This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/effect_translucency_frag.glsl
Clément Foucault 131ac2ec82 Fix T70249 EEVEE: Light bleeding on SSS translucency
This was caused by 2 things: Shadow map bias and aliasing.

It made the expected depth of the shadowmap further than the surface
itself in some cases. In normal time this leads to light leaking on normal
shadow mapping but here we need to always have the shadowmap depth above
the shading point.

To fix this, we use a 5 tap inflate filter using the minimum depth of all
5 samples. Using these 5 taps, we can deduce entrance surface derivatives
and there orientation towards the light ray. We use these derivatives to
bias the depth to avoid wrong depth at depth discontinuity in the shadowmap.

This bias can lead to some shadowleaks that are less distracting than the
lightleaks it fixes.

We also add a small bias to counteract the shadowmap depth precision.
2019-10-16 18:58:20 +02:00

220 lines
7.2 KiB
GLSL

in vec4 uvcoordsvar;
out vec4 FragColor;
uniform sampler1D sssTexProfile;
uniform sampler2D sssRadius;
uniform sampler2DArray sssShadowCubes;
uniform sampler2DArray sssShadowCascades;
#define MAX_SSS_SAMPLES 65
#define SSS_LUT_SIZE 64.0
#define SSS_LUT_SCALE ((SSS_LUT_SIZE - 1.0) / float(SSS_LUT_SIZE))
#define SSS_LUT_BIAS (0.5 / float(SSS_LUT_SIZE))
layout(std140) uniform sssProfile
{
vec4 kernel[MAX_SSS_SAMPLES];
vec4 radii_max_radius;
int sss_samples;
};
vec3 sss_profile(float s)
{
s /= radii_max_radius.w;
return texture(sssTexProfile, saturate(s) * SSS_LUT_SCALE + SSS_LUT_BIAS).rgb;
}
#ifndef UTIL_TEX
# define UTIL_TEX
uniform sampler2DArray utilTex;
# define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
float light_translucent_power_with_falloff(LightData ld, vec3 N, vec4 l_vector)
{
float power, falloff;
/* XXX : Removing Area Power. */
/* TODO : put this out of the shader. */
if (ld.l_type >= AREA_RECT) {
power = (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
if (ld.l_type == AREA_ELLIPSE) {
power *= M_PI * 0.25;
}
power *= 0.3 * 20.0 *
max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
power /= (l_vector.w * l_vector.w);
falloff = dot(N, l_vector.xyz / l_vector.w);
}
else if (ld.l_type == SUN) {
power = 1.0 / (1.0 + (ld.l_radius * ld.l_radius * 0.5));
power *= ld.l_radius * ld.l_radius * M_PI; /* Removing area light power*/
power *= M_2PI * 0.78; /* Matching cycles with point light. */
power *= 0.082; /* XXX ad hoc, empirical */
falloff = dot(N, -ld.l_forward);
}
else {
power = (4.0 * ld.l_radius * ld.l_radius) * (1.0 / 10.0);
power *= 1.5; /* XXX ad hoc, empirical */
power /= (l_vector.w * l_vector.w);
falloff = dot(N, l_vector.xyz / l_vector.w);
}
/* No transmittance at grazing angle (hide artifacts) */
return power * saturate(falloff * 2.0);
}
/* Some driver poorly optimize this code. Use direct reference to matrices. */
#define sd(x) shadows_data[x]
#define scube(x) shadows_cube_data[x]
#define scascade(x) shadows_cascade_data[x]
float shadow_cube_radial_depth(vec3 cubevec, float tex_id, int shadow_id)
{
float depth = sample_cube(sssShadowCubes, cubevec, tex_id).r;
/* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
const float depth_bias = 3.1e-5;
depth = saturate(depth - depth_bias);
depth = linear_depth(true, depth, sd(shadow_id).sh_far, sd(shadow_id).sh_near);
depth *= length(cubevec / max_v3(abs(cubevec)));
return depth;
}
vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, vec2 rand, float sss_scale)
{
int shadow_id = int(ld.l_shadowid);
vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);
/* We use the full l_vector.xyz so that the spread is minimize
* if the shading point is further away from the light source */
/* TODO(fclem) do something better than this. */
vec3 T, B;
make_orthonormal_basis(L.xyz / L.w, T, B);
vec3 n;
vec4 depths;
float d, dist;
int data_id = int(sd(shadow_id).sh_data_index);
if (ld.l_type == SUN) {
vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
vec4 weights = step(scascade(data_id).split_end_distances, view_z);
float id = abs(4.0 - dot(weights, weights));
if (id > 3.0) {
return vec3(0.0);
}
/* Same factor as in get_cascade_world_distance(). */
float range = abs(sd(shadow_id).sh_far - sd(shadow_id).sh_near);
vec4 shpos = scascade(data_id).shadowmat[int(id)] * vec4(W, 1.0);
dist = shpos.z * range;
if (shpos.z > 1.0 || shpos.z < 0.0) {
return vec3(0.0);
}
float tex_id = scascade(data_id).sh_tex_index + id;
/* Assume cascades have same height and width. */
vec2 ofs = vec2(1.0, 0.0) / float(textureSize(sssShadowCascades, 0).x);
d = sample_cascade(sssShadowCascades, shpos.xy, tex_id).r;
depths.x = sample_cascade(sssShadowCascades, shpos.xy + ofs.xy, tex_id).r;
depths.y = sample_cascade(sssShadowCascades, shpos.xy + ofs.yx, tex_id).r;
depths.z = sample_cascade(sssShadowCascades, shpos.xy - ofs.xy, tex_id).r;
depths.w = sample_cascade(sssShadowCascades, shpos.xy - ofs.yx, tex_id).r;
/* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
float depth_bias = 3.1e-5;
depths = saturate(depths - depth_bias);
d = saturate(d - depth_bias);
/* Size of a texel in world space.
* FIXME This is only correct if l_right is the same right vector used for shadowmap creation.
* This won't work if the shadow matrix is rotated (soft shadows).
* TODO precompute */
float unit_world_in_uv_space = length(mat3(scascade(data_id).shadowmat[int(id)]) * ld.l_right);
float dx_scale = 2.0 * ofs.x / unit_world_in_uv_space;
d *= range;
depths *= range;
/* This is the normal of the occluder in world space. */
// vec3 T = ld.l_forward * dx + ld.l_right * dx_scale;
// vec3 B = ld.l_forward * dy + ld.l_up * dx_scale;
// n = normalize(cross(T, B));
}
else {
float ofs = 1.0 / float(textureSize(sssShadowCubes, 0).x);
vec3 cubevec = transform_point(scube(data_id).shadowmat, W);
dist = length(cubevec);
cubevec /= dist;
/* tex_id == data_id for cube shadowmap */
float tex_id = float(data_id);
d = shadow_cube_radial_depth(cubevec, tex_id, shadow_id);
/* NOTE: The offset is irregular in respect to cubeface uvs. But it has
* a much more uniform behavior than biasing based on face derivatives. */
depths.x = shadow_cube_radial_depth(cubevec + T * ofs, tex_id, shadow_id);
depths.y = shadow_cube_radial_depth(cubevec + B * ofs, tex_id, shadow_id);
depths.z = shadow_cube_radial_depth(cubevec - T * ofs, tex_id, shadow_id);
depths.w = shadow_cube_radial_depth(cubevec - B * ofs, tex_id, shadow_id);
}
float dx = depths.x - depths.z;
float dy = depths.y - depths.w;
float s = min(d, min_v4(depths));
/* To avoid light leak from depth discontinuity and shadowmap aliasing. */
float slope_bias = (abs(dx) + abs(dy)) * 0.5;
s -= slope_bias;
float delta = dist - s;
float power = light_translucent_power_with_falloff(ld, N, l_vector);
return power * sss_profile(abs(delta) / sss_scale);
}
#undef sd
#undef scube
#undef scsmd
void main(void)
{
vec2 uvs = uvcoordsvar.xy;
float sss_scale = texture(sssRadius, uvs).r;
vec3 W = get_world_space_from_depth(uvs, texture(depthBuffer, uvs).r);
vec3 N = normalize(cross(dFdx(W), dFdy(W)));
vec3 rand = texelfetch_noise_tex(gl_FragCoord.xy).zwy;
rand.xy *= fast_sqrt(rand.z);
vec3 accum = vec3(0.0);
for (int i = 0; i < MAX_LIGHT && i < laNumLight; i++) {
LightData ld = lights_data[i];
/* Only shadowed light can produce translucency */
if (ld.l_shadowid < 0.0) {
continue;
}
vec4 l_vector; /* Non-Normalized Light Vector with length in last component. */
l_vector.xyz = ld.l_position - W;
l_vector.w = length(l_vector.xyz);
float att = light_attenuation(ld, l_vector);
if (att < 1e-8) {
continue;
}
accum += att * ld.l_color * light_translucent(ld, W, -N, l_vector, rand.xy, sss_scale);
}
FragColor = vec4(accum, 1.0);
}