This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/constraint.c

3421 lines
97 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): 2007, Joshua Leung, major recode
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "MEM_guardedalloc.h"
//XXX #include "nla.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_curve_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
#include "DNA_text_types.h"
#include "BKE_utildefines.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* for the curve calculation part */
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_displist.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h" /* for geometry targets */
#include "BKE_cdderivedmesh.h" /* for geometry targets */
#include "BKE_object.h"
#include "BKE_ipo.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_idprop.h"
#include "BPY_extern.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* ******************* Constraint Channels ********************** */
/* Constraint Channels exist in one of two places:
* - Under Action Channels in an Action (act->chanbase->achan->constraintChannels)
* - Under Object without object-level action yet (ob->constraintChannels)
*
* The main purpose that constraint channels serve is to act as a link
* between an IPO-block which
*/
/* ------------ Data Management ----------- */
/* Free constraint channels, and reduce the number of users of the related ipo-blocks */
void free_constraint_channels (ListBase *chanbase)
{
bConstraintChannel *chan;
for (chan=chanbase->first; chan; chan=chan->next) {
if (chan->ipo) {
chan->ipo->id.us--;
}
}
BLI_freelistN(chanbase);
}
/* Make a copy of the constraint channels from dst to src, and also give the
* new constraint channels their own copy of the original's IPO.
*/
void copy_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first = dst->last = NULL;
BLI_duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
dchan->ipo = copy_ipo(schan->ipo);
}
}
/* Make a copy of the constraint channels from dst to src, but make the
* new constraint channels use the same IPO-data as their twin.
*/
void clone_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first = dst->last = NULL;
BLI_duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
id_us_plus((ID *)dchan->ipo);
}
}
/* ------------- Constraint Channel Tools ------------ */
/* Find the constraint channel with a given name */
bConstraintChannel *get_constraint_channel (ListBase *list, const char name[])
{
bConstraintChannel *chan;
if(list) {
for (chan = list->first; chan; chan=chan->next) {
if (!strcmp(name, chan->name)) {
return chan;
}
}
}
return NULL;
}
/* Find or create a new constraint channel */
bConstraintChannel *verify_constraint_channel (ListBase *list, const char name[])
{
bConstraintChannel *chan;
chan= get_constraint_channel(list, name);
if (chan == NULL) {
chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint channel");
BLI_addtail(list, chan);
strcpy(chan->name, name);
}
return chan;
}
/* --------- Constraint Channel Evaluation/Execution --------- */
/* IPO-system call: calculate IPO-block for constraint channels, and flush that
* info onto the corresponding constraint.
*/
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime, short onlydrivers)
{
bConstraint *con;
/* for each Constraint, calculate its Influence from the corresponding ConstraintChannel */
for (con=conbase->first; con; con=con->next) {
Ipo *ipo= NULL;
if(con->flag & CONSTRAINT_OWN_IPO)
ipo= con->ipo;
else {
bConstraintChannel *chan = get_constraint_channel(chanbase, con->name);
if(chan) ipo= chan->ipo;
}
if (ipo) {
IpoCurve *icu;
calc_ipo(ipo, ctime);
for (icu=ipo->curve.first; icu; icu=icu->next) {
if (!onlydrivers || icu->driver) {
switch (icu->adrcode) {
case CO_ENFORCE:
{
/* Influence is clamped to 0.0f -> 1.0f range */
con->enforce = CLAMPIS(icu->curval, 0.0f, 1.0f);
}
break;
case CO_HEADTAIL:
{
con->headtail = icu->curval;
}
break;
}
}
}
}
}
}
/* ************************ Constraints - General Utilities *************************** */
/* These functions here don't act on any specific constraints, and are therefore should/will
* not require any of the special function-pointers afforded by the relevant constraint
* type-info structs.
*/
/* -------------- Naming -------------- */
/* Find the first available, non-duplicate name for a given constraint */
void unique_constraint_name (bConstraint *con, ListBase *list)
{
bConstraint *curcon;
char tempname[64];
int number = 1, exists = 0;
char *dot;
/* See if we are given an empty string */
if (con->name[0] == '\0') {
/* give it default name first */
strcpy(con->name, "Const");
}
/* See if we even need to do this */
if (list == NULL)
return;
for (curcon = list->first; curcon; curcon=curcon->next) {
if (curcon != con) {
if (!strcmp(curcon->name, con->name)) {
exists = 1;
break;
}
}
}
if (exists == 0)
return;
/* Strip off the suffix */
dot = strchr(con->name, '.');
if (dot)
*dot=0;
for (number = 1; number <= 999; number++) {
sprintf(tempname, "%s.%03d", con->name, number);
exists = 0;
for (curcon=list->first; curcon; curcon=curcon->next) {
if (con != curcon) {
if (strcmp(curcon->name, tempname)==0) {
exists = 1;
break;
}
}
}
if (exists == 0) {
strcpy(con->name, tempname);
return;
}
}
}
/* ----------------- Evaluation Loop Preparation --------------- */
/* package an object/bone for use in constraint evaluation */
/* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatype)
{
bConstraintOb *cob;
/* create regardless of whether we have any data! */
cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
/* based on type of available data */
switch (datatype) {
case CONSTRAINT_OBTYPE_OBJECT:
{
/* disregard subdata... calloc should set other values right */
if (ob) {
cob->ob = ob;
cob->type = datatype;
Mat4CpyMat4(cob->matrix, ob->obmat);
}
else
Mat4One(cob->matrix);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
break;
case CONSTRAINT_OBTYPE_BONE:
{
/* only set if we have valid bone, otherwise default */
if (ob && subdata) {
cob->ob = ob;
cob->pchan = (bPoseChannel *)subdata;
cob->type = datatype;
/* matrix in world-space */
Mat4MulMat4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
}
else
Mat4One(cob->matrix);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
break;
default: /* other types not yet handled */
Mat4One(cob->matrix);
Mat4One(cob->startmat);
break;
}
return cob;
}
/* cleanup after constraint evaluation */
void constraints_clear_evalob (bConstraintOb *cob)
{
float delta[4][4], imat[4][4];
/* prevent crashes */
if (cob == NULL)
return;
/* calculate delta of constraints evaluation */
Mat4Invert(imat, cob->startmat);
Mat4MulMat4(delta, cob->matrix, imat);
/* copy matrices back to source */
switch (cob->type) {
case CONSTRAINT_OBTYPE_OBJECT:
{
/* cob->ob might not exist! */
if (cob->ob) {
/* copy new ob-matrix back to owner */
Mat4CpyMat4(cob->ob->obmat, cob->matrix);
/* copy inverse of delta back to owner */
Mat4Invert(cob->ob->constinv, delta);
}
}
break;
case CONSTRAINT_OBTYPE_BONE:
{
/* cob->ob or cob->pchan might not exist */
if (cob->ob && cob->pchan) {
/* copy new pose-matrix back to owner */
Mat4MulMat4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
/* copy inverse of delta back to owner */
Mat4Invert(cob->pchan->constinv, delta);
}
}
break;
}
/* free tempolary struct */
MEM_freeN(cob);
}
/* -------------- Space-Conversion API -------------- */
/* This function is responsible for the correct transformations/conversions
* of a matrix from one space to another for constraint evaluation.
* For now, this is only implemented for Objects and PoseChannels.
*/
void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
{
float tempmat[4][4];
float diff_mat[4][4];
float imat[4][4];
/* prevent crashes in these unlikely events */
if (ob==NULL || mat==NULL) return;
/* optimise trick - check if need to do anything */
if (from == to) return;
/* are we dealing with pose-channels or objects */
if (pchan) {
/* pose channels */
switch (from) {
case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
{
/* world to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_LOCAL || to==CONSTRAINT_SPACE_PARLOCAL) {
Mat4Invert(imat, ob->obmat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
/* pose to local */
if (to == CONSTRAINT_SPACE_LOCAL) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
/* pose to local + parent */
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
case CONSTRAINT_SPACE_POSE: /* ---------- FROM POSESPACE ---------- */
{
/* pose to world */
if (to == CONSTRAINT_SPACE_WORLD) {
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, ob->obmat);
}
/* pose to local */
else if (to == CONSTRAINT_SPACE_LOCAL) {
if (pchan->bone) {
if (pchan->parent) {
float offs_bone[4][4];
/* construct offs_bone the same way it is done in armature.c */
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
VECCOPY(offs_bone[3], pchan->bone->head);
offs_bone[3][1]+= pchan->bone->parent->length;
if (pchan->bone->flag & BONE_HINGE) {
/* pose_mat = par_pose-space_location * chan_mat */
float tmat[4][4];
/* the rotation of the parent restposition */
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
/* the location of actual parent transform */
VECCOPY(tmat[3], offs_bone[3]);
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
Mat4MulMat4(diff_mat, offs_bone, tmat);
Mat4Invert(imat, diff_mat);
}
else {
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
Mat4Invert(imat, diff_mat);
}
}
else {
/* pose_mat = chan_mat * arm_mat */
Mat4Invert(imat, pchan->bone->arm_mat);
}
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
/* pose to local with parent */
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
if (pchan->bone) {
Mat4Invert(imat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
}
break;
case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
{
/* local to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
/* do inverse procedure that was done for pose to local */
if (pchan->bone) {
/* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */
if (pchan->parent) {
float offs_bone[4][4];
/* construct offs_bone the same way it is done in armature.c */
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
VECCOPY(offs_bone[3], pchan->bone->head);
offs_bone[3][1]+= pchan->bone->parent->length;
if (pchan->bone->flag & BONE_HINGE) {
/* pose_mat = par_pose-space_location * chan_mat */
float tmat[4][4];
/* the rotation of the parent restposition */
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
/* the location of actual parent transform */
VECCOPY(tmat[3], offs_bone[3]);
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
Mat4MulMat4(diff_mat, offs_bone, tmat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
else {
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
else {
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
}
/* local to world */
if (to == CONSTRAINT_SPACE_WORLD) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
{
/* local to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
if (pchan->bone) {
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, diff_mat, tempmat);
}
}
/* local to world */
if (to == CONSTRAINT_SPACE_WORLD) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
}
}
else {
/* objects */
if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
/* check if object has a parent - otherwise this won't work */
if (ob->parent) {
/* 'subtract' parent's effects from owner */
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
Mat4Invert(imat, diff_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
/* check that object has a parent - otherwise this won't work */
if (ob->parent) {
/* 'add' parent's effect back to owner */
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
}
}
/* ------------ General Target Matrix Tools ---------- */
/* function that sets the given matrix based on given vertex group in mesh */
static void contarget_get_mesh_mat (Object *ob, char *substring, float mat[][4])
{
DerivedMesh *dm;
float vec[3] = {0.0f, 0.0f, 0.0f}, tvec[3];
float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
float imat[3][3], tmat[3][3];
int dgroup;
/* initialize target matrix using target matrix */
Mat4CpyMat4(mat, ob->obmat);
/* get index of vertex group */
dgroup = get_named_vertexgroup_num(ob, substring);
if (dgroup < 0) return;
/* get DerivedMesh */
if (G.obedit && G.editMesh) {
/* we are in editmode, so get a special derived mesh */
dm = CDDM_from_editmesh(G.editMesh, ob->data);
}
else {
/* when not in EditMode, this should exist */
dm = (DerivedMesh *)ob->derivedFinal;
}
/* only continue if there's a valid DerivedMesh */
if (dm) {
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
int *index = (int *)dm->getVertDataArray(dm, CD_ORIGINDEX);
int numVerts = dm->getNumVerts(dm);
int i, j, count = 0;
float co[3], nor[3];
/* check that dvert and index are valid pointers (just in case) */
if (dvert && index) {
/* get the average of all verts with that are in the vertex-group */
for (i = 0; i < numVerts; i++, index++) {
for (j = 0; j < dvert[i].totweight; j++) {
/* does this vertex belong to nominated vertex group? */
if (dvert[i].dw[j].def_nr == dgroup) {
dm->getVertCo(dm, i, co);
dm->getVertNo(dm, i, nor);
VecAddf(vec, vec, co);
VecAddf(normal, normal, nor);
count++;
break;
}
}
}
/* calculate averages of normal and coordinates */
if (count > 0) {
VecMulf(vec, 1.0f / count);
VecMulf(normal, 1.0f / count);
}
/* derive the rotation from the average normal:
* - code taken from transform_manipulator.c,
* calc_manipulator_stats, V3D_MANIP_NORMAL case
*/
/* we need the transpose of the inverse for a normal... */
Mat3CpyMat4(imat, ob->obmat);
Mat3Inv(tmat, imat);
Mat3Transp(tmat);
Mat3MulVecfl(tmat, normal);
Normalize(normal);
VECCOPY(plane, tmat[1]);
VECCOPY(tmat[2], normal);
Crossf(tmat[0], normal, plane);
Crossf(tmat[1], tmat[2], tmat[0]);
Mat4CpyMat3(mat, tmat);
Mat4Ortho(mat);
/* apply the average coordinate as the new location */
VecMat4MulVecfl(tvec, ob->obmat, vec);
VECCOPY(mat[3], tvec);
}
}
/* free temporary DerivedMesh created (in EditMode case) */
if (G.editMesh) {
if (dm) dm->release(dm);
}
}
/* function that sets the given matrix based on given vertex group in lattice */
static void contarget_get_lattice_mat (Object *ob, char *substring, float mat[][4])
{
Lattice *lt= (Lattice *)ob->data;
DispList *dl = find_displist(&ob->disp, DL_VERTS);
float *co = dl?dl->verts:NULL;
BPoint *bp = lt->def;
MDeformVert *dvert = lt->dvert;
int tot_verts= lt->pntsu*lt->pntsv*lt->pntsw;
float vec[3]= {0.0f, 0.0f, 0.0f}, tvec[3];
int dgroup=0, grouped=0;
int i, n;
/* initialize target matrix using target matrix */
Mat4CpyMat4(mat, ob->obmat);
/* get index of vertex group */
dgroup = get_named_vertexgroup_num(ob, substring);
if (dgroup < 0) return;
if (dvert == NULL) return;
/* 1. Loop through control-points checking if in nominated vertex-group.
* 2. If it is, add it to vec to find the average point.
*/
for (i=0; i < tot_verts; i++, dvert++) {
for (n= 0; n < dvert->totweight; n++) {
/* found match - vert is in vgroup */
if (dvert->dw[n].def_nr == dgroup) {
/* copy coordinates of point to temporary vector, then add to find average */
if (co)
memcpy(tvec, co, 3*sizeof(float));
else
memcpy(tvec, bp->vec, 3*sizeof(float));
VecAddf(vec, vec, tvec);
grouped++;
break;
}
}
/* advance pointer to coordinate data */
if (co) co+= 3;
else bp++;
}
/* find average location, then multiply by ob->obmat to find world-space location */
if (grouped)
VecMulf(vec, 1.0f / grouped);
VecMat4MulVecfl(tvec, ob->obmat, vec);
/* copy new location to matrix */
VECCOPY(mat[3], tvec);
}
/* generic function to get the appropriate matrix for most target cases */
/* The cases where the target can be object data have not been implemented */
static void constraint_target_to_mat4 (Object *ob, char *substring, float mat[][4], short from, short to, float headtail)
{
/* Case OBJECT */
if (!strlen(substring)) {
Mat4CpyMat4(mat, ob->obmat);
constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case VERTEXGROUP */
/* Current method just takes the average location of all the points in the
* VertexGroup, and uses that as the location value of the targets. Where
* possible, the orientation will also be calculated, by calculating an
* 'average' vertex normal, and deriving the rotaation from that.
*
* NOTE: EditMode is not currently supported, and will most likely remain that
* way as constraints can only really affect things on object/bone level.
*/
else if (ob->type == OB_MESH) {
contarget_get_mesh_mat(ob, substring, mat);
constraint_mat_convertspace(ob, NULL, mat, from, to);
}
else if (ob->type == OB_LATTICE) {
contarget_get_lattice_mat(ob, substring, mat);
constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case BONE */
else {
bPoseChannel *pchan;
pchan = get_pose_channel(ob->pose, substring);
if (pchan) {
/* Multiply the PoseSpace accumulation/final matrix for this
* PoseChannel by the Armature Object's Matrix to get a worldspace
* matrix.
*/
if (headtail < 0.000001) {
/* skip length interpolation if set to head */
Mat4MulMat4(mat, pchan->pose_mat, ob->obmat);
}
else {
float tempmat[4][4], loc[3];
/* interpolate along length of bone */
VecLerpf(loc, pchan->pose_head, pchan->pose_tail, headtail);
/* use interpolated distance for subtarget */
Mat4CpyMat4(tempmat, pchan->pose_mat);
VecCopyf(tempmat[3], loc);
Mat4MulMat4(mat, tempmat, ob->obmat);
}
}
else
Mat4CpyMat4(mat, ob->obmat);
/* convert matrix space as required */
constraint_mat_convertspace(ob, pchan, mat, from, to);
}
}
/* ************************* Specific Constraints ***************************** */
/* Each constraint defines a set of functions, which will be called at the appropriate
* times. In addition to this, each constraint should have a type-info struct, where
* its functions are attached for use.
*/
/* Template for type-info data:
* - make a copy of this when creating new constraints, and just change the functions
* pointed to as necessary
* - although the naming of functions doesn't matter, it would help for code
* readability, to follow the same naming convention as is presented here
* - any functions that a constraint doesn't need to define, don't define
* for such cases, just use NULL
* - these should be defined after all the functions have been defined, so that
* forward-definitions/prototypes don't need to be used!
* - keep this copy #if-def'd so that future constraints can get based off this
*/
#if 0
static bConstraintTypeInfo CTI_CONSTRNAME = {
CONSTRAINT_TYPE_CONSTRNAME, /* type */
sizeof(bConstrNameConstraint), /* size */
"ConstrName", /* name */
"bConstrNameConstraint", /* struct name */
constrname_free, /* free data */
constrname_relink, /* relink data */
constrname_copy, /* copy data */
constrname_new_data, /* new data */
constrname_get_tars, /* get constraint targets */
constrname_flush_tars, /* flush constraint targets */
constrname_get_tarmat, /* get target matrix */
constrname_evaluate /* evaluate */
};
#endif
/* This function should be used for the get_target_matrix member of all
* constraints that are not picky about what happens to their target matrix.
*/
static void default_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
if (VALID_CONS_TARGET(ct))
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
else if (ct)
Mat4One(ct->matrix);
}
/* This following macro should be used for all standard single-target *_get_tars functions
* to save typing and reduce maintainance woes.
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
{ \
ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
\
ct->tar= datatar; \
strcpy(ct->subtarget, datasubtarget); \
ct->space= con->tarspace; \
ct->flag= CONSTRAINT_TAR_TEMP; \
\
if (ct->tar) { \
if ((ct->tar->type==OB_ARMATURE) && (ct->subtarget[0])) ct->type = CONSTRAINT_OBTYPE_BONE; \
else if (ELEM(ct->tar->type, OB_MESH, OB_LATTICE) && (ct->subtarget[0])) ct->type = CONSTRAINT_OBTYPE_VERT; \
else ct->type = CONSTRAINT_OBTYPE_OBJECT; \
} \
\
BLI_addtail(list, ct); \
}
/* This following macro should be used for all standard single-target *_get_tars functions
* to save typing and reduce maintainance woes. It does not do the subtarget related operations
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
{ \
ct= MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
\
ct->tar= datatar; \
ct->space= con->tarspace; \
ct->flag= CONSTRAINT_TAR_TEMP; \
\
if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
\
BLI_addtail(list, ct); \
}
/* This following macro should be used for all standard single-target *_flush_tars functions
* to save typing and reduce maintainance woes.
* Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, nocopy) \
{ \
if (ct) { \
bConstraintTarget *ctn = ct->next; \
if (nocopy == 0) { \
datatar= ct->tar; \
strcpy(datasubtarget, ct->subtarget); \
con->tarspace= ct->space; \
} \
\
BLI_freelinkN(list, ct); \
ct= ctn; \
} \
}
/* This following macro should be used for all standard single-target *_flush_tars functions
* to save typing and reduce maintainance woes. It does not do the subtarget related operations.
* Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, nocopy) \
{ \
if (ct) { \
bConstraintTarget *ctn = ct->next; \
if (nocopy == 0) { \
datatar= ct->tar; \
con->tarspace= ct->space; \
} \
\
BLI_freelinkN(list, ct); \
ct= ctn; \
} \
}
/* --------- ChildOf Constraint ------------ */
static void childof_new_data (void *cdata)
{
bChildOfConstraint *data= (bChildOfConstraint *)cdata;
data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
Mat4One(data->invmat);
}
static void childof_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bChildOfConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void childof_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bChildOfConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void childof_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bChildOfConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float parmat[4][4], invmat[4][4], tempmat[4][4];
float loc[3], eul[3], size[3];
float loco[3], eulo[3], sizo[3];
/* get offset (parent-inverse) matrix */
Mat4CpyMat4(invmat, data->invmat);
/* extract components of both matrices */
VECCOPY(loc, ct->matrix[3]);
Mat4ToEul(ct->matrix, eul);
Mat4ToSize(ct->matrix, size);
VECCOPY(loco, invmat[3]);
Mat4ToEul(invmat, eulo);
Mat4ToSize(invmat, sizo);
/* disable channels not enabled */
if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
/* make new target mat and offset mat */
LocEulSizeToMat4(ct->matrix, loc, eul, size);
LocEulSizeToMat4(invmat, loco, eulo, sizo);
/* multiply target (parent matrix) by offset (parent inverse) to get
* the effect of the parent that will be exherted on the owner
*/
Mat4MulMat4(parmat, invmat, ct->matrix);
/* now multiply the parent matrix by the owner matrix to get the
* the effect of this constraint (i.e. owner is 'parented' to parent)
*/
Mat4CpyMat4(tempmat, cob->matrix);
Mat4MulMat4(cob->matrix, tempmat, parmat);
}
}
static bConstraintTypeInfo CTI_CHILDOF = {
CONSTRAINT_TYPE_CHILDOF, /* type */
sizeof(bChildOfConstraint), /* size */
"ChildOf", /* name */
"bChildOfConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
childof_new_data, /* new data */
childof_get_tars, /* get constraint targets */
childof_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get a target matrix */
childof_evaluate /* evaluate */
};
/* -------- TrackTo Constraint ------- */
static void trackto_new_data (void *cdata)
{
bTrackToConstraint *data= (bTrackToConstraint *)cdata;
data->reserved1 = TRACK_Y;
data->reserved2 = UP_Z;
}
static void trackto_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bTrackToConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void trackto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bTrackToConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static int basis_cross (int n, int m)
{
switch (n-m) {
case 1:
case -2:
return 1;
case -1:
case 2:
return -1;
default:
return 0;
}
}
static void vectomat (float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
{
float n[3];
float u[3]; /* vector specifying the up axis */
float proj[3];
float right[3];
float neg = -1;
int right_index;
VecCopyf(n, vec);
if (Normalize(n) == 0.0) {
n[0] = 0.0;
n[1] = 0.0;
n[2] = 1.0;
}
if (axis > 2) axis -= 3;
else VecMulf(n,-1);
/* n specifies the transformation of the track axis */
if (flags & TARGET_Z_UP) {
/* target Z axis is the global up axis */
u[0] = target_up[0];
u[1] = target_up[1];
u[2] = target_up[2];
}
else {
/* world Z axis is the global up axis */
u[0] = 0;
u[1] = 0;
u[2] = 1;
}
/* project the up vector onto the plane specified by n */
Projf(proj, u, n); /* first u onto n... */
VecSubf(proj, u, proj); /* then onto the plane */
/* proj specifies the transformation of the up axis */
if (Normalize(proj) == 0.0) { /* degenerate projection */
proj[0] = 0.0;
proj[1] = 1.0;
proj[2] = 0.0;
}
/* Normalized cross product of n and proj specifies transformation of the right axis */
Crossf(right, proj, n);
Normalize(right);
if (axis != upflag) {
right_index = 3 - axis - upflag;
neg = (float)basis_cross(axis, upflag);
/* account for up direction, track direction */
m[right_index][0] = neg * right[0];
m[right_index][1] = neg * right[1];
m[right_index][2] = neg * right[2];
m[upflag][0] = proj[0];
m[upflag][1] = proj[1];
m[upflag][2] = proj[2];
m[axis][0] = n[0];
m[axis][1] = n[1];
m[axis][2] = n[2];
}
/* identity matrix - don't do anything if the two axes are the same */
else {
m[0][0]= m[1][1]= m[2][2]= 1.0;
m[0][1]= m[0][2]= m[0][3]= 0.0;
m[1][0]= m[1][2]= m[1][3]= 0.0;
m[2][0]= m[2][1]= m[2][3]= 0.0;
}
}
static void trackto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bTrackToConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float size[3], vec[3];
float totmat[3][3];
float tmat[4][4];
/* Get size property, since ob->size is only the object's own relative size, not its global one */
Mat4ToSize(cob->matrix, size);
/* Clear the object's rotation */
cob->matrix[0][0]=size[0];
cob->matrix[0][1]=0;
cob->matrix[0][2]=0;
cob->matrix[1][0]=0;
cob->matrix[1][1]=size[1];
cob->matrix[1][2]=0;
cob->matrix[2][0]=0;
cob->matrix[2][1]=0;
cob->matrix[2][2]=size[2];
/* targetmat[2] instead of ownermat[2] is passed to vectomat
* for backwards compatability it seems... (Aligorith)
*/
VecSubf(vec, cob->matrix[3], ct->matrix[3]);
vectomat(vec, ct->matrix[2],
(short)data->reserved1, (short)data->reserved2,
data->flags, totmat);
Mat4CpyMat4(tmat, cob->matrix);
Mat4MulMat34(cob->matrix, totmat, tmat);
}
}
static bConstraintTypeInfo CTI_TRACKTO = {
CONSTRAINT_TYPE_TRACKTO, /* type */
sizeof(bTrackToConstraint), /* size */
"TrackTo", /* name */
"bTrackToConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
trackto_new_data, /* new data */
trackto_get_tars, /* get constraint targets */
trackto_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
trackto_evaluate /* evaluate */
};
/* --------- Inverse-Kinemetics --------- */
static void kinematic_new_data (void *cdata)
{
bKinematicConstraint *data= (bKinematicConstraint *)cdata;
data->weight= (float)1.0;
data->orientweight= (float)1.0;
data->iterations = 500;
data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
}
static void kinematic_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bKinematicConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list)
}
}
static void kinematic_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bKinematicConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, nocopy)
}
}
static void kinematic_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
bKinematicConstraint *data= con->data;
if (VALID_CONS_TARGET(ct))
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
else if (ct) {
if (data->flag & CONSTRAINT_IK_AUTO) {
Object *ob= cob->ob;
if (ob == NULL) {
Mat4One(ct->matrix);
}
else {
float vec[3];
/* move grabtarget into world space */
VECCOPY(vec, data->grabtarget);
Mat4MulVecfl(ob->obmat, vec);
Mat4CpyMat4(ct->matrix, ob->obmat);
VECCOPY(ct->matrix[3], vec);
}
}
else
Mat4One(ct->matrix);
}
}
static bConstraintTypeInfo CTI_KINEMATIC = {
CONSTRAINT_TYPE_KINEMATIC, /* type */
sizeof(bKinematicConstraint), /* size */
"IK", /* name */
"bKinematicConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
kinematic_new_data, /* new data */
kinematic_get_tars, /* get constraint targets */
kinematic_flush_tars, /* flush constraint targets */
kinematic_get_tarmat, /* get target matrix */
NULL /* evaluate - solved as separate loop */
};
/* -------- Follow-Path Constraint ---------- */
static void followpath_new_data (void *cdata)
{
bFollowPathConstraint *data= (bFollowPathConstraint *)cdata;
data->trackflag = TRACK_Y;
data->upflag = UP_Z;
data->offset = 0;
data->followflag = 0;
}
static void followpath_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bFollowPathConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
}
}
static void followpath_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bFollowPathConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
}
}
static void followpath_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
bFollowPathConstraint *data= con->data;
if (VALID_CONS_TARGET(ct)) {
Curve *cu= ct->tar->data;
float q[4], vec[4], dir[3], *quat, x1;
float totmat[4][4];
float curvetime;
Mat4One(totmat);
Mat4One(ct->matrix);
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
/* only happens on reload file, but violates depsgraph still... fix! */
if (cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(ct->tar, 0);
if (cu->path && cu->path->data) {
curvetime= bsystem_time(ct->tar, (float)ctime, 0.0) - data->offset;
if (calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
curvetime /= cu->pathlen;
CLAMP(curvetime, 0.0, 1.0);
}
if ( where_on_path(ct->tar, curvetime, vec, dir) ) {
if (data->followflag) {
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
Normalize(dir);
q[0]= (float)cos(0.5*vec[3]);
x1= (float)sin(0.5*vec[3]);
q[1]= -x1*dir[0];
q[2]= -x1*dir[1];
q[3]= -x1*dir[2];
QuatMul(quat, q, quat);
QuatToMat4(quat, totmat);
}
VECCOPY(totmat[3], vec);
Mat4MulSerie(ct->matrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
}
else if (ct)
Mat4One(ct->matrix);
}
static void followpath_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float obmat[4][4];
float size[3], obsize[3];
/* get Object local transform (loc/rot/size) to determine transformation from path */
//object_to_mat4(ob, obmat);
Mat4CpyMat4(obmat, cob->matrix); // FIXME!!!
/* get scaling of object before applying constraint */
Mat4ToSize(cob->matrix, size);
/* apply targetmat - containing location on path, and rotation */
Mat4MulSerie(cob->matrix, ct->matrix, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
/* un-apply scaling caused by path */
Mat4ToSize(cob->matrix, obsize);
if (obsize[0])
VecMulf(cob->matrix[0], size[0] / obsize[0]);
if (obsize[1])
VecMulf(cob->matrix[1], size[1] / obsize[1]);
if (obsize[2])
VecMulf(cob->matrix[2], size[2] / obsize[2]);
}
}
static bConstraintTypeInfo CTI_FOLLOWPATH = {
CONSTRAINT_TYPE_FOLLOWPATH, /* type */
sizeof(bFollowPathConstraint), /* size */
"Follow Path", /* name */
"bFollowPathConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
followpath_new_data, /* new data */
followpath_get_tars, /* get constraint targets */
followpath_flush_tars, /* flush constraint targets */
followpath_get_tarmat, /* get target matrix */
followpath_evaluate /* evaluate */
};
/* --------- Limit Location --------- */
static void loclimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bLocLimitConstraint *data = con->data;
if (data->flag & LIMIT_XMIN) {
if (cob->matrix[3][0] < data->xmin)
cob->matrix[3][0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (cob->matrix[3][0] > data->xmax)
cob->matrix[3][0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (cob->matrix[3][1] < data->ymin)
cob->matrix[3][1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (cob->matrix[3][1] > data->ymax)
cob->matrix[3][1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (cob->matrix[3][2] < data->zmin)
cob->matrix[3][2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (cob->matrix[3][2] > data->zmax)
cob->matrix[3][2] = data->zmax;
}
}
static bConstraintTypeInfo CTI_LOCLIMIT = {
CONSTRAINT_TYPE_LOCLIMIT, /* type */
sizeof(bLocLimitConstraint), /* size */
"Limit Location", /* name */
"bLocLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
loclimit_evaluate /* evaluate */
};
/* -------- Limit Rotation --------- */
static void rotlimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bRotLimitConstraint *data = con->data;
float loc[3];
float eul[3];
float size[3];
VECCOPY(loc, cob->matrix[3]);
Mat4ToSize(cob->matrix, size);
Mat4ToEul(cob->matrix, eul);
/* eulers: radians to degrees! */
eul[0] = (eul[0] / M_PI * 180);
eul[1] = (eul[1] / M_PI * 180);
eul[2] = (eul[2] / M_PI * 180);
/* limiting of euler values... */
if (data->flag & LIMIT_XROT) {
if (eul[0] < data->xmin)
eul[0] = data->xmin;
if (eul[0] > data->xmax)
eul[0] = data->xmax;
}
if (data->flag & LIMIT_YROT) {
if (eul[1] < data->ymin)
eul[1] = data->ymin;
if (eul[1] > data->ymax)
eul[1] = data->ymax;
}
if (data->flag & LIMIT_ZROT) {
if (eul[2] < data->zmin)
eul[2] = data->zmin;
if (eul[2] > data->zmax)
eul[2] = data->zmax;
}
/* eulers: degrees to radians ! */
eul[0] = (eul[0] / 180 * M_PI);
eul[1] = (eul[1] / 180 * M_PI);
eul[2] = (eul[2] / 180 * M_PI);
LocEulSizeToMat4(cob->matrix, loc, eul, size);
}
static bConstraintTypeInfo CTI_ROTLIMIT = {
CONSTRAINT_TYPE_ROTLIMIT, /* type */
sizeof(bRotLimitConstraint), /* size */
"Limit Rotation", /* name */
"bRotLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
rotlimit_evaluate /* evaluate */
};
/* --------- Limit Scaling --------- */
static void sizelimit_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bSizeLimitConstraint *data = con->data;
float obsize[3], size[3];
Mat4ToSize(cob->matrix, size);
Mat4ToSize(cob->matrix, obsize);
if (data->flag & LIMIT_XMIN) {
if (size[0] < data->xmin)
size[0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (size[0] > data->xmax)
size[0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (size[1] < data->ymin)
size[1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (size[1] > data->ymax)
size[1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (size[2] < data->zmin)
size[2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (size[2] > data->zmax)
size[2] = data->zmax;
}
if (obsize[0])
VecMulf(cob->matrix[0], size[0]/obsize[0]);
if (obsize[1])
VecMulf(cob->matrix[1], size[1]/obsize[1]);
if (obsize[2])
VecMulf(cob->matrix[2], size[2]/obsize[2]);
}
static bConstraintTypeInfo CTI_SIZELIMIT = {
CONSTRAINT_TYPE_SIZELIMIT, /* type */
sizeof(bSizeLimitConstraint), /* size */
"Limit Scaling", /* name */
"bSizeLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
sizelimit_evaluate /* evaluate */
};
/* ----------- Copy Location ------------- */
static void loclike_new_data (void *cdata)
{
bLocateLikeConstraint *data= (bLocateLikeConstraint *)cdata;
data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
}
static void loclike_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bLocateLikeConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void loclike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bLocateLikeConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void loclike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bLocateLikeConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float offset[3] = {0.0f, 0.0f, 0.0f};
if (data->flag & LOCLIKE_OFFSET)
VECCOPY(offset, cob->matrix[3]);
if (data->flag & LOCLIKE_X) {
cob->matrix[3][0] = ct->matrix[3][0];
if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
cob->matrix[3][0] += offset[0];
}
if (data->flag & LOCLIKE_Y) {
cob->matrix[3][1] = ct->matrix[3][1];
if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
cob->matrix[3][1] += offset[1];
}
if (data->flag & LOCLIKE_Z) {
cob->matrix[3][2] = ct->matrix[3][2];
if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
cob->matrix[3][2] += offset[2];
}
}
}
static bConstraintTypeInfo CTI_LOCLIKE = {
CONSTRAINT_TYPE_LOCLIKE, /* type */
sizeof(bLocateLikeConstraint), /* size */
"Copy Location", /* name */
"bLocateLikeConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
loclike_new_data, /* new data */
loclike_get_tars, /* get constraint targets */
loclike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
loclike_evaluate /* evaluate */
};
/* ----------- Copy Rotation ------------- */
static void rotlike_new_data (void *cdata)
{
bRotateLikeConstraint *data= (bRotateLikeConstraint *)cdata;
data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
}
static void rotlike_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bRotateLikeConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void rotlike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bRotateLikeConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void rotlike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bRotateLikeConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float loc[3];
float eul[3], obeul[3];
float size[3];
VECCOPY(loc, cob->matrix[3]);
Mat4ToSize(cob->matrix, size);
Mat4ToEul(ct->matrix, eul);
Mat4ToEul(cob->matrix, obeul);
if ((data->flag & ROTLIKE_X)==0)
eul[0] = obeul[0];
else {
if (data->flag & ROTLIKE_OFFSET)
euler_rot(eul, obeul[0], 'x');
if (data->flag & ROTLIKE_X_INVERT)
eul[0] *= -1;
}
if ((data->flag & ROTLIKE_Y)==0)
eul[1] = obeul[1];
else {
if (data->flag & ROTLIKE_OFFSET)
euler_rot(eul, obeul[1], 'y');
if (data->flag & ROTLIKE_Y_INVERT)
eul[1] *= -1;
}
if ((data->flag & ROTLIKE_Z)==0)
eul[2] = obeul[2];
else {
if (data->flag & ROTLIKE_OFFSET)
euler_rot(eul, obeul[2], 'z');
if (data->flag & ROTLIKE_Z_INVERT)
eul[2] *= -1;
}
compatible_eul(eul, obeul);
LocEulSizeToMat4(cob->matrix, loc, eul, size);
}
}
static bConstraintTypeInfo CTI_ROTLIKE = {
CONSTRAINT_TYPE_ROTLIKE, /* type */
sizeof(bRotateLikeConstraint), /* size */
"Copy Rotation", /* name */
"bRotateLikeConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
rotlike_new_data, /* new data */
rotlike_get_tars, /* get constraint targets */
rotlike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
rotlike_evaluate /* evaluate */
};
/* ---------- Copy Scaling ---------- */
static void sizelike_new_data (void *cdata)
{
bSizeLikeConstraint *data= (bSizeLikeConstraint *)cdata;
data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
}
static void sizelike_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bSizeLikeConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void sizelike_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bSizeLikeConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void sizelike_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bSizeLikeConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float obsize[3], size[3];
Mat4ToSize(ct->matrix, size);
Mat4ToSize(cob->matrix, obsize);
if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[0] += (obsize[0] - 1.0f);
VecMulf(cob->matrix[0], size[0] / obsize[0]);
}
else
VecMulf(cob->matrix[0], size[0] / obsize[0]);
}
if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[1] += (obsize[1] - 1.0f);
VecMulf(cob->matrix[1], size[1] / obsize[1]);
}
else
VecMulf(cob->matrix[1], size[1] / obsize[1]);
}
if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[2] += (obsize[2] - 1.0f);
VecMulf(cob->matrix[2], size[2] / obsize[2]);
}
else
VecMulf(cob->matrix[2], size[2] / obsize[2]);
}
}
}
static bConstraintTypeInfo CTI_SIZELIKE = {
CONSTRAINT_TYPE_SIZELIKE, /* type */
sizeof(bSizeLikeConstraint), /* size */
"Copy Scale", /* name */
"bSizeLikeConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
sizelike_new_data, /* new data */
sizelike_get_tars, /* get constraint targets */
sizelike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
sizelike_evaluate /* evaluate */
};
/* ----------- Python Constraint -------------- */
static void pycon_free (bConstraint *con)
{
bPythonConstraint *data= con->data;
/* id-properties */
IDP_FreeProperty(data->prop);
MEM_freeN(data->prop);
/* multiple targets */
BLI_freelistN(&data->targets);
}
static void pycon_relink (bConstraint *con)
{
bPythonConstraint *data= con->data;
ID_NEW(data->text);
}
static void pycon_copy (bConstraint *con, bConstraint *srccon)
{
bPythonConstraint *pycon = (bPythonConstraint *)con->data;
bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
pycon->prop = IDP_CopyProperty(opycon->prop);
BLI_duplicatelist(&pycon->targets, &opycon->targets);
}
static void pycon_new_data (void *cdata)
{
bPythonConstraint *data= (bPythonConstraint *)cdata;
/* everything should be set correctly by calloc, except for the prop->type constant.*/
data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
data->prop->type = IDP_GROUP;
}
static void pycon_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bPythonConstraint *data= con->data;
list->first = data->targets.first;
list->last = data->targets.last;
}
}
/* Whether this approach is maintained remains to be seen (aligorith) */
static void pycon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
bPythonConstraint *data= con->data;
if (VALID_CONS_TARGET(ct)) {
/* special exception for curves - depsgraph issues */
if (ct->tar->type == OB_CURVE) {
Curve *cu= ct->tar->data;
/* this check is to make sure curve objects get updated on file load correctly.*/
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
makeDispListCurveTypes(ct->tar, 0);
}
/* firstly calculate the matrix the normal way, then let the py-function override
* this matrix if it needs to do so
*/
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
BPY_pyconstraint_target(data, ct);
}
else if (ct)
Mat4One(ct->matrix);
}
static void pycon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bPythonConstraint *data= con->data;
/* currently removed, until I this can be re-implemented for multiple targets */
#if 0
/* Firstly, run the 'driver' function which has direct access to the objects involved
* Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
* but it also allows certain 'clever' rigging hacks to work.
*/
BPY_pyconstraint_driver(data, cob, targets);
#endif
/* Now, run the actual 'constraint' function, which should only access the matrices */
BPY_pyconstraint_eval(data, cob, targets);
}
static bConstraintTypeInfo CTI_PYTHON = {
CONSTRAINT_TYPE_PYTHON, /* type */
sizeof(bPythonConstraint), /* size */
"Script", /* name */
"bPythonConstraint", /* struct name */
pycon_free, /* free data */
pycon_relink, /* relink data */
pycon_copy, /* copy data */
pycon_new_data, /* new data */
pycon_get_tars, /* get constraint targets */
NULL, /* flush constraint targets */
pycon_get_tarmat, /* get target matrix */
pycon_evaluate /* evaluate */
};
/* -------- Action Constraint ----------- */
static void actcon_relink (bConstraint *con)
{
bActionConstraint *data= con->data;
ID_NEW(data->act);
}
static void actcon_new_data (void *cdata)
{
bActionConstraint *data= (bActionConstraint *)cdata;
/* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
data->type = 20;
}
static void actcon_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bActionConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void actcon_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bActionConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void actcon_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
extern void chan_calc_mat(bPoseChannel *chan);
bActionConstraint *data = con->data;
if (VALID_CONS_TARGET(ct)) {
float tempmat[4][4], vec[3];
float s, t;
short axis;
/* initialise return matrix */
Mat4One(ct->matrix);
/* get the transform matrix of the target */
constraint_target_to_mat4(ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
/* determine where in transform range target is */
/* data->type is mapped as follows for backwards compatability:
* 00,01,02 - rotation (it used to be like this)
* 10,11,12 - scaling
* 20,21,22 - location
*/
if (data->type < 10) {
/* extract rotation (is in whatever space target should be in) */
Mat4ToEul(tempmat, vec);
vec[0] *= (float)(180.0/M_PI);
vec[1] *= (float)(180.0/M_PI);
vec[2] *= (float)(180.0/M_PI);
axis= data->type;
}
else if (data->type < 20) {
/* extract scaling (is in whatever space target should be in) */
Mat4ToSize(tempmat, vec);
axis= data->type - 10;
}
else {
/* extract location */
VECCOPY(vec, tempmat[3]);
axis= data->type - 20;
}
/* Target defines the animation */
s = (vec[axis]-data->min) / (data->max-data->min);
CLAMP(s, 0, 1);
t = ( s * (data->end-data->start)) + data->start;
/* Get the appropriate information from the action */
if (cob->type == CONSTRAINT_OBTYPE_BONE) {
bPose *pose;
bPoseChannel *pchan, *tchan;
/* make a temporary pose and evaluate using that */
pose = MEM_callocN(sizeof(bPose), "pose");
pchan = cob->pchan;
tchan= verify_pose_channel(pose, pchan->name);
extract_pose_from_action(pose, data->act, t);
chan_calc_mat(tchan);
Mat4CpyMat4(ct->matrix, tchan->chan_mat);
/* Clean up */
free_pose_channels(pose);
MEM_freeN(pose);
}
else if (cob->type == CONSTRAINT_OBTYPE_OBJECT) {
/* evaluate using workob */
what_does_obaction(cob->ob, data->act, t);
object_to_mat4(&workob, ct->matrix);
}
else {
/* behaviour undefined... */
puts("Error: unknown owner type for Action Constraint");
}
}
}
static void actcon_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float temp[4][4];
/* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
* function has already taken care of everything else.
*/
Mat4CpyMat4(temp, cob->matrix);
Mat4MulMat4(cob->matrix, ct->matrix, temp);
}
}
static bConstraintTypeInfo CTI_ACTION = {
CONSTRAINT_TYPE_ACTION, /* type */
sizeof(bActionConstraint), /* size */
"Action", /* name */
"bActionConstraint", /* struct name */
NULL, /* free data */
actcon_relink, /* relink data */
NULL, /* copy data */
actcon_new_data, /* new data */
actcon_get_tars, /* get constraint targets */
actcon_flush_tars, /* flush constraint targets */
actcon_get_tarmat, /* get target matrix */
actcon_evaluate /* evaluate */
};
/* --------- Locked Track ---------- */
static void locktrack_new_data (void *cdata)
{
bLockTrackConstraint *data= (bLockTrackConstraint *)cdata;
data->trackflag = TRACK_Y;
data->lockflag = LOCK_Z;
}
static void locktrack_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bLockTrackConstraint *data= con->data;
bConstraintTarget *ct;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void locktrack_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bLockTrackConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void locktrack_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bLockTrackConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
if (VALID_CONS_TARGET(ct)) {
float vec[3],vec2[3];
float totmat[3][3];
float tmpmat[3][3];
float invmat[3][3];
float tmat[4][4];
float mdet;
/* Vector object -> target */
VecSubf(vec, ct->matrix[3], cob->matrix[3]);
switch (data->lockflag){
case LOCK_X: /* LOCK X */
{
switch (data->trackflag) {
case TRACK_Y: /* LOCK X TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[0]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
/* the x axis is fixed */
totmat[0][0] = cob->matrix[0][0];
totmat[0][1] = cob->matrix[0][1];
totmat[0][2] = cob->matrix[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK X TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[0]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
/* the x axis is fixed */
totmat[0][0] = cob->matrix[0][0];
totmat[0][1] = cob->matrix[0][1];
totmat[0][2] = cob->matrix[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK X TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[0]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
VecMulf(totmat[1],-1);
/* the x axis is fixed */
totmat[0][0] = cob->matrix[0][0];
totmat[0][1] = cob->matrix[0][1];
totmat[0][2] = cob->matrix[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK X TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[0]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
VecMulf(totmat[2],-1);
/* the x axis is fixed */
totmat[0][0] = cob->matrix[0][0];
totmat[0][1] = cob->matrix[0][1];
totmat[0][2] = cob->matrix[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Y: /* LOCK Y */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Y TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[1]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
/* the y axis is fixed */
totmat[1][0] = cob->matrix[1][0];
totmat[1][1] = cob->matrix[1][1];
totmat[1][2] = cob->matrix[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK Y TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[1]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
/* the y axis is fixed */
totmat[1][0] = cob->matrix[1][0];
totmat[1][1] = cob->matrix[1][1];
totmat[1][2] = cob->matrix[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Y TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[1]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
VecMulf(totmat[0],-1);
/* the y axis is fixed */
totmat[1][0] = cob->matrix[1][0];
totmat[1][1] = cob->matrix[1][1];
totmat[1][2] = cob->matrix[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK Y TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[1]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
VecMulf(totmat[2],-1);
/* the y axis is fixed */
totmat[1][0] = cob->matrix[1][0];
totmat[1][1] = cob->matrix[1][1];
totmat[1][2] = cob->matrix[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Z: /* LOCK Z */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Z TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[2]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
/* the z axis is fixed */
totmat[2][0] = cob->matrix[2][0];
totmat[2][1] = cob->matrix[2][1];
totmat[2][2] = cob->matrix[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_Y: /* LOCK Z TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[2]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
/* the z axis is fixed */
totmat[2][0] = cob->matrix[2][0];
totmat[2][1] = cob->matrix[2][1];
totmat[2][2] = cob->matrix[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Z TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[2]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
VecMulf(totmat[0],-1);
/* the z axis is fixed */
totmat[2][0] = cob->matrix[2][0];
totmat[2][1] = cob->matrix[2][1];
totmat[2][2] = cob->matrix[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK Z TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, cob->matrix[2]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
VecMulf(totmat[1],-1);
/* the z axis is fixed */
totmat[2][0] = cob->matrix[2][0];
totmat[2][1] = cob->matrix[2][1];
totmat[2][2] = cob->matrix[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
/* Block to keep matrix heading */
tmpmat[0][0] = cob->matrix[0][0];tmpmat[0][1] = cob->matrix[0][1];tmpmat[0][2] = cob->matrix[0][2];
tmpmat[1][0] = cob->matrix[1][0];tmpmat[1][1] = cob->matrix[1][1];tmpmat[1][2] = cob->matrix[1][2];
tmpmat[2][0] = cob->matrix[2][0];tmpmat[2][1] = cob->matrix[2][1];tmpmat[2][2] = cob->matrix[2][2];
Normalize(tmpmat[0]);
Normalize(tmpmat[1]);
Normalize(tmpmat[2]);
Mat3Inv(invmat, tmpmat);
Mat3MulMat3(tmpmat, totmat, invmat);
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
Mat4CpyMat4(tmat, cob->matrix);
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
totmat[1][0],totmat[1][1],totmat[1][2],
totmat[2][0],totmat[2][1],totmat[2][2]);
if (mdet==0) {
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
/* apply out transformaton to the object */
Mat4MulMat34(cob->matrix, totmat, tmat);
}
}
static bConstraintTypeInfo CTI_LOCKTRACK = {
CONSTRAINT_TYPE_LOCKTRACK, /* type */
sizeof(bLockTrackConstraint), /* size */
"Locked Track", /* name */
"bLockTrackConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
locktrack_new_data, /* new data */
locktrack_get_tars, /* get constraint targets */
locktrack_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
locktrack_evaluate /* evaluate */
};
/* ---------- Stretch To ------------ */
static void stretchto_new_data (void *cdata)
{
bStretchToConstraint *data= (bStretchToConstraint *)cdata;
data->volmode = 0;
data->plane = 0;
data->orglength = 0.0;
data->bulge = 1.0;
}
static void stretchto_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bStretchToConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void stretchto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bStretchToConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void stretchto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bStretchToConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
float totmat[3][3];
float tmat[4][4];
float dist;
/* store scaling before destroying obmat */
Mat4ToSize(cob->matrix, size);
/* store X orientation before destroying obmat */
xx[0] = cob->matrix[0][0];
xx[1] = cob->matrix[0][1];
xx[2] = cob->matrix[0][2];
Normalize(xx);
/* store Z orientation before destroying obmat */
zz[0] = cob->matrix[2][0];
zz[1] = cob->matrix[2][1];
zz[2] = cob->matrix[2][2];
Normalize(zz);
VecSubf(vec, cob->matrix[3], ct->matrix[3]);
vec[0] /= size[0];
vec[1] /= size[1];
vec[2] /= size[2];
dist = Normalize(vec);
//dist = VecLenf( ob->obmat[3], targetmat[3]);
/* data->orglength==0 occurs on first run, and after 'R' button is clicked */
if (data->orglength == 0)
data->orglength = dist;
if (data->bulge == 0)
data->bulge = 1.0;
scale[1] = dist/data->orglength;
switch (data->volmode) {
/* volume preserving scaling */
case VOLUME_XZ :
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
scale[2] = scale[0];
break;
case VOLUME_X:
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
scale[2] = 1.0;
break;
case VOLUME_Z:
scale[0] = 1.0;
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
break;
/* don't care for volume */
case NO_VOLUME:
scale[0] = 1.0;
scale[2] = 1.0;
break;
default: /* should not happen, but in case*/
return;
} /* switch (data->volmode) */
/* Clear the object's rotation and scale */
cob->matrix[0][0]=size[0]*scale[0];
cob->matrix[0][1]=0;
cob->matrix[0][2]=0;
cob->matrix[1][0]=0;
cob->matrix[1][1]=size[1]*scale[1];
cob->matrix[1][2]=0;
cob->matrix[2][0]=0;
cob->matrix[2][1]=0;
cob->matrix[2][2]=size[2]*scale[2];
VecSubf(vec, cob->matrix[3], ct->matrix[3]);
Normalize(vec);
/* new Y aligns object target connection*/
totmat[1][0] = -vec[0];
totmat[1][1] = -vec[1];
totmat[1][2] = -vec[2];
switch (data->plane) {
case PLANE_X:
/* build new Z vector */
/* othogonal to "new Y" "old X! plane */
Crossf(orth, vec, xx);
Normalize(orth);
/* new Z*/
totmat[2][0] = orth[0];
totmat[2][1] = orth[1];
totmat[2][2] = orth[2];
/* we decided to keep X plane*/
Crossf(xx, orth, vec);
Normalize(xx);
totmat[0][0] = xx[0];
totmat[0][1] = xx[1];
totmat[0][2] = xx[2];
break;
case PLANE_Z:
/* build new X vector */
/* othogonal to "new Y" "old Z! plane */
Crossf(orth, vec, zz);
Normalize(orth);
/* new X */
totmat[0][0] = -orth[0];
totmat[0][1] = -orth[1];
totmat[0][2] = -orth[2];
/* we decided to keep Z */
Crossf(zz, orth, vec);
Normalize(zz);
totmat[2][0] = zz[0];
totmat[2][1] = zz[1];
totmat[2][2] = zz[2];
break;
} /* switch (data->plane) */
Mat4CpyMat4(tmat, cob->matrix);
Mat4MulMat34(cob->matrix, totmat, tmat);
}
}
static bConstraintTypeInfo CTI_STRETCHTO = {
CONSTRAINT_TYPE_STRETCHTO, /* type */
sizeof(bStretchToConstraint), /* size */
"Stretch To", /* name */
"bStretchToConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
stretchto_new_data, /* new data */
stretchto_get_tars, /* get constraint targets */
stretchto_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
stretchto_evaluate /* evaluate */
};
/* ---------- Floor ------------ */
static void minmax_new_data (void *cdata)
{
bMinMaxConstraint *data= (bMinMaxConstraint *)cdata;
data->minmaxflag = TRACK_Z;
data->offset = 0.0f;
data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
data->flag = 0;
}
static void minmax_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bMinMaxConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void minmax_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bMinMaxConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void minmax_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bMinMaxConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
float val1, val2;
int index;
Mat4CpyMat4(obmat, cob->matrix);
Mat4CpyMat4(tarmat, ct->matrix);
if (data->flag & MINMAX_USEROT) {
/* take rotation of target into account by doing the transaction in target's localspace */
Mat4Invert(imat, tarmat);
Mat4MulMat4(tmat, obmat, imat);
Mat4CpyMat4(obmat, tmat);
Mat4One(tarmat);
}
switch (data->minmaxflag) {
case TRACK_Z:
val1 = tarmat[3][2];
val2 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_Y:
val1 = tarmat[3][1];
val2 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_X:
val1 = tarmat[3][0];
val2 = obmat[3][0]-data->offset;
index = 0;
break;
case TRACK_nZ:
val2 = tarmat[3][2];
val1 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_nY:
val2 = tarmat[3][1];
val1 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_nX:
val2 = tarmat[3][0];
val1 = obmat[3][0]-data->offset;
index = 0;
break;
default:
return;
}
if (val1 > val2) {
obmat[3][index] = tarmat[3][index] + data->offset;
if (data->flag & MINMAX_STICKY) {
if (data->flag & MINMAX_STUCK) {
VECCOPY(obmat[3], data->cache);
}
else {
VECCOPY(data->cache, obmat[3]);
data->flag |= MINMAX_STUCK;
}
}
if (data->flag & MINMAX_USEROT) {
/* get out of localspace */
Mat4MulMat4(tmat, obmat, ct->matrix);
Mat4CpyMat4(cob->matrix, tmat);
}
else {
VECCOPY(cob->matrix[3], obmat[3]);
}
}
else {
data->flag &= ~MINMAX_STUCK;
}
}
}
static bConstraintTypeInfo CTI_MINMAX = {
CONSTRAINT_TYPE_MINMAX, /* type */
sizeof(bMinMaxConstraint), /* size */
"Floor", /* name */
"bMinMaxConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
minmax_new_data, /* new data */
minmax_get_tars, /* get constraint targets */
minmax_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
minmax_evaluate /* evaluate */
};
/* ------- RigidBody Joint ---------- */
static void rbj_new_data (void *cdata)
{
bRigidBodyJointConstraint *data= (bRigidBodyJointConstraint *)cdata;
// removed code which set target of this constraint
data->type=1;
}
static void rbj_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bRigidBodyJointConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
}
}
static void rbj_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bRigidBodyJointConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
}
}
static bConstraintTypeInfo CTI_RIGIDBODYJOINT = {
CONSTRAINT_TYPE_RIGIDBODYJOINT, /* type */
sizeof(bRigidBodyJointConstraint), /* size */
"RigidBody Joint", /* name */
"bRigidBodyJointConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
rbj_new_data, /* new data */
rbj_get_tars, /* get constraint targets */
rbj_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
NULL /* evaluate - this is not solved here... is just an interface for game-engine */
};
/* -------- Clamp To ---------- */
static void clampto_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bClampToConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list)
}
}
static void clampto_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bClampToConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, nocopy)
}
}
static void clampto_get_tarmat (bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float ctime)
{
if (VALID_CONS_TARGET(ct)) {
Curve *cu= ct->tar->data;
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
/* only happens on reload file, but violates depsgraph still... fix! */
if (cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(ct->tar, 0);
}
/* technically, this isn't really needed for evaluation, but we don't know what else
* might end up calling this...
*/
if (ct)
Mat4One(ct->matrix);
}
static void clampto_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bClampToConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target and it is a curve */
if (VALID_CONS_TARGET(ct) && (ct->tar->type == OB_CURVE)) {
Curve *cu= data->tar->data;
float obmat[4][4], targetMatrix[4][4], ownLoc[3];
float curveMin[3], curveMax[3];
Mat4CpyMat4(obmat, cob->matrix);
Mat4One(targetMatrix);
VECCOPY(ownLoc, obmat[3]);
INIT_MINMAX(curveMin, curveMax)
minmax_object(ct->tar, curveMin, curveMax);
/* get targetmatrix */
if (cu->path && cu->path->data) {
float vec[4], dir[3], totmat[4][4];
float curvetime;
short clamp_axis;
/* find best position on curve */
/* 1. determine which axis to sample on? */
if (data->flag == CLAMPTO_AUTO) {
float size[3];
VecSubf(size, curveMax, curveMin);
/* find axis along which the bounding box has the greatest
* extent. Otherwise, default to the x-axis, as that is quite
* frequently used.
*/
if ((size[2]>size[0]) && (size[2]>size[1]))
clamp_axis= CLAMPTO_Z - 1;
else if ((size[1]>size[0]) && (size[1]>size[2]))
clamp_axis= CLAMPTO_Y - 1;
else
clamp_axis = CLAMPTO_X - 1;
}
else
clamp_axis= data->flag - 1;
/* 2. determine position relative to curve on a 0-1 scale based on bounding box */
if (data->flag2 & CLAMPTO_CYCLIC) {
/* cyclic, so offset within relative bounding box is used */
float len= (curveMax[clamp_axis] - curveMin[clamp_axis]);
float offset;
/* find bounding-box range where target is located */
if (ownLoc[clamp_axis] < curveMin[clamp_axis]) {
/* bounding-box range is before */
offset= curveMin[clamp_axis];
while (ownLoc[clamp_axis] < offset)
offset -= len;
/* now, we calculate as per normal, except using offset instead of curveMin[clamp_axis] */
curvetime = (ownLoc[clamp_axis] - offset) / (len);
}
else if (ownLoc[clamp_axis] > curveMax[clamp_axis]) {
/* bounding-box range is after */
offset= curveMax[clamp_axis];
while (ownLoc[clamp_axis] > offset) {
if ((offset + len) > ownLoc[clamp_axis])
break;
else
offset += len;
}
/* now, we calculate as per normal, except using offset instead of curveMax[clamp_axis] */
curvetime = (ownLoc[clamp_axis] - offset) / (len);
}
else {
/* as the location falls within bounds, just calculate */
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (len);
}
}
else {
/* no cyclic, so position is clamped to within the bounding box */
if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
curvetime = 0.0;
else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
curvetime = 1.0;
else
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
}
/* 3. position on curve */
if (where_on_path(ct->tar, curvetime, vec, dir) ) {
Mat4One(totmat);
VECCOPY(totmat[3], vec);
Mat4MulSerie(targetMatrix, ct->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
/* obtain final object position */
VECCOPY(cob->matrix[3], targetMatrix[3]);
}
}
static bConstraintTypeInfo CTI_CLAMPTO = {
CONSTRAINT_TYPE_CLAMPTO, /* type */
sizeof(bClampToConstraint), /* size */
"Clamp To", /* name */
"bClampToConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
NULL, /* new data */
clampto_get_tars, /* get constraint targets */
clampto_flush_tars, /* flush constraint targets */
clampto_get_tarmat, /* get target matrix */
clampto_evaluate /* evaluate */
};
/* ---------- Transform Constraint ----------- */
static void transform_new_data (void *cdata)
{
bTransformConstraint *data= (bTransformConstraint *)cdata;
data->map[0]= 0;
data->map[1]= 1;
data->map[2]= 2;
}
static void transform_get_tars (bConstraint *con, ListBase *list)
{
if (con && list) {
bTransformConstraint *data= con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list)
}
}
static void transform_flush_tars (bConstraint *con, ListBase *list, short nocopy)
{
if (con && list) {
bTransformConstraint *data= con->data;
bConstraintTarget *ct= list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, nocopy)
}
}
static void transform_evaluate (bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bTransformConstraint *data= con->data;
bConstraintTarget *ct= targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float loc[3], eul[3], size[3];
float dvec[3], sval[3];
short i;
/* obtain target effect */
switch (data->from) {
case 2: /* scale */
Mat4ToSize(ct->matrix, dvec);
break;
case 1: /* rotation */
Mat4ToEul(ct->matrix, dvec);
break;
default: /* location */
VecCopyf(dvec, ct->matrix[3]);
break;
}
/* extract components of owner's matrix */
VECCOPY(loc, cob->matrix[3]);
Mat4ToEul(cob->matrix, eul);
Mat4ToSize(cob->matrix, size);
/* determine where in range current transforms lie */
if (data->expo) {
for (i=0; i<3; i++) {
if (data->from_max[i] - data->from_min[i])
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i]= 0.0f;
}
}
else {
/* clamp transforms out of range */
for (i=0; i<3; i++) {
CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
if (data->from_max[i] - data->from_min[i])
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i]= 0.0f;
}
}
/* convert radian<->degree */
if (data->from==1 && data->to==0) {
/* from radians to degrees */
for (i=0; i<3; i++)
sval[i] = sval[i] / M_PI * 180;
}
else if (data->from==0 && data->to==1) {
/* from degrees to radians */
for (i=0; i<3; i++)
sval[i] = sval[i] / 180 * M_PI;
}
/* apply transforms */
switch (data->to) {
case 2: /* scaling */
for (i=0; i<3; i++)
size[i]= data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i]));
break;
case 1: /* rotation */
for (i=0; i<3; i++) {
float tmin, tmax;
/* convert destination min/max ranges from degrees to radians */
tmin= data->to_min[i] / M_PI * 180;
tmax= data->to_max[i] / M_PI * 180;
eul[i]= tmin + (sval[data->map[i]] * (tmax - tmin));
}
break;
default: /* location */
/* get new location */
for (i=0; i<3; i++)
loc[i]= (data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i])));
/* add original location back on (so that it can still be moved) */
VecAddf(loc, cob->matrix[3], loc);
break;
}
/* apply to matrix */
LocEulSizeToMat4(cob->matrix, loc, eul, size);
}
}
static bConstraintTypeInfo CTI_TRANSFORM = {
CONSTRAINT_TYPE_TRANSFORM, /* type */
sizeof(bTransformConstraint), /* size */
"Transform", /* name */
"bTransformConstraint", /* struct name */
NULL, /* free data */
NULL, /* relink data */
NULL, /* copy data */
transform_new_data, /* new data */
transform_get_tars, /* get constraint targets */
transform_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get a target matrix */
transform_evaluate /* evaluate */
};
/* ************************* Constraints Type-Info *************************** */
/* All of the constraints api functions use bConstraintTypeInfo structs to carry out
* and operations that involve constraint specifc code.
*/
/* These globals only ever get directly accessed in this file */
static bConstraintTypeInfo *constraintsTypeInfo[NUM_CONSTRAINT_TYPES+1];
static short CTI_INIT= 1; /* when non-zero, the list needs to be updated */
/* This function only gets called when CTI_INIT is non-zero */
static void constraints_init_typeinfo () {
constraintsTypeInfo[0]= NULL; /* 'Null' Constraint */
constraintsTypeInfo[1]= &CTI_CHILDOF; /* ChildOf Constraint */
constraintsTypeInfo[2]= &CTI_TRACKTO; /* TrackTo Constraint */
constraintsTypeInfo[3]= &CTI_KINEMATIC; /* IK Constraint */
constraintsTypeInfo[4]= &CTI_FOLLOWPATH; /* Follow-Path Constraint */
constraintsTypeInfo[5]= &CTI_ROTLIMIT; /* Limit Rotation Constraint */
constraintsTypeInfo[6]= &CTI_LOCLIMIT; /* Limit Location Constraint */
constraintsTypeInfo[7]= &CTI_SIZELIMIT; /* Limit Scaling Constraint */
constraintsTypeInfo[8]= &CTI_ROTLIKE; /* Copy Rotation Constraint */
constraintsTypeInfo[9]= &CTI_LOCLIKE; /* Copy Location Constraint */
constraintsTypeInfo[10]= &CTI_SIZELIKE; /* Copy Scaling Constraint */
constraintsTypeInfo[11]= &CTI_PYTHON; /* Python/Script Constraint */
constraintsTypeInfo[12]= &CTI_ACTION; /* Action Constraint */
constraintsTypeInfo[13]= &CTI_LOCKTRACK; /* Locked-Track Constraint */
constraintsTypeInfo[14]= NULL; /* 'Distance Limit' Constraint */
constraintsTypeInfo[15]= &CTI_STRETCHTO; /* StretchTo Constaint */
constraintsTypeInfo[16]= &CTI_MINMAX; /* Floor Constraint */
constraintsTypeInfo[17]= &CTI_RIGIDBODYJOINT; /* RigidBody Constraint */
constraintsTypeInfo[18]= &CTI_CLAMPTO; /* ClampTo Constraint */
constraintsTypeInfo[19]= &CTI_TRANSFORM; /* Transformation Constraint */
}
/* This function should be used for getting the appropriate type-info when only
* a constraint type is known
*/
bConstraintTypeInfo *get_constraint_typeinfo (int type)
{
/* initialise the type-info list? */
if (CTI_INIT) {
constraints_init_typeinfo();
CTI_INIT = 0;
}
/* only return for valid types */
if ( (type >= CONSTRAINT_TYPE_NULL) &&
(type <= NUM_CONSTRAINT_TYPES ) )
{
/* there shouldn't be any segfaults here... */
return constraintsTypeInfo[type];
}
else {
printf("No valid constraint type-info data available. Type = %i \n", type);
}
return NULL;
}
/* This function should always be used to get the appropriate type-info, as it
* has checks which prevent segfaults in some weird cases.
*/
bConstraintTypeInfo *constraint_get_typeinfo (bConstraint *con)
{
/* only return typeinfo for valid constraints */
if (con)
return get_constraint_typeinfo(con->type);
else
return NULL;
}
/* ************************* General Constraints API ************************** */
/* The functions here are called by various parts of Blender. Very few (should be none if possible)
* constraint-specific code should occur here.
*/
/* ---------- Data Management ------- */
/* Free data of a specific constraint if it has any info */
void free_constraint_data (bConstraint *con)
{
if (con->data) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
/* perform any special freeing constraint may have */
if (cti && cti->free_data)
cti->free_data(con);
/* free constraint data now */
MEM_freeN(con->data);
}
}
/* Free all constraints from a constraint-stack */
void free_constraints (ListBase *conlist)
{
bConstraint *con;
/* Free constraint data and also any extra data */
for (con= conlist->first; con; con= con->next) {
free_constraint_data(con);
}
/* Free the whole list */
BLI_freelistN(conlist);
}
/* Reassign links that constraints have to other data (called during file loading?) */
void relink_constraints (ListBase *conlist)
{
bConstraint *con;
bConstraintTarget *ct;
for (con= conlist->first; con; con= con->next) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
if (cti) {
/* relink any targets */
if (cti->get_constraint_targets) {
ListBase targets = {NULL, NULL};
cti->get_constraint_targets(con, &targets);
for (ct= targets.first; ct; ct= ct->next) {
ID_NEW(ct->tar);
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 0);
}
/* relink any other special data */
if (cti->relink_data)
cti->relink_data(con);
}
}
}
/* duplicate all of the constraints in a constraint stack */
void copy_constraints (ListBase *dst, ListBase *src)
{
bConstraint *con, *srccon;
dst->first= dst->last= NULL;
BLI_duplicatelist(dst, src);
for (con=dst->first, srccon=src->first; con; srccon=srccon->next, con=con->next) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
/* make a new copy of the constraint's data */
con->data = MEM_dupallocN(con->data);
/* only do specific constraints if required */
if (cti && cti->copy_data)
cti->copy_data(con, srccon);
}
}
/* -------- Target-Matrix Stuff ------- */
/* This function is a relic from the prior implementations of the constraints system, when all
* constraints either had one or no targets. It used to be called during the main constraint solving
* loop, but is now only used for the remaining cases for a few constraints.
*
* None of the actual calculations of the matricies should be done here! Also, this function is
* not to be used by any new constraints, particularly any that have multiple targets.
*/
void get_constraint_target_matrix (bConstraint *con, int n, short ownertype, void *ownerdata, float mat[][4], float ctime)
{
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
bConstraintOb *cob;
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
/* make 'constraint-ob' */
cob= MEM_callocN(sizeof(bConstraintOb), "tempConstraintOb");
cob->type= ownertype;
switch (ownertype) {
case CONSTRAINT_OBTYPE_OBJECT: /* it is usually this case */
{
cob->ob= (Object *)ownerdata;
cob->pchan= NULL;
if (cob->ob) {
Mat4CpyMat4(cob->matrix, cob->ob->obmat);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
else {
Mat4One(cob->matrix);
Mat4One(cob->startmat);
}
}
break;
case CONSTRAINT_OBTYPE_BONE: /* this may occur in some cases */
{
cob->ob= NULL; /* this might not work at all :/ */
cob->pchan= (bPoseChannel *)ownerdata;
if (cob->pchan) {
Mat4CpyMat4(cob->matrix, cob->pchan->pose_mat);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
else {
Mat4One(cob->matrix);
Mat4One(cob->startmat);
}
}
break;
}
/* get targets - we only need the first one though (and there should only be one) */
cti->get_constraint_targets(con, &targets);
/* only calculate the target matrix on the first target */
ct= (bConstraintTarget *)targets.first;
while(ct && n-- > 0)
ct= ct->next;
if (ct) {
if (cti->get_target_matrix)
cti->get_target_matrix(con, cob, ct, ctime);
Mat4CpyMat4(mat, ct->matrix);
}
/* free targets + 'constraint-ob' */
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 1);
MEM_freeN(cob);
}
else {
/* invalid constraint - perhaps... */
Mat4One(mat);
}
}
/* ---------- Evaluation ----------- */
/* This function is called whenever constraints need to be evaluated. Currently, all
* constraints that can be evaluated are everytime this gets run.
*
* constraints_make_evalob and constraints_clear_evalob should be called before and
* after running this function, to sort out cob
*/
void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
{
bConstraint *con;
float solution[4][4], delta[4][4];
float oldmat[4][4], imat[4][4];
float enf;
/* check that there is a valid constraint object to evaluate */
if (cob == NULL)
return;
/* loop over available constraints, solving and blending them */
for (con= conlist->first; con; con= con->next) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
/* these we can skip completely (invalid constraints...) */
if (cti == NULL) continue;
if (con->flag & CONSTRAINT_DISABLE) continue;
/* these constraints can't be evaluated anyway */
if (cti->evaluate_constraint == NULL) continue;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f) continue;
/* influence of constraint
* - value should have been set from IPO's/Constraint Channels already
*/
enf = con->enforce;
/* move owner matrix into right space */
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
Mat4CpyMat4(oldmat, cob->matrix);
/* prepare targets for constraint solving */
if (cti->get_constraint_targets) {
bConstraintTarget *ct;
/* get targets
* - constraints should use ct->matrix, not directly accessing values
* - ct->matrix members have not yet been calculated here!
*/
cti->get_constraint_targets(con, &targets);
/* set matrices
* - calculate if possible, otherwise just initialise as identity matrix
*/
if (cti->get_target_matrix) {
for (ct= targets.first; ct; ct= ct->next)
cti->get_target_matrix(con, cob, ct, ctime);
}
else {
for (ct= targets.first; ct; ct= ct->next)
Mat4One(ct->matrix);
}
}
/* Solve the constraint */
cti->evaluate_constraint(con, cob, &targets);
/* clear targets after use
* - this should free temp targets but no data should be copied back
* as constraints may have done some nasty things to it...
*/
if (cti->flush_constraint_targets) {
cti->flush_constraint_targets(con, &targets, 1);
}
/* Interpolate the enforcement, to blend result of constraint into final owner transform */
/* 1. Remove effects of original matrix from constraint solution ==> delta */
Mat4Invert(imat, oldmat);
Mat4CpyMat4(solution, cob->matrix);
Mat4MulMat4(delta, solution, imat);
/* 2. If constraint influence is not full strength, then interpolate
* identity_matrix --> delta_matrix to get the effect the constraint actually exerts
*/
if (enf < 1.0) {
float identity[4][4];
Mat4One(identity);
Mat4BlendMat4(delta, identity, delta, enf);
}
/* 3. Now multiply the delta by the matrix in use before the evaluation */
Mat4MulMat4(cob->matrix, delta, oldmat);
/* move owner back into worldspace for next constraint/other business */
if ((con->flag & CONSTRAINT_SPACEONCE) == 0)
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
}
}