This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/effect.c
Brecht Van Lommel c8b4cf9206 2.50:
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD

Notes:
* Game and sequencer RNA, and sequencer header are now out of date
  a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
  not needed anymore.
  * Fix "duplicate strip" always increase the user count for ipo.
  * IPO pinning on sequencer strips was lost during Undo.
2009-06-08 20:08:19 +00:00

562 lines
14 KiB
C

/* effect.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_ipo_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_jitter.h"
#include "BLI_rand.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* needed for where_on_path */
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_collision.h"
#include "BKE_constraint.h"
#include "BKE_deform.h"
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_DerivedMesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
#include "RE_render_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#endif // DISABLE_ELBEEM
//XXX #include "BIF_screen.h"
/* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
typedef struct VeNoCo {
float co[3], no[3];
} VeNoCo;
/* ***************** PARTICLES ***************** */
/* deprecated, only keep this for readfile.c */
PartEff *give_parteff(Object *ob)
{
PartEff *paf;
paf= ob->effect.first;
while(paf) {
if(paf->type==EFF_PARTICLE) return paf;
paf= paf->next;
}
return 0;
}
void free_effect(Effect *eff)
{
PartEff *paf;
if(eff->type==EFF_PARTICLE) {
paf= (PartEff *)eff;
if(paf->keys) MEM_freeN(paf->keys);
}
MEM_freeN(eff);
}
void free_effects(ListBase *lb)
{
Effect *eff;
eff= lb->first;
while(eff) {
BLI_remlink(lb, eff);
free_effect(eff);
eff= lb->first;
}
}
/* -------------------------- Effectors ------------------ */
static void add_to_effectorcache(ListBase *lb, Scene *scene, Object *ob, Object *obsrc)
{
pEffectorCache *ec;
PartDeflect *pd= ob->pd;
if(pd->forcefield == PFIELD_GUIDE) {
if(ob->type==OB_CURVE && obsrc->type==OB_MESH) { /* guides only do mesh particles */
Curve *cu= ob->data;
if(cu->flag & CU_PATH) {
if(cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(scene, ob, 0);
if(cu->path && cu->path->data) {
ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
ec->ob= ob;
BLI_addtail(lb, ec);
}
}
}
}
else if(pd->forcefield) {
if(pd->forcefield == PFIELD_WIND)
{
pd->rng = rng_new(pd->seed);
}
ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
ec->ob= ob;
BLI_addtail(lb, ec);
}
}
/* returns ListBase handle with objects taking part in the effecting */
ListBase *pdInitEffectors(Scene *scene, Object *obsrc, Group *group)
{
static ListBase listb={NULL, NULL};
pEffectorCache *ec;
Base *base;
unsigned int layer= obsrc->lay;
if(group) {
GroupObject *go;
for(go= group->gobject.first; go; go= go->next) {
if( (go->ob->lay & layer) && go->ob->pd && go->ob!=obsrc) {
add_to_effectorcache(&listb, scene, go->ob, obsrc);
}
}
}
else {
for(base = scene->base.first; base; base= base->next) {
if( (base->lay & layer) && base->object->pd && base->object!=obsrc) {
add_to_effectorcache(&listb, scene, base->object, obsrc);
}
}
}
/* make a full copy */
for(ec= listb.first; ec; ec= ec->next) {
ec->obcopy= *(ec->ob);
}
if(listb.first)
return &listb;
return NULL;
}
void pdEndEffectors(ListBase *lb)
{
if(lb) {
pEffectorCache *ec;
/* restore full copy */
for(ec= lb->first; ec; ec= ec->next)
{
if(ec->ob->pd && (ec->ob->pd->forcefield == PFIELD_WIND))
rng_free(ec->ob->pd->rng);
*(ec->ob)= ec->obcopy;
}
BLI_freelistN(lb);
}
}
/************************************************/
/* Effectors */
/************************************************/
// triangle - ray callback function
static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
// whenever we hit a bounding box, we don't check further
hit->dist = -1;
hit->index = 1;
}
// get visibility of a wind ray
static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir)
{
CollisionModifierData **collobjs = NULL;
int numcollobj = 0, i;
float norm[3], len = 0.0;
float visibility = 1.0;
collobjs = get_collisionobjects(scene, ob, &numcollobj);
if(!collobjs)
return 0;
VECCOPY(norm, dir);
VecNegf(norm);
len = Normalize(norm);
// check all collision objects
for(i = 0; i < numcollobj; i++)
{
CollisionModifierData *collmd = collobjs[i];
if(collmd->bvhtree)
{
BVHTreeRayHit hit;
hit.index = -1;
hit.dist = len + FLT_EPSILON;
// check if the way is blocked
if(BLI_bvhtree_ray_cast(collmd->bvhtree, co, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
{
// visibility is only between 0 and 1, calculated from 1-absorption
visibility *= MAX2(0.0, MIN2(1.0, (1.0-((float)collmd->absorption)*0.01)));
if(visibility <= 0.0f)
break;
}
}
}
MEM_freeN(collobjs);
return visibility;
}
// noise function for wind e.g.
static float wind_func(struct RNG *rng, float strength)
{
int random = (rng_getInt(rng)+1) % 128; // max 2357
float force = rng_getFloat(rng) + 1.0f;
float ret;
float sign = 0;
sign = ((float)random > 64.0) ? 1.0: -1.0; // dividing by 2 is not giving equal sign distribution
ret = sign*((float)random / force)*strength/128.0f;
return ret;
}
/* maxdist: zero effect from this distance outwards (if usemax) */
/* mindist: full effect up to this distance (if usemin) */
/* power: falloff with formula 1/r^power */
static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
{
/* first quick checks */
if(usemax && fac > maxdist)
return 0.0f;
if(usemin && fac < mindist)
return 1.0f;
if(!usemin)
mindist = 0.0;
return pow((double)1.0+fac-mindist, (double)-power);
}
static float falloff_func_dist(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
}
static float falloff_func_rad(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
}
float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
{
float eff_dir[3], temp[3];
float falloff=1.0, fac, r_fac;
if(pd->forcefield==PFIELD_LENNARDJ)
return falloff; /* Lennard-Jones field has it's own falloff built in */
VecCopyf(eff_dir,eff_velocity);
Normalize(eff_dir);
if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
falloff=0.0f;
else switch(pd->falloff){
case PFIELD_FALL_SPHERE:
fac=VecLength(vec_to_part);
falloff= falloff_func_dist(pd, fac);
break;
case PFIELD_FALL_TUBE:
fac=Inpf(vec_to_part,eff_dir);
falloff= falloff_func_dist(pd, ABS(fac));
if(falloff == 0.0f)
break;
VECADDFAC(temp,vec_to_part,eff_dir,-fac);
r_fac=VecLength(temp);
falloff*= falloff_func_rad(pd, r_fac);
break;
case PFIELD_FALL_CONE:
fac=Inpf(vec_to_part,eff_dir);
falloff= falloff_func_dist(pd, ABS(fac));
if(falloff == 0.0f)
break;
r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
falloff*= falloff_func_rad(pd, r_fac);
break;
}
return falloff;
}
void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, float force_val, float distance, float falloff, float size, float damp, float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar, struct RNG *rng, float noise_factor, float charge, float pa_size)
{
float mag_vec[3]={0,0,0};
float temp[3], temp2[3];
float eff_vel[3];
float noise = 0, visibility;
// calculate visibility
visibility = eff_calc_visibility(scene, ob, opco, vec_to_part);
if(visibility <= 0.0)
return;
falloff *= visibility;
VecCopyf(eff_vel,eff_velocity);
Normalize(eff_vel);
switch(type){
case PFIELD_WIND:
VECCOPY(mag_vec,eff_vel);
// add wind noise here, only if we have wind
if((noise_factor > 0.0f) && (force_val > FLT_EPSILON))
noise = wind_func(rng, noise_factor);
VecMulf(mag_vec,(force_val+noise)*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_FORCE:
if(planar)
Projf(mag_vec,vec_to_part,eff_vel);
else
VecCopyf(mag_vec,vec_to_part);
Normalize(mag_vec);
VecMulf(mag_vec,force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_VORTEX:
Crossf(mag_vec,eff_vel,vec_to_part);
Normalize(mag_vec);
VecMulf(mag_vec,force_val*distance*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_MAGNET:
if(planar)
VecCopyf(temp,eff_vel);
else
/* magnetic field of a moving charge */
Crossf(temp,eff_vel,vec_to_part);
Normalize(temp);
Crossf(temp2,velocity,temp);
VecAddf(mag_vec,mag_vec,temp2);
VecMulf(mag_vec,force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_HARMONIC:
if(planar)
Projf(mag_vec,vec_to_part,eff_vel);
else
VecCopyf(mag_vec,vec_to_part);
VecMulf(mag_vec,force_val*falloff);
VecSubf(field,field,mag_vec);
VecCopyf(mag_vec,velocity);
VecMulf(mag_vec,damp*2.0f*(float)sqrt(force_val));
VecSubf(field,field,mag_vec);
break;
case PFIELD_CHARGE:
if(planar)
Projf(mag_vec,vec_to_part,eff_vel);
else
VecCopyf(mag_vec,vec_to_part);
Normalize(mag_vec);
VecMulf(mag_vec,charge*force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_LENNARDJ:
{
float fac;
if(planar) {
Projf(mag_vec,vec_to_part,eff_vel);
distance = VecLength(mag_vec);
}
else
VecCopyf(mag_vec,vec_to_part);
/* at this distance the field is 60 times weaker than maximum */
if(distance > 2.22 * (size+pa_size))
break;
fac = pow((size+pa_size)/distance,6.0);
fac = - fac * (1.0 - fac) / distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac>2.0) ? 2.0 : fac);
/* 0.003715 is the fac value at 2.22 times (size+pa_size),
substracted to avoid discontinuity at the border
*/
VecMulf(mag_vec, force_val * (fac-0.0037315));
VecAddf(field,field,mag_vec);
break;
}
}
}
/* -------- pdDoEffectors() --------
generic force/speed system, now used for particles and softbodies
scene = scene where it runs in, for time and stuff
lb = listbase with objects that take part in effecting
opco = global coord, as input
force = force accumulator
speed = actual current speed which can be altered
cur_time = "external" time in frames, is constant for static particles
loc_time = "local" time in frames, range <0-1> for the lifetime of particle
par_layer = layer the caller is in
flags = only used for softbody wind now
guide = old speed of particle
*/
void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float *speed, float cur_time, float loc_time, unsigned int flags)
{
/*
Modifies the force on a particle according to its
relation with the effector object
Different kind of effectors include:
Forcefields: Gravity-like attractor
(force power is related to the inverse of distance to the power of a falloff value)
Vortex fields: swirling effectors
(particles rotate around Z-axis of the object. otherwise, same relation as)
(Forcefields, but this is not done through a force/acceleration)
Guide: particles on a path
(particles are guided along a curve bezier or old nurbs)
(is independent of other effectors)
*/
Object *ob;
pEffectorCache *ec;
PartDeflect *pd;
float distance, vec_to_part[3];
float falloff;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
for(ec = lb->first; ec; ec= ec->next) {
/* object effectors were fully checked to be OK to evaluate! */
ob= ec->ob;
pd= ob->pd;
/* Get IPO force strength and fall off values here */
where_is_object_time(scene, ob, cur_time);
/* use center of object for distance calculus */
VecSubf(vec_to_part, opco, ob->obmat[3]);
distance = VecLength(vec_to_part);
falloff=effector_falloff(pd,ob->obmat[2],vec_to_part);
if(falloff<=0.0f)
; /* don't do anything */
else {
float field[3]={0,0,0}, tmp[3];
VECCOPY(field, force);
do_physical_effector(scene, ob, opco, pd->forcefield,pd->f_strength,distance,
falloff, pd->f_dist, pd->f_damp, ob->obmat[2], vec_to_part,
speed,force, pd->flag&PFIELD_PLANAR, pd->rng, pd->f_noise, 0.0f, 0.0f);
// for softbody backward compatibility
if(flags & PE_WIND_AS_SPEED){
VECSUB(tmp, force, field);
VECSUB(speed, speed, tmp);
}
}
}
}