Buffers should actually be cleared before running operations on them, but this doesn't work for some reason. Note also that the sunbeams node can show some creases and hard aliasing when the source point is close to a bright area with strong gradient. To fix this a better filtering algorithm, dithering or ray sampling would need to be implemented. In the meantime simply blurring the sunbeams result a bit should help (or simply avoid putting the source on a bright spot).
339 lines
10 KiB
C++
339 lines
10 KiB
C++
/*
|
|
* Copyright 2014, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor:
|
|
* Lukas Toenne
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "COM_SunBeamsOperation.h"
|
|
|
|
SunBeamsOperation::SunBeamsOperation() : NodeOperation()
|
|
{
|
|
this->addInputSocket(COM_DT_COLOR);
|
|
this->addOutputSocket(COM_DT_COLOR);
|
|
this->setResolutionInputSocketIndex(0);
|
|
|
|
this->setComplex(true);
|
|
}
|
|
|
|
void SunBeamsOperation::initExecution()
|
|
{
|
|
/* convert to pixels */
|
|
this->m_source_px[0] = this->m_data.source[0] * this->getWidth();
|
|
this->m_source_px[1] = this->m_data.source[1] * this->getHeight();
|
|
this->m_ray_length_px = this->m_data.ray_length * max(this->getWidth(), this->getHeight());
|
|
}
|
|
|
|
/**
|
|
* Defines a line accumulator for a specific sector,
|
|
* given by the four matrix entries that rotate from buffer space into the sector
|
|
*
|
|
* (x,y) is used to designate buffer space coordinates
|
|
* (u,v) is used to designate sector space coordinates
|
|
*
|
|
* For a target point (x,y) the sector should be chosen such that
|
|
* ``u >= v >= 0``
|
|
* This removes the need to handle all sorts of special cases.
|
|
*
|
|
* Template parameters:
|
|
* fxu : buffer increment in x for sector u+1
|
|
* fxv : buffer increment in x for sector v+1
|
|
* fyu : buffer increment in y for sector u+1
|
|
* fyv : buffer increment in y for sector v+1
|
|
*/
|
|
template <int fxu, int fxv, int fyu, int fyv>
|
|
struct BufferLineAccumulator {
|
|
|
|
/* utility functions implementing the matrix transform to/from sector space */
|
|
|
|
static inline void buffer_to_sector(const float source[2], int x, int y, int &u, int &v)
|
|
{
|
|
int x0 = (int)source[0];
|
|
int y0 = (int)source[1];
|
|
x -= x0;
|
|
y -= y0;
|
|
u = x * fxu + y * fyu;
|
|
v = x * fxv + y * fyv;
|
|
}
|
|
|
|
static inline void buffer_to_sector(const float source[2], float x, float y, float &u, float &v)
|
|
{
|
|
int x0 = (int)source[0];
|
|
int y0 = (int)source[1];
|
|
x -= (float)x0;
|
|
y -= (float)y0;
|
|
u = x * fxu + y * fyu;
|
|
v = x * fxv + y * fyv;
|
|
}
|
|
|
|
static inline void sector_to_buffer(const float source[2], int u, int v, int &x, int &y)
|
|
{
|
|
int x0 = (int)source[0];
|
|
int y0 = (int)source[1];
|
|
x = x0 + u * fxu + v * fxv;
|
|
y = y0 + u * fyu + v * fyv;
|
|
}
|
|
|
|
static inline void sector_to_buffer(const float source[2], float u, float v, float &x, float &y)
|
|
{
|
|
int x0 = (int)source[0];
|
|
int y0 = (int)source[1];
|
|
x = (float)x0 + u * fxu + v * fxv;
|
|
y = (float)y0 + u * fyu + v * fyv;
|
|
}
|
|
|
|
/**
|
|
* Set up the initial buffer pointer and calculate necessary variables for looping.
|
|
*
|
|
* Note that sector space is centered around the "source" point while the loop starts
|
|
* at dist_min from the target pt. This way the loop can be canceled as soon as it runs
|
|
* out of the buffer rect, because no pixels further along the line can contribute.
|
|
*
|
|
* \param x, y Start location in the buffer
|
|
* \param num Total steps in the loop
|
|
* \param v, dv Vertical offset in sector space, for line offset perpendicular to the loop axis
|
|
*/
|
|
static float *init_buffer_iterator(MemoryBuffer *input, const float source[2], const float co[2],
|
|
float dist_min, float dist_max,
|
|
int &x, int &y, int &num, float &v, float &dv, float &falloff_factor)
|
|
{
|
|
float pu, pv;
|
|
buffer_to_sector(source, co[0], co[1], pu, pv);
|
|
|
|
/* line angle */
|
|
float tan_phi = pv / pu;
|
|
float dr = sqrtf(tan_phi * tan_phi + 1.0f);
|
|
float cos_phi = 1.0f / dr;
|
|
|
|
/* clamp u range to avoid influence of pixels "behind" the source */
|
|
float umin = max_ff(pu - cos_phi * dist_min, 0.0f);
|
|
float umax = max_ff(pu - cos_phi * dist_max, 0.0f);
|
|
v = umin * tan_phi;
|
|
dv = tan_phi;
|
|
|
|
int start = (int)floorf(umax);
|
|
int end = (int)ceilf(umin);
|
|
num = end - start;
|
|
|
|
sector_to_buffer(source, end, (int)ceilf(v), x, y);
|
|
|
|
falloff_factor = dist_max > dist_min ? dr / (float)(dist_max - dist_min) : 0.0f;
|
|
|
|
float *iter = input->getBuffer() + COM_NUMBER_OF_CHANNELS * (x + input->getWidth() * y);
|
|
return iter;
|
|
}
|
|
|
|
/**
|
|
* Perform the actual accumulation along a ray segment from source to pt.
|
|
* Only pixels withing dist_min..dist_max contribute.
|
|
*
|
|
* The loop runs backwards(!) over the primary sector space axis u, i.e. increasing distance to pt.
|
|
* After each step it decrements v by dv < 1, adding a buffer shift when necessary.
|
|
*/
|
|
static void eval(MemoryBuffer *input, float output[4], const float co[2], const float source[2],
|
|
float dist_min, float dist_max)
|
|
{
|
|
rcti rect = *input->getRect();
|
|
int buffer_width = input->getWidth();
|
|
int x, y, num;
|
|
float v, dv;
|
|
float falloff_factor;
|
|
float border[4];
|
|
|
|
zero_v4(output);
|
|
|
|
if ((int)(co[0] - source[0]) == 0 && (int)(co[1] - source[1]) == 0) {
|
|
copy_v4_v4(output, input->getBuffer() + COM_NUMBER_OF_CHANNELS * ((int)source[0] + input->getWidth() * (int)source[1]));
|
|
return;
|
|
}
|
|
|
|
/* initialise the iteration variables */
|
|
float *buffer = init_buffer_iterator(input, source, co, dist_min, dist_max, x, y, num, v, dv, falloff_factor);
|
|
zero_v3(border);
|
|
border[3] = 1.0f;
|
|
|
|
/* v_local keeps track of when to decrement v (see below) */
|
|
float v_local = v - floorf(v);
|
|
|
|
for (int i = 0; i < num; i++) {
|
|
float weight = 1.0f - (float)i * falloff_factor;
|
|
weight *= weight;
|
|
|
|
/* range check, use last valid color when running beyond the image border */
|
|
if (x >= rect.xmin && x < rect.xmax && y >= rect.ymin && y < rect.ymax) {
|
|
madd_v4_v4fl(output, buffer, buffer[3] * weight);
|
|
/* use as border color in case subsequent pixels are out of bounds */
|
|
copy_v4_v4(border, buffer);
|
|
}
|
|
else {
|
|
madd_v4_v4fl(output, border, border[3] * weight);
|
|
}
|
|
|
|
/* TODO implement proper filtering here, see
|
|
* http://en.wikipedia.org/wiki/Lanczos_resampling
|
|
* http://en.wikipedia.org/wiki/Sinc_function
|
|
*
|
|
* using lanczos with x = distance from the line segment,
|
|
* normalized to a == 0.5f, could give a good result
|
|
*
|
|
* for now just divide equally at the end ...
|
|
*/
|
|
|
|
/* decrement u */
|
|
x -= fxu;
|
|
y -= fyu;
|
|
buffer -= (fxu + fyu * buffer_width) * COM_NUMBER_OF_CHANNELS;
|
|
|
|
/* decrement v (in steps of dv < 1) */
|
|
v_local -= dv;
|
|
if (v_local < 0.0f) {
|
|
v_local += 1.0f;
|
|
|
|
x -= fxv;
|
|
y -= fyv;
|
|
buffer -= (fxv + fyv * buffer_width) * COM_NUMBER_OF_CHANNELS;
|
|
}
|
|
}
|
|
|
|
/* normalize */
|
|
if (num > 0) {
|
|
mul_v4_fl(output, 1.0f / (float)num);
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Dispatch function which selects an appropriate accumulator based on the sector of the target point,
|
|
* relative to the source.
|
|
*
|
|
* The BufferLineAccumulator defines the actual loop over the buffer, with an efficient inner loop
|
|
* due to using compile time constants instead of a local matrix variable defining the sector space.
|
|
*/
|
|
static void accumulate_line(MemoryBuffer *input, float output[4], const float co[2], const float source[2],
|
|
float dist_min, float dist_max)
|
|
{
|
|
/* coordinates relative to source */
|
|
float pt_ofs[2] = {co[0] - source[0], co[1] - source[1]};
|
|
|
|
/* The source sectors are defined like so:
|
|
*
|
|
* \ 3 | 2 /
|
|
* \ | /
|
|
* 4 \ | / 1
|
|
* \|/
|
|
* -----------
|
|
* /|\
|
|
* 5 / | \ 8
|
|
* / | \
|
|
* / 6 | 7 \
|
|
*
|
|
* The template arguments encode the transformation into "sector space",
|
|
* by means of rotation/mirroring matrix elements.
|
|
*/
|
|
|
|
if (fabsf(pt_ofs[1]) > fabsf(pt_ofs[0])) {
|
|
if (pt_ofs[0] > 0.0f) {
|
|
if (pt_ofs[1] > 0.0f) {
|
|
/* 2 */
|
|
BufferLineAccumulator<0, 1, 1, 0>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
else {
|
|
/* 7 */
|
|
BufferLineAccumulator<0, 1, -1, 0>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
}
|
|
else {
|
|
if (pt_ofs[1] > 0.0f) {
|
|
/* 3 */
|
|
BufferLineAccumulator<0, -1, 1, 0>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
else {
|
|
/* 6 */
|
|
BufferLineAccumulator<0, -1, -1, 0>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (pt_ofs[0] > 0.0f) {
|
|
if (pt_ofs[1] > 0.0f) {
|
|
/* 1 */
|
|
BufferLineAccumulator< 1, 0, 0, 1>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
else {
|
|
/* 8 */
|
|
BufferLineAccumulator< 1, 0, 0, -1>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
}
|
|
else {
|
|
if (pt_ofs[1] > 0.0f) {
|
|
/* 4 */
|
|
BufferLineAccumulator<-1, 0, 0, 1>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
else {
|
|
/* 5 */
|
|
BufferLineAccumulator<-1, 0, 0, -1>::eval(input, output, co, source, dist_min, dist_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void *SunBeamsOperation::initializeTileData(rcti *rect)
|
|
{
|
|
void *buffer = getInputOperation(0)->initializeTileData(NULL);
|
|
return buffer;
|
|
}
|
|
|
|
void SunBeamsOperation::executePixel(float output[4], int x, int y, void *data)
|
|
{
|
|
const float co[2] = {(float)x, (float)y};
|
|
|
|
accumulate_line((MemoryBuffer *)data, output, co, this->m_source_px, 0.0f, this->m_ray_length_px);
|
|
}
|
|
|
|
static void calc_ray_shift(rcti *rect, float x, float y, const float source[2], float ray_length)
|
|
{
|
|
float co[2] = {(float)x, (float)y};
|
|
float dir[2], dist;
|
|
|
|
/* move (x,y) vector toward the source by ray_length distance */
|
|
sub_v2_v2v2(dir, co, source);
|
|
dist = normalize_v2(dir);
|
|
mul_v2_fl(dir, min_ff(dist, ray_length));
|
|
sub_v2_v2(co, dir);
|
|
|
|
int ico[2] = {(int)co[0], (int)co[1]};
|
|
BLI_rcti_do_minmax_v(rect, ico);
|
|
}
|
|
|
|
bool SunBeamsOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
|
|
{
|
|
/* Enlarges the rect by moving each corner toward the source.
|
|
* This is the maximum distance that pixels can influence each other
|
|
* and gives a rect that contains all possible accumulated pixels.
|
|
*/
|
|
rcti rect = *input;
|
|
calc_ray_shift(&rect, input->xmin, input->ymin, this->m_source_px, this->m_ray_length_px);
|
|
calc_ray_shift(&rect, input->xmin, input->ymax, this->m_source_px, this->m_ray_length_px);
|
|
calc_ray_shift(&rect, input->xmax, input->ymin, this->m_source_px, this->m_ray_length_px);
|
|
calc_ray_shift(&rect, input->xmax, input->ymax, this->m_source_px, this->m_ray_length_px);
|
|
|
|
return NodeOperation::determineDependingAreaOfInterest(&rect, readOperation, output);
|
|
}
|
|
|