1349 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1349 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 */
 | 
						|
 | 
						|
/** \file
 | 
						|
 * \ingroup mathutils
 | 
						|
 *
 | 
						|
 * This file defines the 'mathutils.bvhtree' module, a general purpose module to access
 | 
						|
 * blenders bvhtree for mesh surface nearest-element search and ray casting.
 | 
						|
 */
 | 
						|
 | 
						|
#include <Python.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_kdopbvh.h"
 | 
						|
#include "BLI_polyfill_2d.h"
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_ghash.h"
 | 
						|
#include "BLI_memarena.h"
 | 
						|
 | 
						|
#include "BKE_bvhutils.h"
 | 
						|
 | 
						|
#include "../generic/py_capi_utils.h"
 | 
						|
#include "../generic/python_utildefines.h"
 | 
						|
 | 
						|
#include "mathutils.h"
 | 
						|
#include "mathutils_bvhtree.h" /* own include */
 | 
						|
 | 
						|
#ifndef MATH_STANDALONE
 | 
						|
#  include "DNA_object_types.h"
 | 
						|
#  include "DNA_mesh_types.h"
 | 
						|
#  include "DNA_meshdata_types.h"
 | 
						|
 | 
						|
#  include "BKE_customdata.h"
 | 
						|
#  include "BKE_editmesh_bvh.h"
 | 
						|
#  include "BKE_library.h"
 | 
						|
#  include "BKE_mesh.h"
 | 
						|
#  include "BKE_mesh_runtime.h"
 | 
						|
 | 
						|
#  include "DEG_depsgraph_query.h"
 | 
						|
 | 
						|
#  include "bmesh.h"
 | 
						|
 | 
						|
#  include "../bmesh/bmesh_py_types.h"
 | 
						|
#endif /* MATH_STANDALONE */
 | 
						|
 | 
						|
#include "BLI_strict_flags.h"
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Documentation String (snippets)
 | 
						|
 * \{ */
 | 
						|
 | 
						|
#define PYBVH_FIND_GENERIC_DISTANCE_DOC \
 | 
						|
  "   :arg distance: Maximum distance threshold.\n" \
 | 
						|
  "   :type distance: float\n"
 | 
						|
 | 
						|
#define PYBVH_FIND_GENERIC_RETURN_DOC \
 | 
						|
  "   :return: Returns a tuple\n" \
 | 
						|
  "      (:class:`Vector` location, :class:`Vector` normal, int index, float distance),\n" \
 | 
						|
  "      Values will all be None if no hit is found.\n" \
 | 
						|
  "   :rtype: :class:`tuple`\n"
 | 
						|
 | 
						|
#define PYBVH_FIND_GENERIC_RETURN_LIST_DOC \
 | 
						|
  "   :return: Returns a list of tuples\n" \
 | 
						|
  "      (:class:`Vector` location, :class:`Vector` normal, int index, float distance),\n" \
 | 
						|
  "   :rtype: :class:`list`\n"
 | 
						|
 | 
						|
#define PYBVH_FROM_GENERIC_EPSILON_DOC \
 | 
						|
  "   :arg epsilon: Increase the threshold for detecting overlap and raycast hits.\n" \
 | 
						|
  "   :type epsilon: float\n"
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* sqrt(FLT_MAX) */
 | 
						|
#define PYBVH_MAX_DIST_STR "1.84467e+19"
 | 
						|
static const float max_dist_default = 1.844674352395373e+19f;
 | 
						|
 | 
						|
static const char PY_BVH_TREE_TYPE_DEFAULT = 4;
 | 
						|
static const char PY_BVH_AXIS_DEFAULT = 6;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  PyObject_HEAD BVHTree *tree;
 | 
						|
  float epsilon;
 | 
						|
 | 
						|
  float (*coords)[3];
 | 
						|
  unsigned int (*tris)[3];
 | 
						|
  unsigned int coords_len, tris_len;
 | 
						|
 | 
						|
  /* Optional members */
 | 
						|
  /* aligned with 'tris' */
 | 
						|
  int *orig_index;
 | 
						|
  /* aligned with array that 'orig_index' points to */
 | 
						|
  float (*orig_normal)[3];
 | 
						|
} PyBVHTree;
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Utility helper functions
 | 
						|
 * \{ */
 | 
						|
 | 
						|
static PyObject *bvhtree_CreatePyObject(BVHTree *tree,
 | 
						|
                                        float epsilon,
 | 
						|
 | 
						|
                                        float (*coords)[3],
 | 
						|
                                        unsigned int coords_len,
 | 
						|
                                        unsigned int (*tris)[3],
 | 
						|
                                        unsigned int tris_len,
 | 
						|
 | 
						|
                                        /* optional arrays */
 | 
						|
                                        int *orig_index,
 | 
						|
                                        float (*orig_normal)[3])
 | 
						|
{
 | 
						|
  PyBVHTree *result = PyObject_New(PyBVHTree, &PyBVHTree_Type);
 | 
						|
 | 
						|
  result->tree = tree;
 | 
						|
  result->epsilon = epsilon;
 | 
						|
 | 
						|
  result->coords = coords;
 | 
						|
  result->tris = tris;
 | 
						|
  result->coords_len = coords_len;
 | 
						|
  result->tris_len = tris_len;
 | 
						|
 | 
						|
  result->orig_index = orig_index;
 | 
						|
  result->orig_normal = orig_normal;
 | 
						|
 | 
						|
  return (PyObject *)result;
 | 
						|
}
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name BVHTreeRayHit to Python utilities
 | 
						|
 * \{ */
 | 
						|
 | 
						|
static void py_bvhtree_raycast_to_py_tuple(const BVHTreeRayHit *hit, PyObject *py_retval)
 | 
						|
{
 | 
						|
  BLI_assert(hit->index >= 0);
 | 
						|
  BLI_assert(PyTuple_GET_SIZE(py_retval) == 4);
 | 
						|
 | 
						|
  PyTuple_SET_ITEMS(py_retval,
 | 
						|
                    Vector_CreatePyObject(hit->co, 3, NULL),
 | 
						|
                    Vector_CreatePyObject(hit->no, 3, NULL),
 | 
						|
                    PyLong_FromLong(hit->index),
 | 
						|
                    PyFloat_FromDouble(hit->dist));
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *py_bvhtree_raycast_to_py(const BVHTreeRayHit *hit)
 | 
						|
{
 | 
						|
  PyObject *py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  py_bvhtree_raycast_to_py_tuple(hit, py_retval);
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *py_bvhtree_raycast_to_py_none(void)
 | 
						|
{
 | 
						|
  PyObject *py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  PyC_Tuple_Fill(py_retval, Py_None);
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
static PyObject *py_bvhtree_raycast_to_py_and_check(const BVHTreeRayHit *hit)
 | 
						|
{
 | 
						|
  PyObject *py_retval;
 | 
						|
 | 
						|
  py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  if (hit->index != -1) {
 | 
						|
    py_bvhtree_raycast_to_py_tuple(hit, py_retval);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    PyC_Tuple_Fill(py_retval, Py_None);
 | 
						|
  }
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name BVHTreeNearest to Python utilities
 | 
						|
 * \{ */
 | 
						|
 | 
						|
static void py_bvhtree_nearest_to_py_tuple(const BVHTreeNearest *nearest, PyObject *py_retval)
 | 
						|
{
 | 
						|
  BLI_assert(nearest->index >= 0);
 | 
						|
  BLI_assert(PyTuple_GET_SIZE(py_retval) == 4);
 | 
						|
 | 
						|
  PyTuple_SET_ITEMS(py_retval,
 | 
						|
                    Vector_CreatePyObject(nearest->co, 3, NULL),
 | 
						|
                    Vector_CreatePyObject(nearest->no, 3, NULL),
 | 
						|
                    PyLong_FromLong(nearest->index),
 | 
						|
                    PyFloat_FromDouble(sqrtf(nearest->dist_sq)));
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *py_bvhtree_nearest_to_py(const BVHTreeNearest *nearest)
 | 
						|
{
 | 
						|
  PyObject *py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  py_bvhtree_nearest_to_py_tuple(nearest, py_retval);
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *py_bvhtree_nearest_to_py_none(void)
 | 
						|
{
 | 
						|
  PyObject *py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  PyC_Tuple_Fill(py_retval, Py_None);
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
static PyObject *py_bvhtree_nearest_to_py_and_check(const BVHTreeNearest *nearest)
 | 
						|
{
 | 
						|
  PyObject *py_retval;
 | 
						|
 | 
						|
  py_retval = PyTuple_New(4);
 | 
						|
 | 
						|
  if (nearest->index != -1) {
 | 
						|
    py_bvhtree_nearest_to_py_tuple(nearest, py_retval);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    PyC_Tuple_Fill(py_retval, Py_None);
 | 
						|
  }
 | 
						|
 | 
						|
  return py_retval;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
static void py_bvhtree__tp_dealloc(PyBVHTree *self)
 | 
						|
{
 | 
						|
  if (self->tree) {
 | 
						|
    BLI_bvhtree_free(self->tree);
 | 
						|
  }
 | 
						|
 | 
						|
  MEM_SAFE_FREE(self->coords);
 | 
						|
  MEM_SAFE_FREE(self->tris);
 | 
						|
 | 
						|
  MEM_SAFE_FREE(self->orig_index);
 | 
						|
  MEM_SAFE_FREE(self->orig_normal);
 | 
						|
 | 
						|
  Py_TYPE(self)->tp_free((PyObject *)self);
 | 
						|
}
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Methods
 | 
						|
 * \{ */
 | 
						|
 | 
						|
static void py_bvhtree_raycast_cb(void *userdata,
 | 
						|
                                  int index,
 | 
						|
                                  const BVHTreeRay *ray,
 | 
						|
                                  BVHTreeRayHit *hit)
 | 
						|
{
 | 
						|
  const PyBVHTree *self = userdata;
 | 
						|
 | 
						|
  const float(*coords)[3] = (const float(*)[3])self->coords;
 | 
						|
  const unsigned int *tri = self->tris[index];
 | 
						|
  const float *tri_co[3] = {coords[tri[0]], coords[tri[1]], coords[tri[2]]};
 | 
						|
  float dist;
 | 
						|
 | 
						|
  if (self->epsilon == 0.0f) {
 | 
						|
    dist = bvhtree_ray_tri_intersection(ray, hit->dist, UNPACK3(tri_co));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    dist = bvhtree_sphereray_tri_intersection(ray, self->epsilon, hit->dist, UNPACK3(tri_co));
 | 
						|
  }
 | 
						|
 | 
						|
  if (dist >= 0 && dist < hit->dist) {
 | 
						|
    hit->index = self->orig_index ? self->orig_index[index] : index;
 | 
						|
    hit->dist = dist;
 | 
						|
    madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
 | 
						|
    if (self->orig_normal) {
 | 
						|
      copy_v3_v3(hit->no, self->orig_normal[hit->index]);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      normal_tri_v3(hit->no, UNPACK3(tri_co));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void py_bvhtree_nearest_point_cb(void *userdata,
 | 
						|
                                        int index,
 | 
						|
                                        const float co[3],
 | 
						|
                                        BVHTreeNearest *nearest)
 | 
						|
{
 | 
						|
  PyBVHTree *self = userdata;
 | 
						|
 | 
						|
  const float(*coords)[3] = (const float(*)[3])self->coords;
 | 
						|
  const unsigned int *tri = self->tris[index];
 | 
						|
  const float *tri_co[3] = {coords[tri[0]], coords[tri[1]], coords[tri[2]]};
 | 
						|
  float nearest_tmp[3], dist_sq;
 | 
						|
 | 
						|
  closest_on_tri_to_point_v3(nearest_tmp, co, UNPACK3(tri_co));
 | 
						|
  dist_sq = len_squared_v3v3(co, nearest_tmp);
 | 
						|
 | 
						|
  if (dist_sq < nearest->dist_sq) {
 | 
						|
    nearest->index = self->orig_index ? self->orig_index[index] : index;
 | 
						|
    nearest->dist_sq = dist_sq;
 | 
						|
    copy_v3_v3(nearest->co, nearest_tmp);
 | 
						|
    if (self->orig_normal) {
 | 
						|
      copy_v3_v3(nearest->no, self->orig_normal[nearest->index]);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      normal_tri_v3(nearest->no, UNPACK3(tri_co));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(py_bvhtree_ray_cast_doc,
 | 
						|
             ".. method:: ray_cast(origin, direction, distance=sys.float_info.max)\n"
 | 
						|
             "\n"
 | 
						|
             "   Cast a ray onto the mesh.\n"
 | 
						|
             "\n"
 | 
						|
             "   :arg co: Start location of the ray in object space.\n"
 | 
						|
             "   :type co: :class:`Vector`\n"
 | 
						|
             "   :arg direction: Direction of the ray in object space.\n"
 | 
						|
             "   :type direction: :class:`Vector`\n" PYBVH_FIND_GENERIC_DISTANCE_DOC
 | 
						|
                 PYBVH_FIND_GENERIC_RETURN_DOC);
 | 
						|
static PyObject *py_bvhtree_ray_cast(PyBVHTree *self, PyObject *args)
 | 
						|
{
 | 
						|
  const char *error_prefix = "ray_cast";
 | 
						|
  float co[3], direction[3];
 | 
						|
  float max_dist = FLT_MAX;
 | 
						|
  BVHTreeRayHit hit;
 | 
						|
 | 
						|
  /* parse args */
 | 
						|
  {
 | 
						|
    PyObject *py_co, *py_direction;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, (char *)"OO|f:ray_cast", &py_co, &py_direction, &max_dist)) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((mathutils_array_parse(co, 2, 3 | MU_ARRAY_ZERO, py_co, error_prefix) == -1) ||
 | 
						|
        (mathutils_array_parse(direction, 2, 3 | MU_ARRAY_ZERO, py_direction, error_prefix) ==
 | 
						|
         -1)) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    normalize_v3(direction);
 | 
						|
  }
 | 
						|
 | 
						|
  hit.dist = max_dist;
 | 
						|
  hit.index = -1;
 | 
						|
 | 
						|
  /* may fail if the mesh has no faces, in that case the ray-cast misses */
 | 
						|
  if (self->tree) {
 | 
						|
    if (BLI_bvhtree_ray_cast(self->tree, co, direction, 0.0f, &hit, py_bvhtree_raycast_cb, self) !=
 | 
						|
        -1) {
 | 
						|
      return py_bvhtree_raycast_to_py(&hit);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return py_bvhtree_raycast_to_py_none();
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(py_bvhtree_find_nearest_doc,
 | 
						|
             ".. method:: find_nearest(origin, distance=" PYBVH_MAX_DIST_STR
 | 
						|
             ")\n"
 | 
						|
             "\n"
 | 
						|
             "   Find the nearest element (typically face index) to a point.\n"
 | 
						|
             "\n"
 | 
						|
             "   :arg co: Find nearest element to this point.\n"
 | 
						|
             "   :type co: :class:`Vector`\n" PYBVH_FIND_GENERIC_DISTANCE_DOC
 | 
						|
                 PYBVH_FIND_GENERIC_RETURN_DOC);
 | 
						|
static PyObject *py_bvhtree_find_nearest(PyBVHTree *self, PyObject *args)
 | 
						|
{
 | 
						|
  const char *error_prefix = "find_nearest";
 | 
						|
  float co[3];
 | 
						|
  float max_dist = max_dist_default;
 | 
						|
 | 
						|
  BVHTreeNearest nearest;
 | 
						|
 | 
						|
  /* parse args */
 | 
						|
  {
 | 
						|
    PyObject *py_co;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, (char *)"O|f:find_nearest", &py_co, &max_dist)) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mathutils_array_parse(co, 2, 3 | MU_ARRAY_ZERO, py_co, error_prefix) == -1) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  nearest.index = -1;
 | 
						|
  nearest.dist_sq = max_dist * max_dist;
 | 
						|
 | 
						|
  /* may fail if the mesh has no faces, in that case the ray-cast misses */
 | 
						|
  if (self->tree) {
 | 
						|
    if (BLI_bvhtree_find_nearest(self->tree, co, &nearest, py_bvhtree_nearest_point_cb, self) !=
 | 
						|
        -1) {
 | 
						|
      return py_bvhtree_nearest_to_py(&nearest);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return py_bvhtree_nearest_to_py_none();
 | 
						|
}
 | 
						|
 | 
						|
struct PyBVH_RangeData {
 | 
						|
  PyBVHTree *self;
 | 
						|
  PyObject *result;
 | 
						|
  float dist_sq;
 | 
						|
};
 | 
						|
 | 
						|
static void py_bvhtree_nearest_point_range_cb(void *userdata,
 | 
						|
                                              int index,
 | 
						|
                                              const float co[3],
 | 
						|
                                              float UNUSED(dist_sq_bvh))
 | 
						|
{
 | 
						|
  struct PyBVH_RangeData *data = userdata;
 | 
						|
  PyBVHTree *self = data->self;
 | 
						|
 | 
						|
  const float(*coords)[3] = (const float(*)[3])self->coords;
 | 
						|
  const unsigned int *tri = self->tris[index];
 | 
						|
  const float *tri_co[3] = {coords[tri[0]], coords[tri[1]], coords[tri[2]]};
 | 
						|
  float nearest_tmp[3], dist_sq;
 | 
						|
 | 
						|
  closest_on_tri_to_point_v3(nearest_tmp, co, UNPACK3(tri_co));
 | 
						|
  dist_sq = len_squared_v3v3(co, nearest_tmp);
 | 
						|
 | 
						|
  if (dist_sq < data->dist_sq) {
 | 
						|
    BVHTreeNearest nearest;
 | 
						|
    nearest.index = self->orig_index ? self->orig_index[index] : index;
 | 
						|
    nearest.dist_sq = dist_sq;
 | 
						|
    copy_v3_v3(nearest.co, nearest_tmp);
 | 
						|
    if (self->orig_normal) {
 | 
						|
      copy_v3_v3(nearest.no, self->orig_normal[nearest.index]);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      normal_tri_v3(nearest.no, UNPACK3(tri_co));
 | 
						|
    }
 | 
						|
 | 
						|
    PyList_APPEND(data->result, py_bvhtree_nearest_to_py(&nearest));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(
 | 
						|
    py_bvhtree_find_nearest_range_doc,
 | 
						|
    ".. method:: find_nearest_range(origin, distance=" PYBVH_MAX_DIST_STR
 | 
						|
    ")\n"
 | 
						|
    "\n"
 | 
						|
    "   Find the nearest elements (typically face index) to a point in the distance range.\n"
 | 
						|
    "\n"
 | 
						|
    "   :arg co: Find nearest elements to this point.\n"
 | 
						|
    "   :type co: :class:`Vector`\n" PYBVH_FIND_GENERIC_DISTANCE_DOC
 | 
						|
        PYBVH_FIND_GENERIC_RETURN_LIST_DOC);
 | 
						|
static PyObject *py_bvhtree_find_nearest_range(PyBVHTree *self, PyObject *args)
 | 
						|
{
 | 
						|
  const char *error_prefix = "find_nearest_range";
 | 
						|
  float co[3];
 | 
						|
  float max_dist = max_dist_default;
 | 
						|
 | 
						|
  /* parse args */
 | 
						|
  {
 | 
						|
    PyObject *py_co;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, (char *)"O|f:find_nearest_range", &py_co, &max_dist)) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mathutils_array_parse(co, 2, 3 | MU_ARRAY_ZERO, py_co, error_prefix) == -1) {
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  PyObject *ret = PyList_New(0);
 | 
						|
 | 
						|
  if (self->tree) {
 | 
						|
    struct PyBVH_RangeData data = {
 | 
						|
        .self = self,
 | 
						|
        .result = ret,
 | 
						|
        .dist_sq = SQUARE(max_dist),
 | 
						|
    };
 | 
						|
 | 
						|
    BLI_bvhtree_range_query(self->tree, co, max_dist, py_bvhtree_nearest_point_range_cb, &data);
 | 
						|
  }
 | 
						|
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
BLI_INLINE unsigned int overlap_hash(const void *overlap_v)
 | 
						|
{
 | 
						|
  const BVHTreeOverlap *overlap = overlap_v;
 | 
						|
  /* same constants as edge-hash */
 | 
						|
  return (((unsigned int)overlap->indexA * 65) ^ ((unsigned int)overlap->indexA * 31));
 | 
						|
}
 | 
						|
 | 
						|
BLI_INLINE bool overlap_cmp(const void *a_v, const void *b_v)
 | 
						|
{
 | 
						|
  const BVHTreeOverlap *a = a_v;
 | 
						|
  const BVHTreeOverlap *b = b_v;
 | 
						|
  return (memcmp(a, b, sizeof(*a)) != 0);
 | 
						|
}
 | 
						|
 | 
						|
struct PyBVHTree_OverlapData {
 | 
						|
  PyBVHTree *tree_pair[2];
 | 
						|
  float epsilon;
 | 
						|
};
 | 
						|
 | 
						|
static bool py_bvhtree_overlap_cb(void *userdata, int index_a, int index_b, int UNUSED(thread))
 | 
						|
{
 | 
						|
  struct PyBVHTree_OverlapData *data = userdata;
 | 
						|
  PyBVHTree *tree_a = data->tree_pair[0];
 | 
						|
  PyBVHTree *tree_b = data->tree_pair[1];
 | 
						|
  const unsigned int *tri_a = tree_a->tris[index_a];
 | 
						|
  const unsigned int *tri_b = tree_b->tris[index_b];
 | 
						|
  const float *tri_a_co[3] = {
 | 
						|
      tree_a->coords[tri_a[0]], tree_a->coords[tri_a[1]], tree_a->coords[tri_a[2]]};
 | 
						|
  const float *tri_b_co[3] = {
 | 
						|
      tree_b->coords[tri_b[0]], tree_b->coords[tri_b[1]], tree_b->coords[tri_b[2]]};
 | 
						|
  float ix_pair[2][3];
 | 
						|
  int verts_shared = 0;
 | 
						|
 | 
						|
  if (tree_a == tree_b) {
 | 
						|
    if (UNLIKELY(index_a == index_b)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    verts_shared = (ELEM(tri_a_co[0], UNPACK3(tri_b_co)) + ELEM(tri_a_co[1], UNPACK3(tri_b_co)) +
 | 
						|
                    ELEM(tri_a_co[2], UNPACK3(tri_b_co)));
 | 
						|
 | 
						|
    /* if 2 points are shared, bail out */
 | 
						|
    if (verts_shared >= 2) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return (isect_tri_tri_epsilon_v3(
 | 
						|
              UNPACK3(tri_a_co), UNPACK3(tri_b_co), ix_pair[0], ix_pair[1], data->epsilon) &&
 | 
						|
          ((verts_shared == 0) || (len_squared_v3v3(ix_pair[0], ix_pair[1]) > data->epsilon)));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(
 | 
						|
    py_bvhtree_overlap_doc,
 | 
						|
    ".. method:: overlap(other_tree)\n"
 | 
						|
    "\n"
 | 
						|
    "   Find overlapping indices between 2 trees.\n"
 | 
						|
    "\n"
 | 
						|
    "   :arg other_tree: Other tree to perform overlap test on.\n"
 | 
						|
    "   :type other_tree: :class:`BVHTree`\n"
 | 
						|
    "   :return: Returns a list of unique index pairs,"
 | 
						|
    "      the first index referencing this tree, the second referencing the **other_tree**.\n"
 | 
						|
    "   :rtype: :class:`list`\n");
 | 
						|
static PyObject *py_bvhtree_overlap(PyBVHTree *self, PyBVHTree *other)
 | 
						|
{
 | 
						|
  struct PyBVHTree_OverlapData data;
 | 
						|
  BVHTreeOverlap *overlap;
 | 
						|
  unsigned int overlap_len = 0;
 | 
						|
  PyObject *ret;
 | 
						|
 | 
						|
  if (!PyBVHTree_CheckExact(other)) {
 | 
						|
    PyErr_SetString(PyExc_ValueError, "Expected a BVHTree argument");
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  data.tree_pair[0] = self;
 | 
						|
  data.tree_pair[1] = other;
 | 
						|
  data.epsilon = max_ff(self->epsilon, other->epsilon);
 | 
						|
 | 
						|
  overlap = BLI_bvhtree_overlap(
 | 
						|
      self->tree, other->tree, &overlap_len, py_bvhtree_overlap_cb, &data);
 | 
						|
 | 
						|
  ret = PyList_New(0);
 | 
						|
 | 
						|
  if (overlap == NULL) {
 | 
						|
    /* pass */
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    bool use_unique = (self->orig_index || other->orig_index);
 | 
						|
    GSet *pair_test = use_unique ?
 | 
						|
                          BLI_gset_new_ex(overlap_hash, overlap_cmp, __func__, overlap_len) :
 | 
						|
                          NULL;
 | 
						|
    /* simple case, no index remapping */
 | 
						|
    unsigned int i;
 | 
						|
 | 
						|
    for (i = 0; i < overlap_len; i++) {
 | 
						|
      PyObject *item;
 | 
						|
      if (use_unique) {
 | 
						|
        if (self->orig_index) {
 | 
						|
          overlap[i].indexA = self->orig_index[overlap[i].indexA];
 | 
						|
        }
 | 
						|
        if (other->orig_index) {
 | 
						|
          overlap[i].indexB = other->orig_index[overlap[i].indexB];
 | 
						|
        }
 | 
						|
 | 
						|
        /* skip if its already added */
 | 
						|
        if (!BLI_gset_add(pair_test, &overlap[i])) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      item = PyTuple_New(2);
 | 
						|
      PyTuple_SET_ITEMS(
 | 
						|
          item, PyLong_FromLong(overlap[i].indexA), PyLong_FromLong(overlap[i].indexB));
 | 
						|
 | 
						|
      PyList_Append(ret, item);
 | 
						|
      Py_DECREF(item);
 | 
						|
    }
 | 
						|
 | 
						|
    if (pair_test) {
 | 
						|
      BLI_gset_free(pair_test, NULL);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (overlap) {
 | 
						|
    MEM_freeN(overlap);
 | 
						|
  }
 | 
						|
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Class Methods
 | 
						|
 * \{ */
 | 
						|
 | 
						|
PyDoc_STRVAR(
 | 
						|
    C_BVHTree_FromPolygons_doc,
 | 
						|
    ".. classmethod:: FromPolygons(vertices, polygons, all_triangles=False, epsilon=0.0)\n"
 | 
						|
    "\n"
 | 
						|
    "   BVH tree constructed geometry passed in as arguments.\n"
 | 
						|
    "\n"
 | 
						|
    "   :arg vertices: float triplets each representing ``(x, y, z)``\n"
 | 
						|
    "   :type vertices: float triplet sequence\n"
 | 
						|
    "   :arg polygons: Sequence of polyugons, each containing indices to the vertices argument.\n"
 | 
						|
    "   :type polygons: Sequence of sequences containing ints\n"
 | 
						|
    "   :arg all_triangles: Use when all **polygons** are triangles for more efficient "
 | 
						|
    "conversion.\n"
 | 
						|
    "   :type all_triangles: bool\n" PYBVH_FROM_GENERIC_EPSILON_DOC);
 | 
						|
static PyObject *C_BVHTree_FromPolygons(PyObject *UNUSED(cls), PyObject *args, PyObject *kwargs)
 | 
						|
{
 | 
						|
  const char *error_prefix = "BVHTree.FromPolygons";
 | 
						|
  const char *keywords[] = {"vertices", "polygons", "all_triangles", "epsilon", NULL};
 | 
						|
 | 
						|
  PyObject *py_coords, *py_tris;
 | 
						|
  PyObject *py_coords_fast = NULL, *py_tris_fast = NULL;
 | 
						|
 | 
						|
  MemArena *poly_arena = NULL;
 | 
						|
  MemArena *pf_arena = NULL;
 | 
						|
 | 
						|
  float(*coords)[3] = NULL;
 | 
						|
  unsigned int(*tris)[3] = NULL;
 | 
						|
  unsigned int coords_len, tris_len;
 | 
						|
  float epsilon = 0.0f;
 | 
						|
  bool all_triangles = false;
 | 
						|
 | 
						|
  /* when all_triangles is False */
 | 
						|
  int *orig_index = NULL;
 | 
						|
  float(*orig_normal)[3] = NULL;
 | 
						|
 | 
						|
  unsigned int i;
 | 
						|
  bool valid = true;
 | 
						|
 | 
						|
  if (!PyArg_ParseTupleAndKeywords(args,
 | 
						|
                                   kwargs,
 | 
						|
                                   (char *)"OO|$O&f:BVHTree.FromPolygons",
 | 
						|
                                   (char **)keywords,
 | 
						|
                                   &py_coords,
 | 
						|
                                   &py_tris,
 | 
						|
                                   PyC_ParseBool,
 | 
						|
                                   &all_triangles,
 | 
						|
                                   &epsilon)) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!(py_coords_fast = PySequence_Fast(py_coords, error_prefix)) ||
 | 
						|
      !(py_tris_fast = PySequence_Fast(py_tris, error_prefix))) {
 | 
						|
    Py_XDECREF(py_coords_fast);
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (valid) {
 | 
						|
    PyObject **py_coords_fast_items = PySequence_Fast_ITEMS(py_coords_fast);
 | 
						|
    coords_len = (unsigned int)PySequence_Fast_GET_SIZE(py_coords_fast);
 | 
						|
    coords = MEM_mallocN((size_t)coords_len * sizeof(*coords), __func__);
 | 
						|
 | 
						|
    for (i = 0; i < coords_len; i++) {
 | 
						|
      PyObject *py_vert = py_coords_fast_items[i];
 | 
						|
 | 
						|
      if (mathutils_array_parse(coords[i], 3, 3, py_vert, "BVHTree vertex: ") == -1) {
 | 
						|
        valid = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (valid == false) {
 | 
						|
    /* pass */
 | 
						|
  }
 | 
						|
  else if (all_triangles) {
 | 
						|
    /* all triangles, simple case */
 | 
						|
    PyObject **py_tris_fast_items = PySequence_Fast_ITEMS(py_tris_fast);
 | 
						|
    tris_len = (unsigned int)PySequence_Fast_GET_SIZE(py_tris_fast);
 | 
						|
    tris = MEM_mallocN((size_t)tris_len * sizeof(*tris), __func__);
 | 
						|
 | 
						|
    for (i = 0; i < tris_len; i++) {
 | 
						|
      PyObject *py_tricoords = py_tris_fast_items[i];
 | 
						|
      PyObject *py_tricoords_fast;
 | 
						|
      PyObject **py_tricoords_fast_items;
 | 
						|
      unsigned int *tri = tris[i];
 | 
						|
      int j;
 | 
						|
 | 
						|
      if (!(py_tricoords_fast = PySequence_Fast(py_tricoords, error_prefix))) {
 | 
						|
        valid = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PySequence_Fast_GET_SIZE(py_tricoords_fast) != 3) {
 | 
						|
        Py_DECREF(py_tricoords_fast);
 | 
						|
        PyErr_Format(PyExc_ValueError,
 | 
						|
                     "%s: non triangle found at index %d with length of %d",
 | 
						|
                     error_prefix,
 | 
						|
                     i,
 | 
						|
                     PySequence_Fast_GET_SIZE(py_tricoords_fast));
 | 
						|
        valid = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      py_tricoords_fast_items = PySequence_Fast_ITEMS(py_tricoords_fast);
 | 
						|
 | 
						|
      for (j = 0; j < 3; j++) {
 | 
						|
        tri[j] = PyC_Long_AsU32(py_tricoords_fast_items[j]);
 | 
						|
        if (UNLIKELY(tri[j] >= (unsigned int)coords_len)) {
 | 
						|
          PyErr_Format(PyExc_ValueError,
 | 
						|
                       "%s: index %d must be less than %d",
 | 
						|
                       error_prefix,
 | 
						|
                       tri[j],
 | 
						|
                       coords_len);
 | 
						|
 | 
						|
          /* decref below */
 | 
						|
          valid = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Py_DECREF(py_tricoords_fast);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    /* ngon support (much more involved) */
 | 
						|
    const unsigned int polys_len = (unsigned int)PySequence_Fast_GET_SIZE(py_tris_fast);
 | 
						|
    struct PolyLink {
 | 
						|
      struct PolyLink *next;
 | 
						|
      unsigned int len;
 | 
						|
      unsigned int poly[0];
 | 
						|
    } *plink_first = NULL, **p_plink_prev = &plink_first, *plink = NULL;
 | 
						|
    int poly_index;
 | 
						|
 | 
						|
    tris_len = 0;
 | 
						|
 | 
						|
    poly_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
 | 
						|
 | 
						|
    for (i = 0; i < polys_len; i++) {
 | 
						|
      PyObject *py_tricoords = PySequence_Fast_GET_ITEM(py_tris_fast, i);
 | 
						|
      PyObject *py_tricoords_fast;
 | 
						|
      PyObject **py_tricoords_fast_items;
 | 
						|
      unsigned int py_tricoords_len;
 | 
						|
      unsigned int j;
 | 
						|
 | 
						|
      if (!(py_tricoords_fast = PySequence_Fast(py_tricoords, error_prefix))) {
 | 
						|
        valid = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      py_tricoords_len = (unsigned int)PySequence_Fast_GET_SIZE(py_tricoords_fast);
 | 
						|
      py_tricoords_fast_items = PySequence_Fast_ITEMS(py_tricoords_fast);
 | 
						|
 | 
						|
      plink = BLI_memarena_alloc(poly_arena,
 | 
						|
                                 sizeof(*plink) + (sizeof(int) * (size_t)py_tricoords_len));
 | 
						|
 | 
						|
      plink->len = (unsigned int)py_tricoords_len;
 | 
						|
      *p_plink_prev = plink;
 | 
						|
      p_plink_prev = &plink->next;
 | 
						|
 | 
						|
      for (j = 0; j < py_tricoords_len; j++) {
 | 
						|
        plink->poly[j] = PyC_Long_AsU32(py_tricoords_fast_items[j]);
 | 
						|
        if (UNLIKELY(plink->poly[j] >= (unsigned int)coords_len)) {
 | 
						|
          PyErr_Format(PyExc_ValueError,
 | 
						|
                       "%s: index %d must be less than %d",
 | 
						|
                       error_prefix,
 | 
						|
                       plink->poly[j],
 | 
						|
                       coords_len);
 | 
						|
          /* decref below */
 | 
						|
          valid = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Py_DECREF(py_tricoords_fast);
 | 
						|
 | 
						|
      if (py_tricoords_len >= 3) {
 | 
						|
        tris_len += (py_tricoords_len - 2);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    *p_plink_prev = NULL;
 | 
						|
 | 
						|
    /* all ngon's are parsed, now tessellate */
 | 
						|
 | 
						|
    pf_arena = BLI_memarena_new(BLI_POLYFILL_ARENA_SIZE, __func__);
 | 
						|
    tris = MEM_mallocN(sizeof(*tris) * (size_t)tris_len, __func__);
 | 
						|
 | 
						|
    orig_index = MEM_mallocN(sizeof(*orig_index) * (size_t)tris_len, __func__);
 | 
						|
    orig_normal = MEM_mallocN(sizeof(*orig_normal) * (size_t)polys_len, __func__);
 | 
						|
 | 
						|
    for (plink = plink_first, poly_index = 0, i = 0; plink; plink = plink->next, poly_index++) {
 | 
						|
      if (plink->len == 3) {
 | 
						|
        unsigned int *tri = tris[i];
 | 
						|
        memcpy(tri, plink->poly, sizeof(unsigned int[3]));
 | 
						|
        orig_index[i] = poly_index;
 | 
						|
        normal_tri_v3(orig_normal[poly_index], coords[tri[0]], coords[tri[1]], coords[tri[2]]);
 | 
						|
        i++;
 | 
						|
      }
 | 
						|
      else if (plink->len > 3) {
 | 
						|
        float(*proj_coords)[2] = BLI_memarena_alloc(pf_arena, sizeof(*proj_coords) * plink->len);
 | 
						|
        float *normal = orig_normal[poly_index];
 | 
						|
        const float *co_prev;
 | 
						|
        const float *co_curr;
 | 
						|
        float axis_mat[3][3];
 | 
						|
        unsigned int(*tris_offset)[3] = &tris[i];
 | 
						|
        unsigned int j;
 | 
						|
 | 
						|
        /* calc normal and setup 'proj_coords' */
 | 
						|
        zero_v3(normal);
 | 
						|
        co_prev = coords[plink->poly[plink->len - 1]];
 | 
						|
        for (j = 0; j < plink->len; j++) {
 | 
						|
          co_curr = coords[plink->poly[j]];
 | 
						|
          add_newell_cross_v3_v3v3(normal, co_prev, co_curr);
 | 
						|
          co_prev = co_curr;
 | 
						|
        }
 | 
						|
        normalize_v3(normal);
 | 
						|
 | 
						|
        axis_dominant_v3_to_m3_negate(axis_mat, normal);
 | 
						|
 | 
						|
        for (j = 0; j < plink->len; j++) {
 | 
						|
          mul_v2_m3v3(proj_coords[j], axis_mat, coords[plink->poly[j]]);
 | 
						|
        }
 | 
						|
 | 
						|
        BLI_polyfill_calc_arena(proj_coords, plink->len, 1, tris_offset, pf_arena);
 | 
						|
 | 
						|
        j = plink->len - 2;
 | 
						|
        while (j--) {
 | 
						|
          unsigned int *tri = tris_offset[j];
 | 
						|
          /* remap to global indices */
 | 
						|
          tri[0] = plink->poly[tri[0]];
 | 
						|
          tri[1] = plink->poly[tri[1]];
 | 
						|
          tri[2] = plink->poly[tri[2]];
 | 
						|
 | 
						|
          orig_index[i] = poly_index;
 | 
						|
          i++;
 | 
						|
        }
 | 
						|
 | 
						|
        BLI_memarena_clear(pf_arena);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        zero_v3(orig_normal[poly_index]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Py_DECREF(py_coords_fast);
 | 
						|
  Py_DECREF(py_tris_fast);
 | 
						|
 | 
						|
  if (pf_arena) {
 | 
						|
    BLI_memarena_free(pf_arena);
 | 
						|
  }
 | 
						|
 | 
						|
  if (poly_arena) {
 | 
						|
    BLI_memarena_free(poly_arena);
 | 
						|
  }
 | 
						|
 | 
						|
  if (valid) {
 | 
						|
    BVHTree *tree;
 | 
						|
 | 
						|
    tree = BLI_bvhtree_new((int)tris_len, epsilon, PY_BVH_TREE_TYPE_DEFAULT, PY_BVH_AXIS_DEFAULT);
 | 
						|
    if (tree) {
 | 
						|
      for (i = 0; i < tris_len; i++) {
 | 
						|
        float co[3][3];
 | 
						|
 | 
						|
        copy_v3_v3(co[0], coords[tris[i][0]]);
 | 
						|
        copy_v3_v3(co[1], coords[tris[i][1]]);
 | 
						|
        copy_v3_v3(co[2], coords[tris[i][2]]);
 | 
						|
 | 
						|
        BLI_bvhtree_insert(tree, (int)i, co[0], 3);
 | 
						|
      }
 | 
						|
 | 
						|
      BLI_bvhtree_balance(tree);
 | 
						|
    }
 | 
						|
 | 
						|
    return bvhtree_CreatePyObject(
 | 
						|
        tree, epsilon, coords, coords_len, tris, tris_len, orig_index, orig_normal);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (coords) {
 | 
						|
      MEM_freeN(coords);
 | 
						|
    }
 | 
						|
    if (tris) {
 | 
						|
      MEM_freeN(tris);
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef MATH_STANDALONE
 | 
						|
 | 
						|
PyDoc_STRVAR(C_BVHTree_FromBMesh_doc,
 | 
						|
             ".. classmethod:: FromBMesh(bmesh, epsilon=0.0)\n"
 | 
						|
             "\n"
 | 
						|
             "   BVH tree based on :class:`BMesh` data.\n"
 | 
						|
             "\n"
 | 
						|
             "   :arg bmesh: BMesh data.\n"
 | 
						|
             "   :type bmesh: :class:`BMesh`\n" PYBVH_FROM_GENERIC_EPSILON_DOC);
 | 
						|
static PyObject *C_BVHTree_FromBMesh(PyObject *UNUSED(cls), PyObject *args, PyObject *kwargs)
 | 
						|
{
 | 
						|
  const char *keywords[] = {"bmesh", "epsilon", NULL};
 | 
						|
 | 
						|
  BPy_BMesh *py_bm;
 | 
						|
 | 
						|
  float(*coords)[3] = NULL;
 | 
						|
  unsigned int(*tris)[3] = NULL;
 | 
						|
  unsigned int coords_len, tris_len;
 | 
						|
  float epsilon = 0.0f;
 | 
						|
 | 
						|
  BMesh *bm;
 | 
						|
  BMLoop *(*looptris)[3];
 | 
						|
 | 
						|
  if (!PyArg_ParseTupleAndKeywords(args,
 | 
						|
                                   kwargs,
 | 
						|
                                   (char *)"O!|$f:BVHTree.FromBMesh",
 | 
						|
                                   (char **)keywords,
 | 
						|
                                   &BPy_BMesh_Type,
 | 
						|
                                   &py_bm,
 | 
						|
                                   &epsilon)) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  bm = py_bm->bm;
 | 
						|
 | 
						|
  /* Get data for tessellation */
 | 
						|
  {
 | 
						|
    int tris_len_dummy;
 | 
						|
 | 
						|
    coords_len = (unsigned int)bm->totvert;
 | 
						|
    tris_len = (unsigned int)poly_to_tri_count(bm->totface, bm->totloop);
 | 
						|
 | 
						|
    coords = MEM_mallocN(sizeof(*coords) * (size_t)coords_len, __func__);
 | 
						|
    tris = MEM_mallocN(sizeof(*tris) * (size_t)tris_len, __func__);
 | 
						|
 | 
						|
    looptris = MEM_mallocN(sizeof(*looptris) * (size_t)tris_len, __func__);
 | 
						|
 | 
						|
    BM_mesh_calc_tessellation(bm, looptris, &tris_len_dummy);
 | 
						|
    BLI_assert(tris_len_dummy == (int)tris_len);
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    BMIter iter;
 | 
						|
    BVHTree *tree;
 | 
						|
    unsigned int i;
 | 
						|
 | 
						|
    int *orig_index = NULL;
 | 
						|
    float(*orig_normal)[3] = NULL;
 | 
						|
 | 
						|
    tree = BLI_bvhtree_new((int)tris_len, epsilon, PY_BVH_TREE_TYPE_DEFAULT, PY_BVH_AXIS_DEFAULT);
 | 
						|
    if (tree) {
 | 
						|
      BMFace *f;
 | 
						|
      BMVert *v;
 | 
						|
 | 
						|
      orig_index = MEM_mallocN(sizeof(*orig_index) * (size_t)tris_len, __func__);
 | 
						|
      orig_normal = MEM_mallocN(sizeof(*orig_normal) * (size_t)bm->totface, __func__);
 | 
						|
 | 
						|
      BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
 | 
						|
        copy_v3_v3(coords[i], v->co);
 | 
						|
        BM_elem_index_set(v, (int)i); /* set_inline */
 | 
						|
      }
 | 
						|
      BM_ITER_MESH_INDEX (f, &iter, bm, BM_FACES_OF_MESH, i) {
 | 
						|
        copy_v3_v3(orig_normal[i], f->no);
 | 
						|
        BM_elem_index_set(f, (int)i); /* set_inline */
 | 
						|
      }
 | 
						|
      bm->elem_index_dirty &= (char)~(BM_VERT | BM_FACE);
 | 
						|
 | 
						|
      for (i = 0; i < tris_len; i++) {
 | 
						|
        float co[3][3];
 | 
						|
 | 
						|
        tris[i][0] = (unsigned int)BM_elem_index_get(looptris[i][0]->v);
 | 
						|
        tris[i][1] = (unsigned int)BM_elem_index_get(looptris[i][1]->v);
 | 
						|
        tris[i][2] = (unsigned int)BM_elem_index_get(looptris[i][2]->v);
 | 
						|
 | 
						|
        copy_v3_v3(co[0], coords[tris[i][0]]);
 | 
						|
        copy_v3_v3(co[1], coords[tris[i][1]]);
 | 
						|
        copy_v3_v3(co[2], coords[tris[i][2]]);
 | 
						|
 | 
						|
        BLI_bvhtree_insert(tree, (int)i, co[0], 3);
 | 
						|
        orig_index[i] = BM_elem_index_get(looptris[i][0]->f);
 | 
						|
      }
 | 
						|
 | 
						|
      BLI_bvhtree_balance(tree);
 | 
						|
    }
 | 
						|
 | 
						|
    MEM_freeN(looptris);
 | 
						|
 | 
						|
    return bvhtree_CreatePyObject(
 | 
						|
        tree, epsilon, coords, coords_len, tris, tris_len, orig_index, orig_normal);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* return various derived meshes based on requested settings */
 | 
						|
static Mesh *bvh_get_mesh(const char *funcname,
 | 
						|
                          struct Depsgraph *depsgraph,
 | 
						|
                          struct Scene *scene,
 | 
						|
                          Object *ob,
 | 
						|
                          const bool use_deform,
 | 
						|
                          const bool use_cage,
 | 
						|
                          bool *r_free_mesh)
 | 
						|
{
 | 
						|
  Object *ob_eval = DEG_get_evaluated_object(depsgraph, ob);
 | 
						|
  /* we only need minimum mesh data for topology and vertex locations */
 | 
						|
  CustomData_MeshMasks data_masks = CD_MASK_BAREMESH;
 | 
						|
  const bool use_render = DEG_get_mode(depsgraph) == DAG_EVAL_RENDER;
 | 
						|
  *r_free_mesh = false;
 | 
						|
 | 
						|
  /* Write the display mesh into the dummy mesh */
 | 
						|
  if (use_deform) {
 | 
						|
    if (use_render) {
 | 
						|
      if (use_cage) {
 | 
						|
        PyErr_Format(
 | 
						|
            PyExc_ValueError,
 | 
						|
            "%s(...): cage arg is unsupported when dependency graph evaluation mode is RENDER",
 | 
						|
            funcname);
 | 
						|
        return NULL;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        *r_free_mesh = true;
 | 
						|
        return mesh_create_eval_final_render(depsgraph, scene, ob, &data_masks);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (ob_eval != NULL) {
 | 
						|
      if (use_cage) {
 | 
						|
        return mesh_get_eval_deform(depsgraph, scene, ob_eval, &data_masks);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        return mesh_get_eval_final(depsgraph, scene, ob_eval, &data_masks);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      PyErr_Format(PyExc_ValueError,
 | 
						|
                   "%s(...): Cannot get evaluated data from given dependency graph / object pair",
 | 
						|
                   funcname);
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    /* !use_deform */
 | 
						|
    if (use_render) {
 | 
						|
      if (use_cage) {
 | 
						|
        PyErr_Format(
 | 
						|
            PyExc_ValueError,
 | 
						|
            "%s(...): cage arg is unsupported when dependency graph evaluation mode is RENDER",
 | 
						|
            funcname);
 | 
						|
        return NULL;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        *r_free_mesh = true;
 | 
						|
        return mesh_create_eval_no_deform_render(depsgraph, scene, ob, &data_masks);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (use_cage) {
 | 
						|
        PyErr_Format(PyExc_ValueError,
 | 
						|
                     "%s(...): cage arg is unsupported when deform=False and dependency graph "
 | 
						|
                     "evaluation mode is not RENDER",
 | 
						|
                     funcname);
 | 
						|
        return NULL;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        *r_free_mesh = true;
 | 
						|
        return mesh_create_eval_no_deform(depsgraph, scene, ob, &data_masks);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(C_BVHTree_FromObject_doc,
 | 
						|
             ".. classmethod:: FromObject(object, depsgraph, deform=True, render=False, "
 | 
						|
             "cage=False, epsilon=0.0)\n"
 | 
						|
             "\n"
 | 
						|
             "   BVH tree based on :class:`Object` data.\n"
 | 
						|
             "\n"
 | 
						|
             "   :arg object: Object data.\n"
 | 
						|
             "   :type object: :class:`Object`\n"
 | 
						|
             "   :arg depsgraph: Depsgraph to use for evaluating the mesh.\n"
 | 
						|
             "   :type depsgraph: :class:`Depsgraph`\n"
 | 
						|
             "   :arg deform: Use mesh with deformations.\n"
 | 
						|
             "   :type deform: bool\n"
 | 
						|
             "   :arg cage: Use modifiers cage.\n"
 | 
						|
             "   :type cage: bool\n" PYBVH_FROM_GENERIC_EPSILON_DOC);
 | 
						|
static PyObject *C_BVHTree_FromObject(PyObject *UNUSED(cls), PyObject *args, PyObject *kwargs)
 | 
						|
{
 | 
						|
  /* note, options here match 'bpy_bmesh_from_object' */
 | 
						|
  const char *keywords[] = {"object", "depsgraph", "deform", "cage", "epsilon", NULL};
 | 
						|
 | 
						|
  PyObject *py_ob, *py_depsgraph;
 | 
						|
  Object *ob;
 | 
						|
  struct Depsgraph *depsgraph;
 | 
						|
  struct Scene *scene;
 | 
						|
  Mesh *mesh;
 | 
						|
  bool use_deform = true;
 | 
						|
  bool use_cage = false;
 | 
						|
  bool free_mesh = false;
 | 
						|
 | 
						|
  const MLoopTri *lt;
 | 
						|
  const MLoop *mloop;
 | 
						|
 | 
						|
  float(*coords)[3] = NULL;
 | 
						|
  unsigned int(*tris)[3] = NULL;
 | 
						|
  unsigned int coords_len, tris_len;
 | 
						|
  float epsilon = 0.0f;
 | 
						|
 | 
						|
  if (!PyArg_ParseTupleAndKeywords(args,
 | 
						|
                                   kwargs,
 | 
						|
                                   (char *)"OO|$O&O&f:BVHTree.FromObject",
 | 
						|
                                   (char **)keywords,
 | 
						|
                                   &py_ob,
 | 
						|
                                   &py_depsgraph,
 | 
						|
                                   PyC_ParseBool,
 | 
						|
                                   &use_deform,
 | 
						|
                                   PyC_ParseBool,
 | 
						|
                                   &use_cage,
 | 
						|
                                   &epsilon) ||
 | 
						|
      ((ob = PyC_RNA_AsPointer(py_ob, "Object")) == NULL) ||
 | 
						|
      ((depsgraph = PyC_RNA_AsPointer(py_depsgraph, "Depsgraph")) == NULL)) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  scene = DEG_get_evaluated_scene(depsgraph);
 | 
						|
  mesh = bvh_get_mesh("BVHTree", depsgraph, scene, ob, use_deform, use_cage, &free_mesh);
 | 
						|
 | 
						|
  if (mesh == NULL) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Get data for tessellation */
 | 
						|
  {
 | 
						|
    lt = BKE_mesh_runtime_looptri_ensure(mesh);
 | 
						|
 | 
						|
    tris_len = (unsigned int)BKE_mesh_runtime_looptri_len(mesh);
 | 
						|
    coords_len = (unsigned int)mesh->totvert;
 | 
						|
 | 
						|
    coords = MEM_mallocN(sizeof(*coords) * (size_t)coords_len, __func__);
 | 
						|
    tris = MEM_mallocN(sizeof(*tris) * (size_t)tris_len, __func__);
 | 
						|
 | 
						|
    MVert *mv = mesh->mvert;
 | 
						|
    for (int i = 0; i < mesh->totvert; i++, mv++) {
 | 
						|
      copy_v3_v3(coords[i], mv->co);
 | 
						|
    }
 | 
						|
 | 
						|
    mloop = mesh->mloop;
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    BVHTree *tree;
 | 
						|
    unsigned int i;
 | 
						|
 | 
						|
    int *orig_index = NULL;
 | 
						|
    float(*orig_normal)[3] = NULL;
 | 
						|
 | 
						|
    tree = BLI_bvhtree_new((int)tris_len, epsilon, PY_BVH_TREE_TYPE_DEFAULT, PY_BVH_AXIS_DEFAULT);
 | 
						|
    if (tree) {
 | 
						|
      orig_index = MEM_mallocN(sizeof(*orig_index) * (size_t)tris_len, __func__);
 | 
						|
      CustomData *pdata = &mesh->pdata;
 | 
						|
      orig_normal = CustomData_get_layer(pdata, CD_NORMAL); /* can be NULL */
 | 
						|
      if (orig_normal) {
 | 
						|
        orig_normal = MEM_dupallocN(orig_normal);
 | 
						|
      }
 | 
						|
 | 
						|
      for (i = 0; i < tris_len; i++, lt++) {
 | 
						|
        float co[3][3];
 | 
						|
 | 
						|
        tris[i][0] = mloop[lt->tri[0]].v;
 | 
						|
        tris[i][1] = mloop[lt->tri[1]].v;
 | 
						|
        tris[i][2] = mloop[lt->tri[2]].v;
 | 
						|
 | 
						|
        copy_v3_v3(co[0], coords[tris[i][0]]);
 | 
						|
        copy_v3_v3(co[1], coords[tris[i][1]]);
 | 
						|
        copy_v3_v3(co[2], coords[tris[i][2]]);
 | 
						|
 | 
						|
        BLI_bvhtree_insert(tree, (int)i, co[0], 3);
 | 
						|
        orig_index[i] = (int)lt->poly;
 | 
						|
      }
 | 
						|
 | 
						|
      BLI_bvhtree_balance(tree);
 | 
						|
    }
 | 
						|
 | 
						|
    if (free_mesh) {
 | 
						|
      BKE_id_free(NULL, mesh);
 | 
						|
    }
 | 
						|
 | 
						|
    return bvhtree_CreatePyObject(
 | 
						|
        tree, epsilon, coords, coords_len, tris, tris_len, orig_index, orig_normal);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif /* MATH_STANDALONE */
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Module & Type definition
 | 
						|
 * \{ */
 | 
						|
 | 
						|
static PyMethodDef py_bvhtree_methods[] = {
 | 
						|
    {"ray_cast", (PyCFunction)py_bvhtree_ray_cast, METH_VARARGS, py_bvhtree_ray_cast_doc},
 | 
						|
    {"find_nearest",
 | 
						|
     (PyCFunction)py_bvhtree_find_nearest,
 | 
						|
     METH_VARARGS,
 | 
						|
     py_bvhtree_find_nearest_doc},
 | 
						|
    {"find_nearest_range",
 | 
						|
     (PyCFunction)py_bvhtree_find_nearest_range,
 | 
						|
     METH_VARARGS,
 | 
						|
     py_bvhtree_find_nearest_range_doc},
 | 
						|
    {"overlap", (PyCFunction)py_bvhtree_overlap, METH_O, py_bvhtree_overlap_doc},
 | 
						|
 | 
						|
    /* class methods */
 | 
						|
    {"FromPolygons",
 | 
						|
     (PyCFunction)C_BVHTree_FromPolygons,
 | 
						|
     METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | 
						|
     C_BVHTree_FromPolygons_doc},
 | 
						|
#ifndef MATH_STANDALONE
 | 
						|
    {"FromBMesh",
 | 
						|
     (PyCFunction)C_BVHTree_FromBMesh,
 | 
						|
     METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | 
						|
     C_BVHTree_FromBMesh_doc},
 | 
						|
    {"FromObject",
 | 
						|
     (PyCFunction)C_BVHTree_FromObject,
 | 
						|
     METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | 
						|
     C_BVHTree_FromObject_doc},
 | 
						|
#endif
 | 
						|
    {NULL, NULL, 0, NULL},
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyBVHTree_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(NULL, 0) "BVHTree", /* tp_name */
 | 
						|
    sizeof(PyBVHTree),                        /* tp_basicsize */
 | 
						|
    0,                                        /* tp_itemsize */
 | 
						|
    /* methods */
 | 
						|
    (destructor)py_bvhtree__tp_dealloc, /* tp_dealloc */
 | 
						|
    NULL,                               /* tp_print */
 | 
						|
    NULL,                               /* tp_getattr */
 | 
						|
    NULL,                               /* tp_setattr */
 | 
						|
    NULL,                               /* tp_compare */
 | 
						|
    NULL,                               /* tp_repr */
 | 
						|
    NULL,                               /* tp_as_number */
 | 
						|
    NULL,                               /* tp_as_sequence */
 | 
						|
    NULL,                               /* tp_as_mapping */
 | 
						|
    NULL,                               /* tp_hash */
 | 
						|
    NULL,                               /* tp_call */
 | 
						|
    NULL,                               /* tp_str */
 | 
						|
    NULL,                               /* tp_getattro */
 | 
						|
    NULL,                               /* tp_setattro */
 | 
						|
    NULL,                               /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT,                 /* tp_flags */
 | 
						|
    NULL,                               /* Documentation string */
 | 
						|
    NULL,                               /* tp_traverse */
 | 
						|
    NULL,                               /* tp_clear */
 | 
						|
    NULL,                               /* tp_richcompare */
 | 
						|
    0,                                  /* tp_weaklistoffset */
 | 
						|
    NULL,                               /* tp_iter */
 | 
						|
    NULL,                               /* tp_iternext */
 | 
						|
    py_bvhtree_methods,                 /* tp_methods */
 | 
						|
    NULL,                               /* tp_members */
 | 
						|
    NULL,                               /* tp_getset */
 | 
						|
    NULL,                               /* tp_base */
 | 
						|
    NULL,                               /* tp_dict */
 | 
						|
    NULL,                               /* tp_descr_get */
 | 
						|
    NULL,                               /* tp_descr_set */
 | 
						|
    0,                                  /* tp_dictoffset */
 | 
						|
    NULL,                               /* tp_init */
 | 
						|
    (allocfunc)PyType_GenericAlloc,     /* tp_alloc */
 | 
						|
    (newfunc)PyType_GenericNew,         /* tp_new */
 | 
						|
    (freefunc)0,                        /* tp_free */
 | 
						|
    NULL,                               /* tp_is_gc */
 | 
						|
    NULL,                               /* tp_bases */
 | 
						|
    NULL,                               /* tp_mro */
 | 
						|
    NULL,                               /* tp_cache */
 | 
						|
    NULL,                               /* tp_subclasses */
 | 
						|
    NULL,                               /* tp_weaklist */
 | 
						|
    (destructor)NULL,                   /* tp_del */
 | 
						|
};
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/* Module definition */
 | 
						|
 | 
						|
PyDoc_STRVAR(py_bvhtree_doc,
 | 
						|
             "BVH tree structures for proximity searches and ray casts on geometry.");
 | 
						|
static struct PyModuleDef bvhtree_moduledef = {
 | 
						|
    PyModuleDef_HEAD_INIT,
 | 
						|
    "mathutils.bvhtree", /* m_name */
 | 
						|
    py_bvhtree_doc,      /* m_doc */
 | 
						|
    0,                   /* m_size */
 | 
						|
    NULL,                /* m_methods */
 | 
						|
    NULL,                /* m_reload */
 | 
						|
    NULL,                /* m_traverse */
 | 
						|
    NULL,                /* m_clear */
 | 
						|
    NULL,                /* m_free */
 | 
						|
};
 | 
						|
 | 
						|
PyMODINIT_FUNC PyInit_mathutils_bvhtree(void)
 | 
						|
{
 | 
						|
  PyObject *m = PyModule_Create(&bvhtree_moduledef);
 | 
						|
 | 
						|
  if (m == NULL) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Register classes */
 | 
						|
  if (PyType_Ready(&PyBVHTree_Type) < 0) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  PyModule_AddObject(m, "BVHTree", (PyObject *)&PyBVHTree_Type);
 | 
						|
 | 
						|
  return m;
 | 
						|
}
 | 
						|
 | 
						|
/** \} */
 |