This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/release/scripts/modules/rigify/finger_curl.py
Joshua Leung a9861e3381 Durian Request: Drivers Recode
Highlights:
* Support for Multi-Target Variables
This was the main reason for this recode. Previously, variables could only be used to give some RNA property used as an input source to the driver a name. However, this meant that effects such as Rotational Difference couldn't be used in conjunction with other effects and/or settings to achieve the powerful results. Now, a variable can take several input targets, perform some interesting operations on them, and spit out a representative value based on that.

* New Variable Types
With the introduction of multi-target variables, there are now 3 types of variable that can be used: single property (i.e. the only type previously), Rotational Difference (angle between two bones), and Distance (distance between two objects or bones).

* New Driver Types
In addition to the existing 'Average', 'Sum', and 'Expression' types, there is now the additional options of 'Minimum' and 'Maximum'. These take the smallest/largest value that one of the variables evaluates to.

* Fix for Driver F-Curve colouring bug 
Newly added drivers did not get automatically coloured in the Graph Editor properly. Was caused by inappropriate notifiers being used.


Notes:
* This commit breaks existing 2.5 files with drivers (in other words, they are lost forever). 
* Rigify has been corrected to work with the new system. The PyAPI for accessing targets used for the variables could still be made nicer (using subclassing to directly access?), but that is left for later.
* Version patching for 2.49 files still needs to be put back in place.
2010-01-04 21:15:45 +00:00

292 lines
9.0 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from rigify import RigifyError, get_layer_dict
from rigify_utils import copy_bone_simple, get_side_name
from rna_prop_ui import rna_idprop_ui_prop_get
from functools import reduce
METARIG_NAMES = "finger_01", "finger_02", "finger_03"
def metarig_template():
# generated by rigify.write_meta_rig
bpy.ops.object.mode_set(mode='EDIT')
obj = bpy.context.active_object
arm = obj.data
bone = arm.edit_bones.new('finger.01')
bone.head[:] = 0.0000, 0.0000, 0.0000
bone.tail[:] = 0.0353, -0.0184, -0.0053
bone.roll = -2.8722
bone.connected = False
bone = arm.edit_bones.new('finger.02')
bone.head[:] = 0.0353, -0.0184, -0.0053
bone.tail[:] = 0.0702, -0.0364, -0.0146
bone.roll = -2.7099
bone.connected = True
bone.parent = arm.edit_bones['finger.01']
bone = arm.edit_bones.new('finger.03')
bone.head[:] = 0.0702, -0.0364, -0.0146
bone.tail[:] = 0.0903, -0.0461, -0.0298
bone.roll = -2.1709
bone.connected = True
bone.parent = arm.edit_bones['finger.02']
bpy.ops.object.mode_set(mode='OBJECT')
pbone = obj.pose.bones['finger.01']
pbone['type'] = 'finger_curl'
def metarig_definition(obj, orig_bone_name):
'''
The bone given is the first in a chain
Expects a chain of at least 2 children.
eg.
finger -> finger_01 -> finger_02
'''
bone_definition = []
orig_bone = obj.data.bones[orig_bone_name]
bone_definition.append(orig_bone.name)
bone = orig_bone
chain = 0
while chain < 2: # first 2 bones only have 1 child
children = bone.children
if len(children) != 1:
raise RigifyError("expected the chain to have 2 children from bone '%s' without a fork" % orig_bone_name)
bone = children[0]
bone_definition.append(bone.name) # finger_02, finger_03
chain += 1
if len(bone_definition) != len(METARIG_NAMES):
raise RigifyError("internal problem, expected %d bones" % len(METARIG_NAMES))
return bone_definition
def deform(obj, definitions, base_names, options):
""" Creates the deform rig.
"""
bpy.ops.object.mode_set(mode='EDIT')
# Create base digit bones: two bones, each half of the base digit.
f1a = copy_bone_simple(obj.data, definitions[0], "DEF-%s.01" % base_names[definitions[0]], parent=True)
f1b = copy_bone_simple(obj.data, definitions[0], "DEF-%s.02" % base_names[definitions[0]], parent=True)
f1a.connected = False
f1b.connected = False
f1b.parent = f1a
center = f1a.center
f1a.tail = center
f1b.head = center
# Create the other deform bones.
f2 = copy_bone_simple(obj.data, definitions[1], "DEF-%s" % base_names[definitions[1]], parent=True)
f3 = copy_bone_simple(obj.data, definitions[2], "DEF-%s" % base_names[definitions[2]], parent=True)
# Store names before leaving edit mode
f1a_name = f1a.name
f1b_name = f1b.name
f2_name = f2.name
f3_name = f3.name
# Leave edit mode
bpy.ops.object.mode_set(mode='OBJECT')
# Get the pose bones
f1a = obj.pose.bones[f1a_name]
f1b = obj.pose.bones[f1b_name]
f2 = obj.pose.bones[f2_name]
f3 = obj.pose.bones[f3_name]
# Constrain the base digit's bones
con = f1a.constraints.new('DAMPED_TRACK')
con.name = "trackto"
con.target = obj
con.subtarget = definitions[1]
con = f1a.constraints.new('COPY_SCALE')
con.name = "copy_scale"
con.target = obj
con.subtarget = definitions[0]
con = f1b.constraints.new('COPY_ROTATION')
con.name = "copy_rot"
con.target = obj
con.subtarget = definitions[0]
# Constrain the other digit's bones
con = f2.constraints.new('COPY_TRANSFORMS')
con.name = "copy_transforms"
con.target = obj
con.subtarget = definitions[1]
con = f3.constraints.new('COPY_TRANSFORMS')
con.name = "copy_transforms"
con.target = obj
con.subtarget = definitions[2]
def main(obj, bone_definition, base_names, options):
# *** EDITMODE
# get assosiated data
arm = obj.data
orig_ebone = arm.edit_bones[bone_definition[0]]
obj.animation_data_create() # needed if its a new armature with no keys
children = orig_ebone.children_recursive
tot_len = reduce(lambda f, ebone: f + ebone.length, children, orig_ebone.length)
# FIXME, the line below is far too arbitrary
base_name = base_names[bone_definition[0]].rsplit(".", 2)[0]
# first make a new bone at the location of the finger
#control_ebone = arm.edit_bones.new(base_name)
control_ebone = copy_bone_simple(arm, bone_definition[0], base_name + get_side_name(base_names[bone_definition[0]]), parent=True)
control_bone_name = control_ebone.name # we dont know if we get the name requested
control_ebone.connected = orig_ebone.connected
control_ebone.parent = orig_ebone.parent
control_ebone.length = tot_len
# now add bones inbetween this and its children recursively
# switching modes so store names only!
children = [ebone.name for ebone in children]
driver_bone_pairs = []
for child_bone_name in children:
child_ebone = arm.edit_bones[child_bone_name]
# finger.02 --> finger_driver.02
driver_bone_name = child_bone_name.split('.')
driver_bone_name = driver_bone_name[0] + "_driver." + ".".join(driver_bone_name[1:])
driver_ebone = copy_bone_simple(arm, child_ebone.name, driver_bone_name)
driver_ebone.length *= 0.5
# Insert driver_ebone in the chain without connected parents
driver_ebone.connected = False
driver_ebone.parent = child_ebone.parent
child_ebone.connected = False
child_ebone.parent = driver_ebone
# Add the drivers to these when in posemode.
driver_bone_pairs.append((child_bone_name, driver_bone_name))
del control_ebone
deform(obj, bone_definition, base_names, options)
# *** POSEMODE
bpy.ops.object.mode_set(mode='OBJECT')
orig_pbone = obj.pose.bones[bone_definition[0]]
control_pbone = obj.pose.bones[control_bone_name]
# only allow Y scale
control_pbone.lock_scale = (True, False, True)
control_pbone["bend_ratio"] = 0.4
prop = rna_idprop_ui_prop_get(control_pbone, "bend_ratio", create=True)
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
con = orig_pbone.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = control_bone_name
con = orig_pbone.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = control_bone_name
# setup child drivers on each new smaller bone added. assume 2 for now.
# drives the bones
controller_path = control_pbone.path_to_id() # 'pose.bones["%s"]' % control_bone_name
i = 0
for child_bone_name, driver_bone_name in driver_bone_pairs:
# XXX - todo, any number
if i == 2:
break
driver_pbone = obj.pose.bones[driver_bone_name]
driver_pbone.rotation_mode = 'YZX'
fcurve_driver = driver_pbone.driver_add("rotation_euler", 0)
#obj.driver_add('pose.bones["%s"].scale', 1)
#obj.animation_data.drivers[-1] # XXX, WATCH THIS
driver = fcurve_driver.driver
# scale target
var = driver.variables.new()
var.name = "scale"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = obj
var.targets[0].data_path = controller_path + '.scale[1]'
# bend target
var = driver.variables.new()
var.name = "br"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = obj
var.targets[0].data_path = controller_path + '["bend_ratio"]'
# XXX - todo, any number
if i == 0:
driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)'
elif i == 1:
driver.expression = '(-scale+1.0)*pi*2.0*br'
child_pbone = obj.pose.bones[child_bone_name]
# only allow X rotation
driver_pbone.lock_rotation = child_pbone.lock_rotation = (False, True, True)
i += 1
# last step setup layers
layers = get_layer_dict(options)
lay = layers["extra"]
for child_bone_name, driver_bone_name in driver_bone_pairs:
arm.bones[driver_bone_name].layer = lay
lay = layers["main"]
arm.bones[control_bone_name].layer = lay
# no blending the result of this
return None