformed_verts)[3] = BKE_mesh_vertexCos_get(
multires_mesh, &num_deformed_verts);
/* Apply deformation modifier on the multires, */
const ModifierEvalContext modifier_ctx = {
.depsgraph = depsgraph,
.object = object,
.flag = MOD_APPLY_USECACHE | MOD_APPLY_IGNORE_SIMPLIFY,
};
modwrap_deformVerts(
md, &modifier_ctx, multires_mesh, deformed_verts,
multires_mesh->totvert);
BKE_id_free(NULL, multires_mesh);
/* Reshaping */
bool result = multires_reshape_from_vertcos(
depsgraph,
object,
&highest_mmd,
deformed_verts,
num_deformed_verts,
false);
/* Cleanup */
MEM_freeN(deformed_verts);
return result;
}
/* =============================================================================
* Reshape from grids.
*/
typedef struct ReshapeFromCCGTaskData {
MultiresReshapeContext reshape_ctx;
const CCGKey *key;
/*const*/ CCGElem **grids;
} ReshapeFromCCGTaskData;
static void reshape_from_ccg_task(
void *__restrict userdata,
const int coarse_poly_index,
const ParallelRangeTLS *__restrict UNUSED(tls))
{
ReshapeFromCCGTaskData *data = userdata;
const CCGKey *key = data->key;
/*const*/ CCGElem **grids = data->grids;
const Mesh *coarse_mesh = data->reshape_ctx.coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
const int key_grid_size = key->grid_size;
const int key_grid_size_1 = key_grid_size - 1;
const int resolution = key_grid_size;
const float resolution_1_inv = 1.0f / (float)(resolution - 1);
const int start_ptex_face_index =
data->reshape_ctx.face_ptex_offset[coarse_poly_index];
const bool is_quad = (coarse_poly->totloop == 4);
for (int corner = 0; corner < coarse_poly->totloop; corner++) {
for (int y = 0; y < resolution; y++) {
const float corner_v = y * resolution_1_inv;
for (int x = 0; x < resolution; x++) {
const float corner_u = x * resolution_1_inv;
/* Quad faces consists of a single ptex face. */
const int ptex_face_index =
is_quad ? start_ptex_face_index
: start_ptex_face_index + corner;
float grid_u, grid_v;
BKE_subdiv_ptex_face_uv_to_grid_uv(
corner_u, corner_v, &grid_u, &grid_v);
/*const*/ CCGElem *grid =
grids[coarse_poly->loopstart + corner];
/*const*/ CCGElem *grid_element = CCG_grid_elem(
key,
grid,
key_grid_size_1 * grid_u,
key_grid_size_1 * grid_v);
const float *final_P = CCG_elem_co(key, grid_element);
float final_mask = 0.0f;
if (key->has_mask) {
final_mask = *CCG_elem_mask(key, grid_element);
}
multires_reshape_vertex_from_final_data(
&data->reshape_ctx,
ptex_face_index,
corner_u, corner_v,
coarse_poly_index,
corner,
final_P, final_mask);
}
}
}
}
bool multiresModifier_reshapeFromCCG(
const int tot_level,
Mesh *coarse_mesh,
SubdivCCG *subdiv_ccg)
{
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
/* Sanity checks. */
if (coarse_mesh->totloop != subdiv_ccg->num_grids) {
/* Grids are supposed to eb created for each face-cornder (aka loop). */
return false;
}
MDisps *mdisps = CustomData_get_layer(&coarse_mesh->ldata, CD_MDISPS);
if (mdisps == NULL) {
/* Multires displacement has been removed before current changes were
* applies to all the levels. */
return false;
}
GridPaintMask *grid_paint_mask =
CustomData_get_layer(&coarse_mesh->ldata, CD_GRID_PAINT_MASK);
Subdiv *subdiv = subdiv_ccg->subdiv;
/* Pick maximum between multires level and dispalcement level.
* This is because mesh can be used by objects with multires at different
* levels.
*
* TODO(sergey): At this point it should be possible to always use
* mdisps->level. */
const int top_level = max_ii(tot_level, mdisps->level);
/* Make sure displacement grids are ready. */
multires_reshape_ensure_grids(coarse_mesh, top_level);
/* Construct context. */
ReshapeFromCCGTaskData data = {
.reshape_ctx = {
.subdiv = subdiv,
.coarse_mesh = coarse_mesh,
.mdisps = mdisps,
.grid_paint_mask = grid_paint_mask,
.top_grid_size = BKE_subdiv_grid_size_from_level(top_level),
.top_level = top_level,
.face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv),
},
.key = &key,
.grids = subdiv_ccg->grids,
};
/* Initialize propagation to higher levels. */
MultiresPropagateData propagate_data;
multires_reshape_propagate_prepare(
&propagate_data, coarse_mesh, key.level, top_level);
/* Threaded grids iteration. */
ParallelRangeSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(0, coarse_mesh->totpoly,
&data,
reshape_from_ccg_task,
&parallel_range_settings);
/* Update higher levels if needed. */
multires_reshape_propagate(&propagate_data);
multires_reshape_propagate_free(&propagate_data);
return true;
}