356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2012 by Blender Foundation.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): Sergey Sharybin
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenlib/intern/math_interp.c
 | 
						|
 *  \ingroup bli
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 *                            INTERPOLATIONS
 | 
						|
 *
 | 
						|
 * Reference and docs:
 | 
						|
 * http://wiki.blender.org/index.php/User:Damiles#Interpolations_Algorithms
 | 
						|
 ***************************************************************************/
 | 
						|
 | 
						|
/* BICUBIC Interpolation functions
 | 
						|
 *  More info: http://wiki.blender.org/index.php/User:Damiles#Bicubic_pixel_interpolation
 | 
						|
 * function assumes out to be zero'ed, only does RGBA */
 | 
						|
 | 
						|
static float P(float k)
 | 
						|
{
 | 
						|
	float p1, p2, p3, p4;
 | 
						|
	p1 = max_ff(k + 2.0f, 0.0f);
 | 
						|
	p2 = max_ff(k + 1.0f, 0.0f);
 | 
						|
	p3 = max_ff(k, 0.0f);
 | 
						|
	p4 = max_ff(k - 1.0f, 0.0f);
 | 
						|
	return (float)(1.0f / 6.0f) * (p1 * p1 * p1 - 4.0f * p2 * p2 * p2 + 6.0f * p3 * p3 * p3 - 4.0f * p4 * p4 * p4);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
/* older, slower function, works the same as above */
 | 
						|
static float P(float k)
 | 
						|
{
 | 
						|
	return (float)(1.0f / 6.0f) * (pow(MAX2(k + 2.0f, 0), 3.0f) - 4.0f * pow(MAX2(k + 1.0f, 0), 3.0f) + 6.0f * pow(MAX2(k, 0), 3.0f) - 4.0f * pow(MAX2(k - 1.0f, 0), 3.0f));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void vector_from_float(const float *data, float vector[4], int components)
 | 
						|
{
 | 
						|
	if (components == 1) {
 | 
						|
		vector[0] = data[0];
 | 
						|
	}
 | 
						|
	else if (components == 3) {
 | 
						|
		copy_v3_v3(vector, data);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v4_v4(vector, data);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void vector_from_byte(const unsigned char *data, float vector[4], int components)
 | 
						|
{
 | 
						|
	if (components == 1) {
 | 
						|
		vector[0] = data[0];
 | 
						|
	}
 | 
						|
	else if (components == 3) {
 | 
						|
		vector[0] = data[0];
 | 
						|
		vector[1] = data[1];
 | 
						|
		vector[2] = data[2];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		vector[0] = data[0];
 | 
						|
		vector[1] = data[1];
 | 
						|
		vector[2] = data[2];
 | 
						|
		vector[3] = data[3];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* BICUBIC INTERPOLATION */
 | 
						|
BLI_INLINE void bicubic_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
 | 
						|
                                      unsigned char *byte_output, float *float_output, int width, int height,
 | 
						|
                                      int components, float u, float v)
 | 
						|
{
 | 
						|
	int i, j, n, m, x1, y1;
 | 
						|
	float a, b, w, wx, wy[4], out[4];
 | 
						|
 | 
						|
	/* sample area entirely outside image? */
 | 
						|
	if (ceil(u) < 0 || floor(u) > width - 1 || ceil(v) < 0 || floor(v) > height - 1) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	i = (int)floor(u);
 | 
						|
	j = (int)floor(v);
 | 
						|
	a = u - i;
 | 
						|
	b = v - j;
 | 
						|
 | 
						|
	zero_v4(out);
 | 
						|
 | 
						|
/* Optimized and not so easy to read */
 | 
						|
 | 
						|
	/* avoid calling multiple times */
 | 
						|
	wy[0] = P(b - (-1));
 | 
						|
	wy[1] = P(b -  0);
 | 
						|
	wy[2] = P(b -  1);
 | 
						|
	wy[3] = P(b -  2);
 | 
						|
 | 
						|
	for (n = -1; n <= 2; n++) {
 | 
						|
		x1 = i + n;
 | 
						|
		CLAMP(x1, 0, width - 1);
 | 
						|
		wx = P(n - a);
 | 
						|
		for (m = -1; m <= 2; m++) {
 | 
						|
			float data[4];
 | 
						|
 | 
						|
			y1 = j + m;
 | 
						|
			CLAMP(y1, 0, height - 1);
 | 
						|
			/* normally we could do this */
 | 
						|
			/* w = P(n-a) * P(b-m); */
 | 
						|
			/* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */
 | 
						|
			w = wx * wy[m + 1];
 | 
						|
 | 
						|
			if (float_output) {
 | 
						|
				const float *float_data = float_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
				vector_from_float(float_data, data, components);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
				vector_from_byte(byte_data, data, components);
 | 
						|
			}
 | 
						|
 | 
						|
			if (components == 1) {
 | 
						|
				out[0] += data[0] * w;
 | 
						|
			}
 | 
						|
			else if (components == 3) {
 | 
						|
				out[0] += data[0] * w;
 | 
						|
				out[1] += data[1] * w;
 | 
						|
				out[2] += data[2] * w;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				out[0] += data[0] * w;
 | 
						|
				out[1] += data[1] * w;
 | 
						|
				out[2] += data[2] * w;
 | 
						|
				out[3] += data[3] * w;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
/* Done with optimized part */
 | 
						|
 | 
						|
#if 0
 | 
						|
	/* older, slower function, works the same as above */
 | 
						|
	for (n = -1; n <= 2; n++) {
 | 
						|
		for (m = -1; m <= 2; m++) {
 | 
						|
			x1 = i + n;
 | 
						|
			y1 = j + m;
 | 
						|
			if (x1 > 0 && x1 < width && y1 > 0 && y1 < height) {
 | 
						|
				float data[4];
 | 
						|
 | 
						|
				if (float_output) {
 | 
						|
					const float *float_data = float_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
					vector_from_float(float_data, data, components);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
					vector_from_byte(byte_data, data, components);
 | 
						|
				}
 | 
						|
 | 
						|
				if (components == 1) {
 | 
						|
					out[0] += data[0] * P(n - a) * P(b - m);
 | 
						|
				}
 | 
						|
				else if (components == 3) {
 | 
						|
					out[0] += data[0] * P(n - a) * P(b - m);
 | 
						|
					out[1] += data[1] * P(n - a) * P(b - m);
 | 
						|
					out[2] += data[2] * P(n - a) * P(b - m);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					out[0] += data[0] * P(n - a) * P(b - m);
 | 
						|
					out[1] += data[1] * P(n - a) * P(b - m);
 | 
						|
					out[2] += data[2] * P(n - a) * P(b - m);
 | 
						|
					out[3] += data[3] * P(n - a) * P(b - m);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	if (float_output) {
 | 
						|
		if (components == 1) {
 | 
						|
			float_output[0] = out[0];
 | 
						|
		}
 | 
						|
		else if (components == 3) {
 | 
						|
			copy_v3_v3(float_output, out);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			copy_v4_v4(float_output, out);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (components == 1) {
 | 
						|
			byte_output[0] = out[0] + 0.5f;
 | 
						|
		}
 | 
						|
		else if (components == 3) {
 | 
						|
			byte_output[0] = out[0] + 0.5f;
 | 
						|
			byte_output[1] = out[1] + 0.5f;
 | 
						|
			byte_output[2] = out[2] + 0.5f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			byte_output[0] = out[0] + 0.5f;
 | 
						|
			byte_output[1] = out[1] + 0.5f;
 | 
						|
			byte_output[2] = out[2] + 0.5f;
 | 
						|
			byte_output[3] = out[3] + 0.5f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height,
 | 
						|
                                  int components, float u, float v)
 | 
						|
{
 | 
						|
	bicubic_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
 | 
						|
}
 | 
						|
 | 
						|
void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
 | 
						|
                                    int components, float u, float v)
 | 
						|
{
 | 
						|
	bicubic_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
 | 
						|
}
 | 
						|
 | 
						|
/* BILINEAR INTERPOLATION */
 | 
						|
BLI_INLINE void bilinear_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
 | 
						|
                                       unsigned char *byte_output, float *float_output, int width, int height,
 | 
						|
                                       int components, float u, float v)
 | 
						|
{
 | 
						|
	float a, b;
 | 
						|
	float a_b, ma_b, a_mb, ma_mb;
 | 
						|
	int y1, y2, x1, x2;
 | 
						|
 | 
						|
	/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
 | 
						|
 | 
						|
	x1 = (int)floor(u);
 | 
						|
	x2 = (int)ceil(u);
 | 
						|
	y1 = (int)floor(v);
 | 
						|
	y2 = (int)ceil(v);
 | 
						|
 | 
						|
	/* sample area entirely outside image? */
 | 
						|
	if (x2 < 0 || x1 > width - 1 || y2 < 0 || y1 > height - 1) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (float_output) {
 | 
						|
		const float *row1, *row2, *row3, *row4;
 | 
						|
		float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f};
 | 
						|
 | 
						|
		/* sample including outside of edges of image */
 | 
						|
		if (x1 < 0 || y1 < 0) row1 = empty;
 | 
						|
		else row1 = float_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
		if (x1 < 0 || y2 > height - 1) row2 = empty;
 | 
						|
		else row2 = float_buffer + width * y2 * components + components * x1;
 | 
						|
 | 
						|
		if (x2 > width - 1 || y1 < 0) row3 = empty;
 | 
						|
		else row3 = float_buffer + width * y1 * components + components * x2;
 | 
						|
 | 
						|
		if (x2 > width - 1 || y2 > height - 1) row4 = empty;
 | 
						|
		else row4 = float_buffer + width * y2 * components + components * x2;
 | 
						|
 | 
						|
		a = u - floorf(u);
 | 
						|
		b = v - floorf(v);
 | 
						|
		a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
 | 
						|
 | 
						|
		if (components == 1) {
 | 
						|
			float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
 | 
						|
		}
 | 
						|
		else if (components == 3) {
 | 
						|
			float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
 | 
						|
			float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
 | 
						|
			float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
 | 
						|
			float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
 | 
						|
			float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
 | 
						|
			float_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		const unsigned char *row1, *row2, *row3, *row4;
 | 
						|
		unsigned char empty[4] = {0, 0, 0, 0};
 | 
						|
 | 
						|
		/* sample including outside of edges of image */
 | 
						|
		if (x1 < 0 || y1 < 0) row1 = empty;
 | 
						|
		else row1 = byte_buffer + width * y1 * components + components * x1;
 | 
						|
 | 
						|
		if (x1 < 0 || y2 > height - 1) row2 = empty;
 | 
						|
		else row2 = byte_buffer + width * y2 * components + components * x1;
 | 
						|
 | 
						|
		if (x2 > width - 1 || y1 < 0) row3 = empty;
 | 
						|
		else row3 = byte_buffer + width * y1 * components + components * x2;
 | 
						|
 | 
						|
		if (x2 > width - 1 || y2 > height - 1) row4 = empty;
 | 
						|
		else row4 = byte_buffer + width * y2 * components + components * x2;
 | 
						|
 | 
						|
		a = u - floorf(u);
 | 
						|
		b = v - floorf(v);
 | 
						|
		a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
 | 
						|
 | 
						|
		if (components == 1) {
 | 
						|
			byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
 | 
						|
		}
 | 
						|
		else if (components == 3) {
 | 
						|
			byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
 | 
						|
			byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f;
 | 
						|
			byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
 | 
						|
			byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f;
 | 
						|
			byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f;
 | 
						|
			byte_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3] + 0.5f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height,
 | 
						|
                                   int components, float u, float v)
 | 
						|
{
 | 
						|
	bilinear_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
 | 
						|
}
 | 
						|
 | 
						|
void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
 | 
						|
                                     int components, float u, float v)
 | 
						|
{
 | 
						|
	bilinear_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
 | 
						|
}
 |