This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/nodes/intern/geometry_nodes_lazy_function.cc
Jacques Lucke 3aca0bc66a Geometry Nodes: simplify handling of invalid group interface sockets
Previously, the code tried to keep node groups working even if some of
their input/output sockets had undefined type. This caused some
complexity with no benefit because not all places outside of this file
would handle the case correctly. Now node groups with undefined
interface sockets are disabled and have to be fixed manually before
they work again.

Undefined interface sockets are mostly caused by invalid Python
API usage and incomplete forward compatibility (e.g. when newer
versions introduce new socket types that the older version does
not know).
2022-12-16 18:31:01 +01:00

1436 lines
52 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/**
* This file mainly converts a #bNodeTree into a lazy-function graph. This generally works by
* creating a lazy-function for every node, which is then put into the lazy-function graph. Then
* the nodes in the new graph are linked based on links in the original #bNodeTree. Some additional
* nodes are inserted for things like type conversions and multi-input sockets.
*
* Currently, lazy-functions are even created for nodes that don't strictly require it, like
* reroutes or muted nodes. In the future we could avoid that at the cost of additional code
* complexity. So far, this does not seem to be a performance issue.
*/
#include "NOD_geometry_exec.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
#include "NOD_multi_function.hh"
#include "NOD_node_declaration.hh"
#include "BLI_cpp_types.hh"
#include "BLI_lazy_threading.hh"
#include "BLI_map.hh"
#include "DNA_ID.h"
#include "BKE_compute_contexts.hh"
#include "BKE_geometry_set.hh"
#include "BKE_type_conversions.hh"
#include "FN_field_cpp_type.hh"
#include "FN_lazy_function_graph_executor.hh"
#include "DEG_depsgraph_query.h"
namespace blender::nodes {
using fn::ValueOrField;
using fn::ValueOrFieldCPPType;
using namespace fn::multi_function_types;
static const CPPType *get_socket_cpp_type(const bNodeSocketType &typeinfo)
{
const CPPType *type = typeinfo.geometry_nodes_cpp_type;
if (type == nullptr) {
return nullptr;
}
BLI_assert(type->has_special_member_functions());
return type;
}
static const CPPType *get_socket_cpp_type(const bNodeSocket &socket)
{
return get_socket_cpp_type(*socket.typeinfo);
}
static const CPPType *get_vector_type(const CPPType &type)
{
const VectorCPPType *vector_type = VectorCPPType::get_from_value(type);
if (vector_type == nullptr) {
return nullptr;
}
return &vector_type->self;
}
/**
* Checks which sockets of the node are available and creates corresponding inputs/outputs on the
* lazy-function.
*/
static void lazy_function_interface_from_node(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs,
Vector<lf::Input> &r_inputs,
Vector<lf::Output> &r_outputs)
{
const bool is_muted = node.is_muted();
const bool supports_laziness = node.typeinfo->geometry_node_execute_supports_laziness ||
node.is_group();
const lf::ValueUsage input_usage = supports_laziness ? lf::ValueUsage::Maybe :
lf::ValueUsage::Used;
for (const bNodeSocket *socket : node.input_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
if (socket->is_multi_input() && !is_muted) {
type = get_vector_type(*type);
}
r_inputs.append({socket->identifier, *type, input_usage});
r_used_inputs.append(socket);
}
for (const bNodeSocket *socket : node.output_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
r_outputs.append({socket->identifier, *type});
r_used_outputs.append(socket);
}
}
/**
* Used for most normal geometry nodes like Subdivision Surface and Set Position.
*/
class LazyFunctionForGeometryNode : public LazyFunction {
private:
const bNode &node_;
public:
LazyFunctionForGeometryNode(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
: node_(node)
{
BLI_assert(node.typeinfo->geometry_node_execute != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
GeoNodeExecParams geo_params{node_, params, context};
geo_eval_log::TimePoint start_time = geo_eval_log::Clock::now();
node_.typeinfo->geometry_node_execute(geo_params);
geo_eval_log::TimePoint end_time = geo_eval_log::Clock::now();
if (geo_eval_log::GeoModifierLog *modifier_log = user_data->modifier_data->eval_log) {
geo_eval_log::GeoTreeLogger &tree_logger = modifier_log->get_local_tree_logger(
*user_data->compute_context);
tree_logger.node_execution_times.append({node_.identifier, start_time, end_time});
}
}
};
/**
* Used to gather all inputs of a multi-input socket. A separate node is necessary because
* multi-inputs are not supported in lazy-function graphs.
*/
class LazyFunctionForMultiInput : public LazyFunction {
private:
const CPPType *base_type_;
public:
LazyFunctionForMultiInput(const bNodeSocket &socket)
{
debug_name_ = "Multi Input";
base_type_ = get_socket_cpp_type(socket);
BLI_assert(base_type_ != nullptr);
BLI_assert(socket.is_multi_input());
const bNodeTree &btree = socket.owner_tree();
for (const bNodeLink *link : socket.directly_linked_links()) {
if (link->is_muted() || !link->fromsock->is_available() ||
nodeIsDanglingReroute(&btree, link->fromnode)) {
continue;
}
inputs_.append({"Input", *base_type_});
}
const CPPType *vector_type = get_vector_type(*base_type_);
BLI_assert(vector_type != nullptr);
outputs_.append({"Output", *vector_type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
/* Currently we only have multi-inputs for geometry and string sockets. This could be
* generalized in the future. */
base_type_->to_static_type_tag<GeometrySet, ValueOrField<std::string>>([&](auto type_tag) {
using T = typename decltype(type_tag)::type;
if constexpr (std::is_void_v<T>) {
/* This type is not supported in this node for now. */
BLI_assert_unreachable();
}
else {
void *output_ptr = params.get_output_data_ptr(0);
Vector<T> &values = *new (output_ptr) Vector<T>();
for (const int i : inputs_.index_range()) {
values.append(params.extract_input<T>(i));
}
params.output_set(0);
}
});
}
};
/**
* Simple lazy-function that just forwards the input.
*/
class LazyFunctionForRerouteNode : public LazyFunction {
public:
LazyFunctionForRerouteNode(const CPPType &type)
{
debug_name_ = "Reroute";
inputs_.append({"Input", type});
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *input_value = params.try_get_input_data_ptr(0);
void *output_value = params.get_output_data_ptr(0);
BLI_assert(input_value != nullptr);
BLI_assert(output_value != nullptr);
const CPPType &type = *inputs_[0].type;
type.move_construct(input_value, output_value);
params.output_set(0);
}
};
/**
* Lazy functions for nodes whose type cannot be found. An undefined function just outputs default
* values. It's useful to have so other parts of the conversion don't have to care about undefined
* nodes.
*/
class LazyFunctionForUndefinedNode : public LazyFunction {
public:
LazyFunctionForUndefinedNode(const bNode &node, Vector<const bNodeSocket *> &r_used_outputs)
{
debug_name_ = "Undefined";
Vector<const bNodeSocket *> dummy_used_inputs;
Vector<lf::Input> dummy_inputs;
lazy_function_interface_from_node(
node, dummy_used_inputs, r_used_outputs, dummy_inputs, outputs_);
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
params.set_default_remaining_outputs();
}
};
/**
* Executes a multi-function. If all inputs are single values, the results will also be single
* values. If any input is a field, the outputs will also be fields.
*/
static void execute_multi_function_on_value_or_field(
const MultiFunction &fn,
const std::shared_ptr<MultiFunction> &owned_fn,
const Span<const ValueOrFieldCPPType *> input_types,
const Span<const ValueOrFieldCPPType *> output_types,
const Span<const void *> input_values,
const Span<void *> output_values)
{
BLI_assert(fn.param_amount() == input_types.size() + output_types.size());
BLI_assert(input_types.size() == input_values.size());
BLI_assert(output_types.size() == output_values.size());
/* Check if any input is a field. */
bool any_input_is_field = false;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
if (type.is_field(value_or_field)) {
any_input_is_field = true;
break;
}
}
if (any_input_is_field) {
/* Convert all inputs into fields, so that they can be used as input in the new field. */
Vector<GField> input_fields;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
input_fields.append(type.as_field(value_or_field));
}
/* Construct the new field node. */
std::shared_ptr<fn::FieldOperation> operation;
if (owned_fn) {
operation = std::make_shared<fn::FieldOperation>(owned_fn, std::move(input_fields));
}
else {
operation = std::make_shared<fn::FieldOperation>(fn, std::move(input_fields));
}
/* Store the new fields in the output. */
for (const int i : output_types.index_range()) {
const ValueOrFieldCPPType &type = *output_types[i];
void *value_or_field = output_values[i];
type.construct_from_field(value_or_field, GField{operation, i});
}
}
else {
/* In this case, the multi-function is evaluated directly. */
MFParamsBuilder params{fn, 1};
MFContextBuilder context;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
const void *value = type.get_value_ptr(value_or_field);
params.add_readonly_single_input(GVArray::ForSingleRef(type.value, 1, value));
}
for (const int i : output_types.index_range()) {
const ValueOrFieldCPPType &type = *output_types[i];
void *value_or_field = output_values[i];
type.self.default_construct(value_or_field);
void *value = type.get_value_ptr(value_or_field);
type.value.destruct(value);
params.add_uninitialized_single_output(GMutableSpan{type.value, value, 1});
}
fn.call(IndexRange(1), params, context);
}
}
/**
* Behavior of muted nodes:
* - Some inputs are forwarded to outputs without changes.
* - Some inputs are converted to a different type which becomes the output.
* - Some outputs are value initialized because they don't have a corresponding input.
*/
class LazyFunctionForMutedNode : public LazyFunction {
private:
Array<int> input_by_output_index_;
public:
LazyFunctionForMutedNode(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
{
debug_name_ = "Muted";
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Maybe;
}
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Unused;
}
input_by_output_index_.reinitialize(outputs_.size());
input_by_output_index_.fill(-1);
for (const bNodeLink *internal_link : node.internal_links()) {
const int input_i = r_used_inputs.first_index_of_try(internal_link->fromsock);
const int output_i = r_used_outputs.first_index_of_try(internal_link->tosock);
if (ELEM(-1, input_i, output_i)) {
continue;
}
input_by_output_index_[output_i] = input_i;
inputs_[input_i].usage = lf::ValueUsage::Maybe;
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
for (const int output_i : outputs_.index_range()) {
if (params.output_was_set(output_i)) {
continue;
}
const CPPType &output_type = *outputs_[output_i].type;
void *output_value = params.get_output_data_ptr(output_i);
const int input_i = input_by_output_index_[output_i];
if (input_i == -1) {
/* The output does not have a corresponding input. */
output_type.value_initialize(output_value);
params.output_set(output_i);
continue;
}
const void *input_value = params.try_get_input_data_ptr_or_request(input_i);
if (input_value == nullptr) {
continue;
}
const CPPType &input_type = *inputs_[input_i].type;
if (input_type == output_type) {
/* Forward the value as is. */
input_type.copy_construct(input_value, output_value);
params.output_set(output_i);
continue;
}
/* Perform a type conversion and then format the value. */
const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions();
const auto *from_type = ValueOrFieldCPPType::get_from_self(input_type);
const auto *to_type = ValueOrFieldCPPType::get_from_self(output_type);
if (from_type != nullptr && to_type != nullptr) {
if (conversions.is_convertible(from_type->value, to_type->value)) {
const MultiFunction &multi_fn = *conversions.get_conversion_multi_function(
MFDataType::ForSingle(from_type->value), MFDataType::ForSingle(to_type->value));
execute_multi_function_on_value_or_field(
multi_fn, {}, {from_type}, {to_type}, {input_value}, {output_value});
}
params.output_set(output_i);
continue;
}
/* Use a value initialization if the conversion does not work. */
output_type.value_initialize(output_value);
params.output_set(output_i);
}
}
};
/**
* Type conversions are generally implemented as multi-functions. This node checks if the input is
* a field or single value and outputs a field or single value respectively.
*/
class LazyFunctionForMultiFunctionConversion : public LazyFunction {
private:
const MultiFunction &fn_;
const ValueOrFieldCPPType &from_type_;
const ValueOrFieldCPPType &to_type_;
public:
LazyFunctionForMultiFunctionConversion(const MultiFunction &fn,
const ValueOrFieldCPPType &from,
const ValueOrFieldCPPType &to)
: fn_(fn), from_type_(from), to_type_(to)
{
debug_name_ = "Convert";
inputs_.append({"From", from.self});
outputs_.append({"To", to.self});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const void *from_value = params.try_get_input_data_ptr(0);
void *to_value = params.get_output_data_ptr(0);
BLI_assert(from_value != nullptr);
BLI_assert(to_value != nullptr);
execute_multi_function_on_value_or_field(
fn_, {}, {&from_type_}, {&to_type_}, {from_value}, {to_value});
params.output_set(0);
}
};
/**
* This lazy-function wraps nodes that are implemented as multi-function (mostly math nodes).
*/
class LazyFunctionForMultiFunctionNode : public LazyFunction {
private:
const NodeMultiFunctions::Item fn_item_;
Vector<const ValueOrFieldCPPType *> input_types_;
Vector<const ValueOrFieldCPPType *> output_types_;
public:
LazyFunctionForMultiFunctionNode(const bNode &node,
NodeMultiFunctions::Item fn_item,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
: fn_item_(std::move(fn_item))
{
BLI_assert(fn_item_.fn != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
for (const lf::Input &fn_input : inputs_) {
input_types_.append(ValueOrFieldCPPType::get_from_self(*fn_input.type));
}
for (const lf::Output &fn_output : outputs_) {
output_types_.append(ValueOrFieldCPPType::get_from_self(*fn_output.type));
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
Vector<const void *> input_values(inputs_.size());
Vector<void *> output_values(outputs_.size());
for (const int i : inputs_.index_range()) {
input_values[i] = params.try_get_input_data_ptr(i);
}
for (const int i : outputs_.index_range()) {
output_values[i] = params.get_output_data_ptr(i);
}
execute_multi_function_on_value_or_field(
*fn_item_.fn, fn_item_.owned_fn, input_types_, output_types_, input_values, output_values);
for (const int i : outputs_.index_range()) {
params.output_set(i);
}
}
};
/**
* Some sockets have non-trivial implicit inputs (e.g. the Position input of the Set Position
* node). Those are implemented as a separate node that outputs the value.
*/
class LazyFunctionForImplicitInput : public LazyFunction {
private:
/**
* The function that generates the implicit input. The passed in memory is uninitialized.
*/
std::function<void(void *)> init_fn_;
public:
LazyFunctionForImplicitInput(const CPPType &type, std::function<void(void *)> init_fn)
: init_fn_(std::move(init_fn))
{
debug_name_ = "Input";
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *value = params.get_output_data_ptr(0);
init_fn_(value);
params.output_set(0);
}
};
/**
* The viewer node does not have outputs. Instead it is executed because the executor knows that it
* has side effects. The side effect is that the inputs to the viewer are logged.
*/
class LazyFunctionForViewerNode : public LazyFunction {
private:
const bNode &bnode_;
/** The field is only logged when it is linked. */
bool use_field_input_ = true;
public:
LazyFunctionForViewerNode(const bNode &bnode, Vector<const bNodeSocket *> &r_used_inputs)
: bnode_(bnode)
{
debug_name_ = "Viewer";
Vector<const bNodeSocket *> dummy_used_outputs;
lazy_function_interface_from_node(bnode, r_used_inputs, dummy_used_outputs, inputs_, outputs_);
const Span<const bNodeLink *> links = r_used_inputs[1]->directly_linked_links();
if (links.is_empty() || nodeIsDanglingReroute(&bnode.owner_tree(), links.first()->fromnode)) {
use_field_input_ = false;
r_used_inputs.pop_last();
inputs_.pop_last();
}
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (user_data->modifier_data == nullptr) {
return;
}
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
GeometrySet geometry = params.extract_input<GeometrySet>(0);
const NodeGeometryViewer *storage = static_cast<NodeGeometryViewer *>(bnode_.storage);
if (use_field_input_) {
const void *value_or_field = params.try_get_input_data_ptr(1);
BLI_assert(value_or_field != nullptr);
const auto &value_or_field_type = *ValueOrFieldCPPType::get_from_self(*inputs_[1].type);
GField field = value_or_field_type.as_field(value_or_field);
const eAttrDomain domain = eAttrDomain(storage->domain);
const StringRefNull viewer_attribute_name = ".viewer";
if (domain == ATTR_DOMAIN_INSTANCE) {
if (geometry.has_instances()) {
GeometryComponent &component = geometry.get_component_for_write(
GEO_COMPONENT_TYPE_INSTANCES);
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, ATTR_DOMAIN_INSTANCE, field);
}
}
else {
geometry.modify_geometry_sets([&](GeometrySet &geometry) {
for (const GeometryComponentType type : {GEO_COMPONENT_TYPE_MESH,
GEO_COMPONENT_TYPE_POINT_CLOUD,
GEO_COMPONENT_TYPE_CURVE}) {
if (geometry.has(type)) {
GeometryComponent &component = geometry.get_component_for_write(type);
eAttrDomain used_domain = domain;
if (used_domain == ATTR_DOMAIN_AUTO) {
if (const std::optional<eAttrDomain> detected_domain =
bke::try_detect_field_domain(component, field)) {
used_domain = *detected_domain;
}
else {
used_domain = ATTR_DOMAIN_POINT;
}
}
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, used_domain, field);
}
}
});
}
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
tree_logger.log_viewer_node(bnode_, std::move(geometry));
}
};
/**
* This lazy-function wraps a group node. Internally it just executes the lazy-function graph of
* the referenced group.
*/
class LazyFunctionForGroupNode : public LazyFunction {
private:
const bNode &group_node_;
bool has_many_nodes_ = false;
bool use_fallback_outputs_ = false;
std::optional<GeometryNodesLazyFunctionLogger> lf_logger_;
std::optional<GeometryNodesLazyFunctionSideEffectProvider> lf_side_effect_provider_;
std::optional<lf::GraphExecutor> graph_executor_;
public:
LazyFunctionForGroupNode(const bNode &group_node,
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
: group_node_(group_node)
{
debug_name_ = group_node.name;
lazy_function_interface_from_node(
group_node, r_used_inputs, r_used_outputs, inputs_, outputs_);
bNodeTree *group_btree = reinterpret_cast<bNodeTree *>(group_node_.id);
BLI_assert(group_btree != nullptr);
has_many_nodes_ = lf_graph_info.num_inline_nodes_approximate > 1000;
Vector<const lf::OutputSocket *> graph_inputs;
for (const lf::OutputSocket *socket : lf_graph_info.mapping.group_input_sockets) {
if (socket != nullptr) {
graph_inputs.append(socket);
}
}
Vector<const lf::InputSocket *> graph_outputs;
if (const bNode *group_output_bnode = group_btree->group_output_node()) {
for (const bNodeSocket *bsocket : group_output_bnode->input_sockets().drop_back(1)) {
const lf::Socket *socket = lf_graph_info.mapping.dummy_socket_map.lookup_default(bsocket,
nullptr);
if (socket != nullptr) {
graph_outputs.append(&socket->as_input());
}
}
}
else {
use_fallback_outputs_ = true;
}
lf_logger_.emplace(lf_graph_info);
lf_side_effect_provider_.emplace();
graph_executor_.emplace(lf_graph_info.graph,
std::move(graph_inputs),
std::move(graph_outputs),
&*lf_logger_,
&*lf_side_effect_provider_);
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (has_many_nodes_) {
/* If the called node group has many nodes, it's likely that executing it takes a while even
* if every individual node is very small. */
lazy_threading::send_hint();
}
if (use_fallback_outputs_) {
/* The node group itself does not have an output node, so use default values as outputs.
* The group should still be executed in case it has side effects. */
params.set_default_remaining_outputs();
}
/* The compute context changes when entering a node group. */
bke::NodeGroupComputeContext compute_context{user_data->compute_context,
group_node_.identifier};
GeoNodesLFUserData group_user_data = *user_data;
group_user_data.compute_context = &compute_context;
lf::Context group_context = context;
group_context.user_data = &group_user_data;
graph_executor_->execute(params, group_context);
}
void *init_storage(LinearAllocator<> &allocator) const override
{
return graph_executor_->init_storage(allocator);
}
void destruct_storage(void *storage) const override
{
graph_executor_->destruct_storage(storage);
}
};
static GMutablePointer get_socket_default_value(LinearAllocator<> &allocator,
const bNodeSocket &bsocket)
{
const bNodeSocketType &typeinfo = *bsocket.typeinfo;
const CPPType *type = get_socket_cpp_type(typeinfo);
if (type == nullptr) {
return {};
}
void *buffer = allocator.allocate(type->size(), type->alignment());
typeinfo.get_geometry_nodes_cpp_value(bsocket, buffer);
return {type, buffer};
}
class GroupInputDebugInfo : public lf::DummyDebugInfo {
public:
Vector<StringRef> socket_names;
std::string node_name() const override
{
return "Group Input";
}
std::string output_name(const int i) const override
{
return this->socket_names[i];
}
};
class GroupOutputDebugInfo : public lf::DummyDebugInfo {
public:
Vector<StringRef> socket_names;
std::string node_name() const
{
return "Group Output";
}
std::string input_name(const int i) const override
{
return this->socket_names[i];
}
};
/**
* Utility class to build a lazy-function graph based on a geometry nodes tree.
* This is mainly a separate class because it makes it easier to have variables that can be
* accessed by many functions.
*/
struct GeometryNodesLazyFunctionGraphBuilder {
private:
const bNodeTree &btree_;
GeometryNodesLazyFunctionGraphInfo *lf_graph_info_;
lf::Graph *lf_graph_;
GeometryNodeLazyFunctionGraphMapping *mapping_;
MultiValueMap<const bNodeSocket *, lf::InputSocket *> input_socket_map_;
Map<const bNodeSocket *, lf::OutputSocket *> output_socket_map_;
Map<const bNodeSocket *, lf::Node *> multi_input_socket_nodes_;
const bke::DataTypeConversions *conversions_;
/**
* All group input nodes are combined into one dummy node in the lazy-function graph.
*/
lf::DummyNode *group_input_lf_node_;
public:
GeometryNodesLazyFunctionGraphBuilder(const bNodeTree &btree,
GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: btree_(btree), lf_graph_info_(&lf_graph_info)
{
}
void build()
{
btree_.ensure_topology_cache();
lf_graph_ = &lf_graph_info_->graph;
mapping_ = &lf_graph_info_->mapping;
conversions_ = &bke::get_implicit_type_conversions();
this->prepare_node_multi_functions();
this->build_group_input_node();
this->handle_nodes();
this->handle_links();
this->add_default_inputs();
lf_graph_->update_node_indices();
lf_graph_info_->num_inline_nodes_approximate += lf_graph_->nodes().size();
}
private:
void prepare_node_multi_functions()
{
lf_graph_info_->node_multi_functions = std::make_unique<NodeMultiFunctions>(btree_);
}
void build_group_input_node()
{
Vector<const CPPType *, 16> input_cpp_types;
const Span<const bNodeSocket *> interface_inputs = btree_.interface_inputs();
for (const bNodeSocket *interface_input : interface_inputs) {
input_cpp_types.append(interface_input->typeinfo->geometry_nodes_cpp_type);
}
/* Create a dummy node for the group inputs. */
auto debug_info = std::make_unique<GroupInputDebugInfo>();
group_input_lf_node_ = &lf_graph_->add_dummy({}, input_cpp_types, debug_info.get());
for (const int i : interface_inputs.index_range()) {
mapping_->group_input_sockets.append(&group_input_lf_node_->output(i));
debug_info->socket_names.append(interface_inputs[i]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
void handle_nodes()
{
/* Insert all nodes into the lazy function graph. */
for (const bNode *bnode : btree_.all_nodes()) {
const bNodeType *node_type = bnode->typeinfo;
if (node_type == nullptr) {
continue;
}
if (bnode->is_muted()) {
this->handle_muted_node(*bnode);
continue;
}
switch (node_type->type) {
case NODE_FRAME: {
/* Ignored. */
break;
}
case NODE_REROUTE: {
this->handle_reroute_node(*bnode);
break;
}
case NODE_GROUP_INPUT: {
this->handle_group_input_node(*bnode);
break;
}
case NODE_GROUP_OUTPUT: {
this->handle_group_output_node(*bnode);
break;
}
case NODE_CUSTOM_GROUP:
case NODE_GROUP: {
this->handle_group_node(*bnode);
break;
}
case GEO_NODE_VIEWER: {
this->handle_viewer_node(*bnode);
break;
}
default: {
if (node_type->geometry_node_execute) {
this->handle_geometry_node(*bnode);
break;
}
const NodeMultiFunctions::Item &fn_item = lf_graph_info_->node_multi_functions->try_get(
*bnode);
if (fn_item.fn != nullptr) {
this->handle_multi_function_node(*bnode, fn_item);
break;
}
if (node_type == &NodeTypeUndefined) {
this->handle_undefined_node(*bnode);
break;
}
/* Nodes that don't match any of the criteria above are just ignored. */
break;
}
}
}
}
void handle_muted_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForMutedNode>(
bnode, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_reroute_node(const bNode &bnode)
{
const bNodeSocket &input_bsocket = bnode.input_socket(0);
const bNodeSocket &output_bsocket = bnode.output_socket(0);
const CPPType *type = get_socket_cpp_type(input_bsocket);
if (type == nullptr) {
return;
}
auto lazy_function = std::make_unique<LazyFunctionForRerouteNode>(*type);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
lf::InputSocket &lf_input = lf_node.input(0);
lf::OutputSocket &lf_output = lf_node.output(0);
input_socket_map_.add(&input_bsocket, &lf_input);
output_socket_map_.add_new(&output_bsocket, &lf_output);
mapping_->bsockets_by_lf_socket_map.add(&lf_input, &input_bsocket);
mapping_->bsockets_by_lf_socket_map.add(&lf_output, &output_bsocket);
}
void handle_group_input_node(const bNode &bnode)
{
for (const int i : btree_.interface_inputs().index_range()) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = group_input_lf_node_->output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->dummy_socket_map.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_group_output_node(const bNode &bnode)
{
Vector<const CPPType *, 16> output_cpp_types;
const Span<const bNodeSocket *> interface_outputs = btree_.interface_outputs();
for (const bNodeSocket *interface_input : interface_outputs) {
output_cpp_types.append(interface_input->typeinfo->geometry_nodes_cpp_type);
}
auto debug_info = std::make_unique<GroupOutputDebugInfo>();
lf::DummyNode &group_output_lf_node = lf_graph_->add_dummy(
output_cpp_types, {}, debug_info.get());
for (const int i : interface_outputs.index_range()) {
const bNodeSocket &bsocket = bnode.input_socket(i);
lf::InputSocket &lf_socket = group_output_lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->dummy_socket_map.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
debug_info->socket_names.append(interface_outputs[i]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
void handle_group_node(const bNode &bnode)
{
const bNodeTree *group_btree = reinterpret_cast<bNodeTree *>(bnode.id);
if (group_btree == nullptr) {
return;
}
const GeometryNodesLazyFunctionGraphInfo *group_lf_graph_info =
ensure_geometry_nodes_lazy_function_graph(*group_btree);
if (group_lf_graph_info == nullptr) {
return;
}
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForGroupNode>(
bnode, *group_lf_graph_info, used_inputs, used_outputs);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
BLI_assert(!bsocket.is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->group_node_map.add(&bnode, &lf_node);
lf_graph_info_->num_inline_nodes_approximate +=
group_lf_graph_info->num_inline_nodes_approximate;
}
void handle_geometry_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForGeometryNode>(
bnode, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
if (bsocket.is_multi_input()) {
auto multi_input_lazy_function = std::make_unique<LazyFunctionForMultiInput>(bsocket);
lf::Node &lf_multi_input_node = lf_graph_->add_function(*multi_input_lazy_function);
lf_graph_info_->functions.append(std::move(multi_input_lazy_function));
lf_graph_->add_link(lf_multi_input_node.output(0), lf_socket);
multi_input_socket_nodes_.add_new(&bsocket, &lf_multi_input_node);
for (lf::InputSocket *lf_multi_input_socket : lf_multi_input_node.inputs()) {
mapping_->bsockets_by_lf_socket_map.add(lf_multi_input_socket, &bsocket);
}
}
else {
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_multi_function_node(const bNode &bnode, const NodeMultiFunctions::Item &fn_item)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForMultiFunctionNode>(
bnode, fn_item, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
BLI_assert(!bsocket.is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_viewer_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
auto lazy_function = std::make_unique<LazyFunctionForViewerNode>(bnode, used_inputs);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->viewer_node_map.add(&bnode, &lf_node);
}
void handle_undefined_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForUndefinedNode>(bnode, used_outputs);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_links()
{
for (const auto item : output_socket_map_.items()) {
this->insert_links_from_socket(*item.key, *item.value);
}
}
void insert_links_from_socket(const bNodeSocket &from_bsocket, lf::OutputSocket &from_lf_socket)
{
if (nodeIsDanglingReroute(&btree_, &from_bsocket.owner_node())) {
return;
}
const Span<const bNodeLink *> links_from_bsocket = from_bsocket.directly_linked_links();
struct TypeWithLinks {
const CPPType *type;
Vector<const bNodeLink *> links;
};
/* Group available target sockets by type so that they can be handled together. */
Vector<TypeWithLinks> types_with_links;
for (const bNodeLink *link : links_from_bsocket) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
const bNodeSocket &to_bsocket = *link->tosock;
const CPPType *to_type = get_socket_cpp_type(to_bsocket);
if (to_type == nullptr) {
continue;
}
bool inserted = false;
for (TypeWithLinks &types_with_links : types_with_links) {
if (types_with_links.type == to_type) {
types_with_links.links.append(link);
inserted = true;
break;
}
}
if (inserted) {
continue;
}
types_with_links.append({to_type, {link}});
}
for (const TypeWithLinks &type_with_links : types_with_links) {
const CPPType &to_type = *type_with_links.type;
const Span<const bNodeLink *> links = type_with_links.links;
lf::OutputSocket *converted_from_lf_socket = this->insert_type_conversion_if_necessary(
from_lf_socket, to_type);
auto make_input_link_or_set_default = [&](lf::InputSocket &to_lf_socket) {
if (converted_from_lf_socket == nullptr) {
const void *default_value = to_type.default_value();
to_lf_socket.set_default_value(default_value);
}
else {
lf_graph_->add_link(*converted_from_lf_socket, to_lf_socket);
}
};
for (const bNodeLink *link : links) {
const bNodeSocket &to_bsocket = *link->tosock;
if (to_bsocket.is_multi_input()) {
/* TODO: Cache this index on the link. */
int link_index = 0;
for (const bNodeLink *multi_input_link : to_bsocket.directly_linked_links()) {
if (multi_input_link == link) {
break;
}
if (multi_input_link->is_muted() || !multi_input_link->fromsock->is_available() ||
nodeIsDanglingReroute(&btree_, multi_input_link->fromnode)) {
continue;
}
link_index++;
}
if (to_bsocket.owner_node().is_muted()) {
if (link_index == 0) {
for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) {
make_input_link_or_set_default(*to_lf_socket);
}
}
}
else {
lf::Node *multi_input_lf_node = multi_input_socket_nodes_.lookup_default(&to_bsocket,
nullptr);
if (multi_input_lf_node == nullptr) {
continue;
}
make_input_link_or_set_default(multi_input_lf_node->input(link_index));
}
}
else {
for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) {
make_input_link_or_set_default(*to_lf_socket);
}
}
}
}
}
lf::OutputSocket *insert_type_conversion_if_necessary(lf::OutputSocket &from_socket,
const CPPType &to_type)
{
const CPPType &from_type = from_socket.type();
if (from_type == to_type) {
return &from_socket;
}
const auto *from_field_type = ValueOrFieldCPPType::get_from_self(from_type);
const auto *to_field_type = ValueOrFieldCPPType::get_from_self(to_type);
if (from_field_type != nullptr && to_field_type != nullptr) {
if (conversions_->is_convertible(from_field_type->value, to_field_type->value)) {
const MultiFunction &multi_fn = *conversions_->get_conversion_multi_function(
MFDataType::ForSingle(from_field_type->value),
MFDataType::ForSingle(to_field_type->value));
auto fn = std::make_unique<LazyFunctionForMultiFunctionConversion>(
multi_fn, *from_field_type, *to_field_type);
lf::Node &conversion_node = lf_graph_->add_function(*fn);
lf_graph_info_->functions.append(std::move(fn));
lf_graph_->add_link(from_socket, conversion_node.input(0));
return &conversion_node.output(0);
}
}
return nullptr;
}
void add_default_inputs()
{
for (auto item : input_socket_map_.items()) {
const bNodeSocket &bsocket = *item.key;
const Span<lf::InputSocket *> lf_sockets = item.value;
for (lf::InputSocket *lf_socket : lf_sockets) {
if (lf_socket->origin() != nullptr) {
/* Is linked already. */
continue;
}
this->add_default_input(bsocket, *lf_socket);
}
}
}
void add_default_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket)
{
if (this->try_add_implicit_input(input_bsocket, input_lf_socket)) {
return;
}
GMutablePointer value = get_socket_default_value(lf_graph_info_->allocator, input_bsocket);
if (value.get() == nullptr) {
/* Not possible to add a default value. */
return;
}
input_lf_socket.set_default_value(value.get());
if (!value.type()->is_trivially_destructible()) {
lf_graph_info_->values_to_destruct.append(value);
}
}
bool try_add_implicit_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket)
{
const bNode &bnode = input_bsocket.owner_node();
const SocketDeclaration *socket_decl = input_bsocket.runtime->declaration;
if (socket_decl == nullptr) {
return false;
}
if (socket_decl->input_field_type() != InputSocketFieldType::Implicit) {
return false;
}
const ImplicitInputValueFn *implicit_input_fn = socket_decl->implicit_input_fn();
if (implicit_input_fn == nullptr) {
return false;
}
std::function<void(void *)> init_fn = [&bnode, implicit_input_fn](void *r_value) {
(*implicit_input_fn)(bnode, r_value);
};
const CPPType &type = input_lf_socket.type();
auto lazy_function = std::make_unique<LazyFunctionForImplicitInput>(type, std::move(init_fn));
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
lf_graph_->add_link(lf_node.output(0), input_lf_socket);
return true;
}
};
const GeometryNodesLazyFunctionGraphInfo *ensure_geometry_nodes_lazy_function_graph(
const bNodeTree &btree)
{
btree.ensure_topology_cache();
if (btree.has_available_link_cycle()) {
return nullptr;
}
if (const ID *id_orig = DEG_get_original_id(const_cast<ID *>(&btree.id))) {
if (id_orig->tag & LIB_TAG_MISSING) {
return nullptr;
}
}
for (const bNodeSocket *interface_bsocket : btree.interface_inputs()) {
if (interface_bsocket->typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
for (const bNodeSocket *interface_bsocket : btree.interface_outputs()) {
if (interface_bsocket->typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
std::unique_ptr<GeometryNodesLazyFunctionGraphInfo> &lf_graph_info_ptr =
btree.runtime->geometry_nodes_lazy_function_graph_info;
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
std::lock_guard lock{btree.runtime->geometry_nodes_lazy_function_graph_info_mutex};
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
auto lf_graph_info = std::make_unique<GeometryNodesLazyFunctionGraphInfo>();
GeometryNodesLazyFunctionGraphBuilder builder{btree, *lf_graph_info};
builder.build();
lf_graph_info_ptr = std::move(lf_graph_info);
return lf_graph_info_ptr.get();
}
GeometryNodesLazyFunctionLogger::GeometryNodesLazyFunctionLogger(
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: lf_graph_info_(lf_graph_info)
{
}
void GeometryNodesLazyFunctionLogger::log_socket_value(
const fn::lazy_function::Socket &lf_socket,
const GPointer value,
const fn::lazy_function::Context &context) const
{
const Span<const bNodeSocket *> bsockets =
lf_graph_info_.mapping.bsockets_by_lf_socket_map.lookup(&lf_socket);
if (bsockets.is_empty()) {
return;
}
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
for (const bNodeSocket *bsocket : bsockets) {
/* Avoid logging to some sockets when the same value will also be logged to a linked socket.
* This reduces the number of logged values without losing information. */
if (bsocket->is_input() && bsocket->is_directly_linked()) {
continue;
}
const bNode &bnode = bsocket->owner_node();
if (bnode.is_reroute()) {
continue;
}
tree_logger.log_value(bsocket->owner_node(), *bsocket, value);
}
}
static std::mutex dump_error_context_mutex;
void GeometryNodesLazyFunctionLogger::dump_when_outputs_are_missing(
const lf::FunctionNode &node,
Span<const lf::OutputSocket *> missing_sockets,
const lf::Context &context) const
{
std::lock_guard lock{dump_error_context_mutex};
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, node.name());
std::cout << "Missing outputs:\n";
for (const lf::OutputSocket *socket : missing_sockets) {
std::cout << " " << socket->name() << "\n";
}
}
void GeometryNodesLazyFunctionLogger::dump_when_input_is_set_twice(
const lf::InputSocket &target_socket,
const lf::OutputSocket &from_socket,
const lf::Context &context) const
{
std::lock_guard lock{dump_error_context_mutex};
std::stringstream ss;
ss << from_socket.node().name() << ":" << from_socket.name() << " -> "
<< target_socket.node().name() << ":" << target_socket.name();
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, ss.str());
}
Vector<const lf::FunctionNode *> GeometryNodesLazyFunctionSideEffectProvider::
get_nodes_with_side_effects(const lf::Context &context) const
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
const ComputeContextHash &context_hash = user_data->compute_context->hash();
const GeoNodesModifierData &modifier_data = *user_data->modifier_data;
return modifier_data.side_effect_nodes->lookup(context_hash);
}
GeometryNodesLazyFunctionGraphInfo::GeometryNodesLazyFunctionGraphInfo() = default;
GeometryNodesLazyFunctionGraphInfo::~GeometryNodesLazyFunctionGraphInfo()
{
for (GMutablePointer &p : this->values_to_destruct) {
p.destruct();
}
}
[[maybe_unused]] static void add_thread_id_debug_message(
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info,
const lf::FunctionNode &node,
const lf::Context &context)
{
static std::atomic<int> thread_id_source = 0;
static thread_local const int thread_id = thread_id_source.fetch_add(1);
static thread_local const std::string thread_id_str = "Thread: " + std::to_string(thread_id);
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
/* Find corresponding node based on the socket mapping. */
auto check_sockets = [&](const Span<const lf::Socket *> lf_sockets) {
for (const lf::Socket *lf_socket : lf_sockets) {
const Span<const bNodeSocket *> bsockets =
lf_graph_info.mapping.bsockets_by_lf_socket_map.lookup(lf_socket);
if (!bsockets.is_empty()) {
const bNodeSocket &bsocket = *bsockets[0];
const bNode &bnode = bsocket.owner_node();
tree_logger.debug_messages.append({bnode.identifier, thread_id_str});
return true;
}
}
return false;
};
if (check_sockets(node.inputs().cast<const lf::Socket *>())) {
return;
}
check_sockets(node.outputs().cast<const lf::Socket *>());
}
void GeometryNodesLazyFunctionLogger::log_before_node_execute(const lf::FunctionNode &node,
const lf::Params & /*params*/,
const lf::Context &context) const
{
/* Enable this to see the threads that invoked a node. */
if constexpr (false) {
add_thread_id_debug_message(lf_graph_info_, node, context);
}
}
} // namespace blender::nodes