This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/device/gpu/image.h
Patrick Mours a8c81ffa83 Cycles: Add half precision float support for volumes with NanoVDB
This patch makes it possible to change the precision with which to
store volume data in the NanoVDB data structure (as float, half, or
using variable bit quantization) via the previously unused precision
field in the volume data block.
It makes it possible to further reduce memory usage during
rendering, at a slight cost to the visual detail of a volume.

Differential Revision: https://developer.blender.org/D10023
2022-05-23 19:08:01 +02:00

277 lines
9.2 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2017-2022 Blender Foundation */
#pragma once
CCL_NAMESPACE_BEGIN
#ifdef WITH_NANOVDB
# define NDEBUG /* Disable "assert" in device code */
# define NANOVDB_USE_INTRINSICS
# include "nanovdb/NanoVDB.h"
# include "nanovdb/util/SampleFromVoxels.h"
#endif
/* w0, w1, w2, and w3 are the four cubic B-spline basis functions. */
ccl_device float cubic_w0(float a)
{
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
ccl_device float cubic_w1(float a)
{
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
ccl_device float cubic_w2(float a)
{
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
ccl_device float cubic_w3(float a)
{
return (1.0f / 6.0f) * (a * a * a);
}
/* g0 and g1 are the two amplitude functions. */
ccl_device float cubic_g0(float a)
{
return cubic_w0(a) + cubic_w1(a);
}
ccl_device float cubic_g1(float a)
{
return cubic_w2(a) + cubic_w3(a);
}
/* h0 and h1 are the two offset functions */
ccl_device float cubic_h0(float a)
{
return (cubic_w1(a) / cubic_g0(a)) - 1.0f;
}
ccl_device float cubic_h1(float a)
{
return (cubic_w3(a) / cubic_g1(a)) + 1.0f;
}
/* Fast bicubic texture lookup using 4 bilinear lookups, adapted from CUDA samples. */
template<typename T>
ccl_device_noinline T kernel_tex_image_interp_bicubic(ccl_global const TextureInfo &info,
float x,
float y)
{
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
float px = floorf(x);
float py = floorf(y);
float fx = x - px;
float fy = y - py;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
float x0 = (px + cubic_h0(fx) + 0.5f) / info.width;
float x1 = (px + cubic_h1(fx) + 0.5f) / info.width;
float y0 = (py + cubic_h0(fy) + 0.5f) / info.height;
float y1 = (py + cubic_h1(fy) + 0.5f) / info.height;
return cubic_g0(fy) * (g0x * ccl_gpu_tex_object_read_2D<T>(tex, x0, y0) +
g1x * ccl_gpu_tex_object_read_2D<T>(tex, x1, y0)) +
cubic_g1(fy) * (g0x * ccl_gpu_tex_object_read_2D<T>(tex, x0, y1) +
g1x * ccl_gpu_tex_object_read_2D<T>(tex, x1, y1));
}
/* Fast tricubic texture lookup using 8 trilinear lookups. */
template<typename T>
ccl_device_noinline T
kernel_tex_image_interp_tricubic(ccl_global const TextureInfo &info, float x, float y, float z)
{
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
z = (z * info.depth) - 0.5f;
float px = floorf(x);
float py = floorf(y);
float pz = floorf(z);
float fx = x - px;
float fy = y - py;
float fz = z - pz;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float g0y = cubic_g0(fy);
float g1y = cubic_g1(fy);
float g0z = cubic_g0(fz);
float g1z = cubic_g1(fz);
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
float x0 = (px + cubic_h0(fx) + 0.5f) / info.width;
float x1 = (px + cubic_h1(fx) + 0.5f) / info.width;
float y0 = (py + cubic_h0(fy) + 0.5f) / info.height;
float y1 = (py + cubic_h1(fy) + 0.5f) / info.height;
float z0 = (pz + cubic_h0(fz) + 0.5f) / info.depth;
float z1 = (pz + cubic_h1(fz) + 0.5f) / info.depth;
return g0z * (g0y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y0, z0) +
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y0, z0)) +
g1y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y1, z0) +
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y1, z0))) +
g1z * (g0y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y0, z1) +
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y0, z1)) +
g1y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y1, z1) +
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y1, z1)));
}
#ifdef WITH_NANOVDB
template<typename T, typename S>
ccl_device typename nanovdb::NanoGrid<T>::ValueType kernel_tex_image_interp_tricubic_nanovdb(
S &s, float x, float y, float z)
{
float px = floorf(x);
float py = floorf(y);
float pz = floorf(z);
float fx = x - px;
float fy = y - py;
float fz = z - pz;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float g0y = cubic_g0(fy);
float g1y = cubic_g1(fy);
float g0z = cubic_g0(fz);
float g1z = cubic_g1(fz);
float x0 = px + cubic_h0(fx);
float x1 = px + cubic_h1(fx);
float y0 = py + cubic_h0(fy);
float y1 = py + cubic_h1(fy);
float z0 = pz + cubic_h0(fz);
float z1 = pz + cubic_h1(fz);
using namespace nanovdb;
return g0z * (g0y * (g0x * s(Vec3f(x0, y0, z0)) + g1x * s(Vec3f(x1, y0, z0))) +
g1y * (g0x * s(Vec3f(x0, y1, z0)) + g1x * s(Vec3f(x1, y1, z0)))) +
g1z * (g0y * (g0x * s(Vec3f(x0, y0, z1)) + g1x * s(Vec3f(x1, y0, z1))) +
g1y * (g0x * s(Vec3f(x0, y1, z1)) + g1x * s(Vec3f(x1, y1, z1))));
}
template<typename T>
ccl_device_noinline typename nanovdb::NanoGrid<T>::ValueType kernel_tex_image_interp_nanovdb(
ccl_global const TextureInfo &info, float x, float y, float z, uint interpolation)
{
using namespace nanovdb;
NanoGrid<T> *const grid = (NanoGrid<T> *)info.data;
typedef typename nanovdb::NanoGrid<T>::AccessorType AccessorType;
AccessorType acc = grid->getAccessor();
switch (interpolation) {
case INTERPOLATION_CLOSEST:
return SampleFromVoxels<AccessorType, 0, false>(acc)(Vec3f(x, y, z));
case INTERPOLATION_LINEAR:
return SampleFromVoxels<AccessorType, 1, false>(acc)(Vec3f(x - 0.5f, y - 0.5f, z - 0.5f));
default:
SampleFromVoxels<AccessorType, 1, false> s(acc);
return kernel_tex_image_interp_tricubic_nanovdb<T>(s, x - 0.5f, y - 0.5f, z - 0.5f);
}
}
#endif
ccl_device float4 kernel_tex_image_interp(KernelGlobals kg, int id, float x, float y)
{
ccl_global const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
/* float4, byte4, ushort4 and half4 */
const int texture_type = info.data_type;
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (info.interpolation == INTERPOLATION_CUBIC || info.interpolation == INTERPOLATION_SMART) {
return kernel_tex_image_interp_bicubic<float4>(info, x, y);
}
else {
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
return ccl_gpu_tex_object_read_2D<float4>(tex, x, y);
}
}
/* float, byte and half */
else {
float f;
if (info.interpolation == INTERPOLATION_CUBIC || info.interpolation == INTERPOLATION_SMART) {
f = kernel_tex_image_interp_bicubic<float>(info, x, y);
}
else {
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
f = ccl_gpu_tex_object_read_2D<float>(tex, x, y);
}
return make_float4(f, f, f, 1.0f);
}
}
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals kg,
int id,
float3 P,
InterpolationType interp)
{
ccl_global const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
if (info.use_transform_3d) {
P = transform_point(&info.transform_3d, P);
}
const float x = P.x;
const float y = P.y;
const float z = P.z;
uint interpolation = (interp == INTERPOLATION_NONE) ? info.interpolation : interp;
const int texture_type = info.data_type;
#ifdef WITH_NANOVDB
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
float f = kernel_tex_image_interp_nanovdb<float>(info, x, y, z, interpolation);
return make_float4(f, f, f, 1.0f);
}
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
nanovdb::Vec3f f = kernel_tex_image_interp_nanovdb<nanovdb::Vec3f>(
info, x, y, z, interpolation);
return make_float4(f[0], f[1], f[2], 1.0f);
}
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FPN) {
float f = kernel_tex_image_interp_nanovdb<nanovdb::FpN>(info, x, y, z, interpolation);
return make_float4(f, f, f, 1.0f);
}
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FP16) {
float f = kernel_tex_image_interp_nanovdb<nanovdb::Fp16>(info, x, y, z, interpolation);
return make_float4(f, f, f, 1.0f);
}
#endif
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (interpolation == INTERPOLATION_CUBIC || interpolation == INTERPOLATION_SMART) {
return kernel_tex_image_interp_tricubic<float4>(info, x, y, z);
}
else {
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
return ccl_gpu_tex_object_read_3D<float4>(tex, x, y, z);
}
}
else {
float f;
if (interpolation == INTERPOLATION_CUBIC || interpolation == INTERPOLATION_SMART) {
f = kernel_tex_image_interp_tricubic<float>(info, x, y, z);
}
else {
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
f = ccl_gpu_tex_object_read_3D<float>(tex, x, y, z);
}
return make_float4(f, f, f, 1.0f);
}
}
CCL_NAMESPACE_END