This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/src/transform_constraints.c
Ton Roosendaal a2ed880c9f Transform widgets; Scale and Rotate versions
To use; press the (temporal) icon in header. Switching widget types is by
pressing G, R or S once, if current widget type is different it switches,
otherwise it goes to normal Transform().

Widgets need a bit test for picking accuracy, correct drawing etc.
The rotate widget has a center button for 'trackball' rotate. That latter
can also be used for hotkey-based rotate.

In current code, all widgets remain in "Global" space, also in editmode.
Also widget updates while using normal transform has to be done.

2 Bugfixes:
- rotate in PoseMode had error for 2d 'around' center
- transform in postemode could crash, due to typo (& or |)
2005-03-19 12:17:06 +00:00

863 lines
19 KiB
C
Executable File

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef WIN32
#include <unistd.h>
#else
#include <io.h>
#include "BLI_winstuff.h"
#endif
#include "MEM_guardedalloc.h"
#include "DNA_action_types.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_ika_types.h"
#include "DNA_image_types.h"
#include "DNA_ipo_types.h"
#include "DNA_key_types.h"
#include "DNA_lamp_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_meta_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_texture_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "DNA_userdef_types.h"
#include "DNA_property_types.h"
#include "DNA_vfont_types.h"
#include "DNA_constraint_types.h"
#include "BIF_screen.h"
#include "BIF_space.h"
#include "BIF_editview.h"
#include "BIF_resources.h"
#include "BIF_mywindow.h"
#include "BIF_gl.h"
#include "BIF_editlattice.h"
#include "BIF_editarmature.h"
#include "BIF_editmesh.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BKE_lattice.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BSE_view.h"
#include "BSE_edit.h"
#include "BLI_arithb.h"
#include "BLI_editVert.h"
#include "BDR_drawobject.h"
#include "blendef.h"
#include "mydevice.h"
#include "transform.h"
#include "transform_constraints.h"
#include "transform_generics.h"
extern ListBase editNurb;
extern ListBase editelems;
void recalcData();
/* ************************** CONSTRAINTS ************************* */
void getConstraintMatrix(TransInfo *t);
void constraintNumInput(TransInfo *t, float vec[3])
{
int mode = t->con.mode;
float nval = (t->num.flag & NULLONE)?1.0f:0.0f;
if (getConstraintSpaceDimension(t) == 2) {
if (mode & (CON_AXIS0|CON_AXIS1)) {
vec[2] = nval;
}
else if (mode & (CON_AXIS1|CON_AXIS2)) {
vec[2] = vec[1];
vec[1] = vec[0];
vec[0] = nval;
}
else if (mode & (CON_AXIS0|CON_AXIS2)) {
vec[2] = vec[1];
vec[1] = nval;
}
}
else if (getConstraintSpaceDimension(t) == 1) {
if (mode & CON_AXIS0) {
vec[1] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS1) {
vec[1] = vec[0];
vec[0] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS2) {
vec[2] = vec[0];
vec[0] = nval;
vec[1] = nval;
}
}
}
static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) {
int i = 0;
Mat3MulVecfl(t->con.imtx, vec);
snapGrid(t, vec);
if (t->num.flag & NULLONE) {
if (!(t->con.mode & CON_AXIS0))
vec[0] = 1.0f;
if (!(t->con.mode & CON_AXIS1))
vec[1] = 1.0f;
if (!(t->con.mode & CON_AXIS2))
vec[2] = 1.0f;
}
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, vec);
constraintNumInput(t, vec);
}
if (t->con.mode & CON_AXIS0) {
pvec[i++] = vec[0];
}
if (t->con.mode & CON_AXIS1) {
pvec[i++] = vec[1];
}
if (t->con.mode & CON_AXIS2) {
pvec[i++] = vec[2];
}
Mat3MulVecfl(t->con.mtx, vec);
}
static void getViewVector(TransInfo *t, float coord[3], float vec[3]) {
if (G.vd->persp)
{
float p1[4], p2[4];
VecAddf(p1, coord, t->con.center);
p1[3] = 1.0f;
VECCOPY(p2, p1);
p2[3] = 1.0f;
Mat4MulVec4fl(G.vd->viewmat, p2);
p2[0] = 2.0f * p2[0];
p2[1] = 2.0f * p2[1];
p2[2] = 2.0f * p2[2];
Mat4MulVec4fl(G.vd->viewinv, p2);
VecSubf(vec, p2, p1);
Normalise(vec);
}
else {
VECCOPY(vec, G.vd->viewinv[2]);
}
}
static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) {
float norm[3], n[3], vec[3], factor;
getViewVector(t, in, norm);
Normalise(axis);
VECCOPY(n, axis);
Mat4MulVecfl(G.vd->viewmat, n);
n[2] = G.vd->viewmat[3][2];
Mat4MulVecfl(G.vd->viewinv, n);
if (Inpf(axis, norm) != 1.0f) {
Projf(vec, in, n);
factor = Normalise(vec);
factor /= Inpf(axis, vec);
VecMulf(axis, factor);
VECCOPY(out, axis);
}
else {
out[0] = out[1] = out[2] = 0.0f;
}
}
static void planeProjection(TransInfo *t, float in[3], float out[3]) {
float vec[3], factor, angle, norm[3];
getViewVector(t, in, norm);
VecSubf(vec, out, in);
factor = Normalise(vec);
angle = Inpf(vec, norm);
if (angle * angle >= 0.000001f) {
factor /= angle;
VECCOPY(vec, norm);
VecMulf(vec, factor);
VecAddf(out, in, vec);
}
}
/*
* Generic callback for constant spacial constraints applied to linear motion
*
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*
*/
static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
{
VECCOPY(out, in);
if (!td && t->con.mode & CON_APPLY) {
Mat3MulVecfl(t->con.pmtx, out);
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
if (getConstraintSpaceDimension(t) == 2) {
planeProjection(t, in, out);
}
else if (getConstraintSpaceDimension(t) == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
VECCOPY(c, t->con.mtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
VECCOPY(c, t->con.mtx[1]);
}
else if (t->con.mode & CON_AXIS2) {
VECCOPY(c, t->con.mtx[2]);
}
axisProjection(t, c, in, out);
}
}
postConstraintChecks(t, out, pvec);
}
}
/*
* Generic callback for object based spacial constraints applied to linear motion
*
* At first, the following is applied to the first data in the array
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*
* Further down, that vector is mapped to each data's space.
*/
static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
{
VECCOPY(out, in);
if (t->con.mode & CON_APPLY) {
if (!td) {
Mat3MulVecfl(t->con.pmtx, out);
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
if (getConstraintSpaceDimension(t) == 2) {
planeProjection(t, in, out);
}
else if (getConstraintSpaceDimension(t) == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
VECCOPY(c, t->con.mtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
VECCOPY(c, t->con.mtx[1]);
}
else if (t->con.mode & CON_AXIS2) {
VECCOPY(c, t->con.mtx[2]);
}
axisProjection(t, c, in, out);
}
}
postConstraintChecks(t, out, pvec);
VECCOPY(out, pvec);
}
else {
Mat3MulVecfl(td->axismtx, out);
}
}
}
/*
* Generic callback for constant spacial constraints applied to resize motion
*
*
*/
static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
if (!td && t->con.mode & CON_APPLY) {
float tmat[3][3];
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
Mat3MulMat3(tmat, smat, t->con.imtx);
Mat3MulMat3(smat, t->con.mtx, tmat);
}
}
/*
* Callback for object based spacial constraints applied to resize motion
*
*
*/
static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
if (td && t->con.mode & CON_APPLY) {
float tmat[3][3];
float imat[3][3];
Mat3Inv(imat, td->axismtx);
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
Mat3MulMat3(tmat, smat, imat);
Mat3MulMat3(smat, td->axismtx, tmat);
}
}
/*
* Generic callback for constant spacial constraints applied to rotations
*
* The rotation axis is copied into VEC.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3])
{
if (!td && t->con.mode & CON_APPLY) {
int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
switch(mode) {
case CON_AXIS0:
case (CON_AXIS1|CON_AXIS2):
VECCOPY(vec, t->con.mtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0|CON_AXIS2):
VECCOPY(vec, t->con.mtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0|CON_AXIS1):
VECCOPY(vec, t->con.mtx[2]);
break;
}
if (!(mode & CON_NOFLIP)) {
if (Inpf(vec, G.vd->viewinv[2]) > 0.0f) {
VecMulf(vec, -1.0f);
}
}
}
}
/*
* Callback for object based spacial constraints applied to rotations
*
* The rotation axis is copied into VEC.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3])
{
if (td && t->con.mode & CON_APPLY) {
int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
switch(mode) {
case CON_AXIS0:
case (CON_AXIS1|CON_AXIS2):
VECCOPY(vec, td->axismtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0|CON_AXIS2):
VECCOPY(vec, td->axismtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0|CON_AXIS1):
VECCOPY(vec, td->axismtx[2]);
break;
}
if (!(mode & CON_NOFLIP)) {
if (Inpf(vec, G.vd->viewinv[2]) > 0.0f) {
VecMulf(vec, -1.0f);
}
}
}
}
static void drawObjectConstraint(TransInfo *t) {
int i;
TransData * td = t->data;
if (t->con.mode & CON_AXIS0) {
drawLine(td->ob->obmat[3], td->axismtx[0], 'x', DRAWLIGHT);
}
if (t->con.mode & CON_AXIS1) {
drawLine(td->ob->obmat[3], td->axismtx[1], 'y', DRAWLIGHT);
}
if (t->con.mode & CON_AXIS2) {
drawLine(td->ob->obmat[3], td->axismtx[2], 'z', DRAWLIGHT);
}
td++;
for(i=1;i<t->total;i++,td++) {
if (t->con.mode & CON_AXIS0) {
drawLine(td->ob->obmat[3], td->axismtx[0], 'x', 0);
}
if (t->con.mode & CON_AXIS1) {
drawLine(td->ob->obmat[3], td->axismtx[1], 'y', 0);
}
if (t->con.mode & CON_AXIS2) {
drawLine(td->ob->obmat[3], td->axismtx[2], 'z', 0);
}
}
}
/*
* Returns the dimension of the constraint space.
*
* For that reason, the flags always needs to be set to properly evaluate here,
* even if they aren't actually used in the callback function. (Which could happen
* for weird constraints not yet designed. Along a path for example.)
*/
int getConstraintSpaceDimension(TransInfo *t)
{
int n = 0;
if (t->con.mode & CON_AXIS0)
n++;
if (t->con.mode & CON_AXIS1)
n++;
if (t->con.mode & CON_AXIS2)
n++;
return n;
/*
Someone willing to do it criptically could do the following instead:
return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
Based on the assumptions that the axis flags are one after the other and start at 1
*/
}
void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) {
strcpy(t->con.text + 1, text);
Mat3CpyMat3(t->con.mtx, space);
t->con.mode = mode;
getConstraintMatrix(t);
startConstraint(t);
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = 1;
}
void setLocalConstraint(TransInfo *t, int mode, const char text[]) {
if (t->flag & T_EDIT) {
float obmat[3][3];
Mat3CpyMat4(obmat, G.obedit->obmat);
setConstraint(t, obmat, mode, text);
}
else {
if (t->total == 1) {
setConstraint(t, t->data->axismtx, mode, text);
}
else {
strcpy(t->con.text + 1, text);
Mat3CpyMat3(t->con.mtx, t->data->axismtx);
t->con.mode = mode;
getConstraintMatrix(t);
startConstraint(t);
t->con.drawExtra = drawObjectConstraint;
t->con.applyVec = applyObjectConstraintVec;
t->con.applySize = applyObjectConstraintSize;
t->con.applyRot = applyObjectConstraintRot;
t->redraw = 1;
}
}
}
void BIF_setSingleAxisConstraint(float vec[3]) {
TransInfo *t = BIF_GetTransInfo();
float space[3][3], v[3];
VECCOPY(space[0], vec);
v[0] = vec[2];
v[1] = vec[0];
v[2] = vec[1];
Crossf(space[1], vec, v);
Crossf(space[2], vec, space[1]);
Mat3Ortho(space);
Mat3Ortho(space);
Mat3CpyMat3(t->con.mtx, space);
t->con.mode = (CON_AXIS0|CON_APPLY);
getConstraintMatrix(t);
startConstraint(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = 1;
startConstraint(t);
}
void BIF_setDualAxisConstraint(float vec1[3], float vec2[3]) {
TransInfo *t = BIF_GetTransInfo();
float space[3][3];
VECCOPY(space[0], vec1);
VECCOPY(space[1], vec2);
Crossf(space[2], space[0], space[1]);
Mat3Ortho(space);
Mat3CpyMat3(t->con.mtx, space);
t->con.mode = (CON_AXIS0|CON_AXIS1|CON_APPLY);
getConstraintMatrix(t);
startConstraint(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = 1;
startConstraint(t);
}
void BIF_drawConstraint(void)
{
TransInfo *t = BIF_GetTransInfo();
TransCon *tc = &(t->con);
if (!(tc->mode & CON_APPLY))
return;
if (t->flag & T_USES_MANIPULATOR)
return;
if (tc->drawExtra) {
tc->drawExtra(t);
}
else {
if (tc->mode & CON_SELECT) {
float vec[3];
short mval[2];
char col2[3] = {255,255,255};
getmouseco_areawin(mval);
window_to_3d(vec, (short)(mval[0] - t->con.imval[0]), (short)(mval[1] - t->con.imval[1]));
VecAddf(vec, vec, tc->center);
drawLine(tc->center, tc->mtx[0], 'x', 0);
drawLine(tc->center, tc->mtx[1], 'y', 0);
drawLine(tc->center, tc->mtx[2], 'z', 0);
glColor3ubv(col2);
setlinestyle(1);
glBegin(GL_LINE_STRIP);
glVertex3fv(tc->center);
glVertex3fv(vec);
glEnd();
}
if (tc->mode & CON_AXIS0) {
drawLine(tc->center, tc->mtx[0], 'x', DRAWLIGHT);
}
if (tc->mode & CON_AXIS1) {
drawLine(tc->center, tc->mtx[1], 'y', DRAWLIGHT);
}
if (tc->mode & CON_AXIS2) {
drawLine(tc->center, tc->mtx[2], 'z', DRAWLIGHT);
}
}
}
/* called from drawview.c, as an extra per-window draw option */
void BIF_drawPropCircle()
{
TransInfo *t = BIF_GetTransInfo();
if (G.f & G_PROPORTIONAL) {
float tmat[4][4], imat[4][4];
BIF_ThemeColor(TH_GRID);
/* if editmode we need to go into object space */
if(G.obedit) mymultmatrix(G.obedit->obmat);
mygetmatrix(tmat);
Mat4Invert(imat, tmat);
drawcircball(t->center, t->propsize, imat);
/* if editmode we restore */
if(G.obedit) myloadmatrix(G.vd->viewmat);
}
}
void startConstraint(TransInfo *t) {
t->con.mode |= CON_APPLY;
*t->con.text = ' ';
t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max);
}
void stopConstraint(TransInfo *t) {
t->con.mode &= ~CON_APPLY;
*t->con.text = '\0';
t->num.idx_max = t->idx_max;
}
void getConstraintMatrix(TransInfo *t)
{
float mat[3][3];
Mat3Inv(t->con.imtx, t->con.mtx);
Mat3One(t->con.pmtx);
if (!(t->con.mode & CON_AXIS0)) {
t->con.pmtx[0][0] =
t->con.pmtx[0][1] =
t->con.pmtx[0][2] = 0.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
t->con.pmtx[1][0] =
t->con.pmtx[1][1] =
t->con.pmtx[1][2] = 0.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
t->con.pmtx[2][0] =
t->con.pmtx[2][1] =
t->con.pmtx[2][2] = 0.0f;
}
Mat3MulMat3(mat, t->con.pmtx, t->con.imtx);
Mat3MulMat3(t->con.pmtx, t->con.mtx, mat);
}
void initSelectConstraint(TransInfo *t)
{
Mat3One(t->con.mtx);
Mat3One(t->con.pmtx);
t->con.mode |= CON_APPLY;
t->con.mode |= CON_SELECT;
VECCOPY(t->con.center, t->center);
if (t->flag & T_EDIT) {
Mat4MulVecfl(G.obedit->obmat, t->con.center);
}
setNearestAxis(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
}
void selectConstraint(TransInfo *t) {
if (t->con.mode & CON_SELECT) {
setNearestAxis(t);
}
}
void postSelectConstraint(TransInfo *t)
{
if (!(t->con.mode & CON_SELECT))
return;
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
t->con.mode &= ~CON_SELECT;
setNearestAxis(t);
startConstraint(t);
t->redraw = 1;
}
void setNearestAxis(TransInfo *t)
{
short coord[2];
float mvec[3], axis[3], center[3], proj[3];
float len[3];
int i;
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
VECCOPY(center, t->center);
if (G.obedit) {
Mat4MulVecfl(G.obedit->obmat, center);
}
getmouseco_areawin(coord);
#if 1
mvec[0] = (float)(coord[0] - t->con.imval[0]);
mvec[1] = (float)(coord[1] - t->con.imval[1]);
#else
mvec[0] = (float)(coord[0] - t->center2d[0]);
mvec[1] = (float)(coord[1] - t->center2d[1]);
#endif
mvec[2] = 0.0f;
for (i = 0; i<3; i++) {
VECCOPY(axis, t->con.mtx[i]);
VecAddf(axis, axis, center);
project_short_noclip(axis, coord);
axis[0] = (float)(coord[0] - t->center2d[0]);
axis[1] = (float)(coord[1] - t->center2d[1]);
axis[2] = 0.0f;
if (Normalise(axis) != 0.0f) {
Projf(proj, mvec, axis);
VecSubf(axis, mvec, proj);
len[i] = Normalise(axis);
}
else {
len[i] = 10000000000.0f;
}
}
if (len[0] < len[1] && len[0] < len[2]) {
if (G.qual & LR_SHIFTKEY) {
t->con.mode |= (CON_AXIS1|CON_AXIS2);
strcpy(t->con.text, " locking global X");
}
else {
t->con.mode |= CON_AXIS0;
strcpy(t->con.text, " along global X");
}
}
else if (len[1] < len[0] && len[1] < len[2]) {
if (G.qual & LR_SHIFTKEY) {
t->con.mode |= (CON_AXIS0|CON_AXIS2);
strcpy(t->con.text, " locking global Y");
}
else {
t->con.mode |= CON_AXIS1;
strcpy(t->con.text, " along global Y");
}
}
else if (len[2] < len[1] && len[2] < len[0]) {
if (G.qual & LR_SHIFTKEY) {
t->con.mode |= (CON_AXIS0|CON_AXIS1);
strcpy(t->con.text, " locking global Z");
}
else {
t->con.mode |= CON_AXIS2;
strcpy(t->con.text, " along global Z");
}
}
getConstraintMatrix(t);
}