This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_signature.hh
Campbell Barton c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00

182 lines
5.0 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup fn
*
* The signature of a multi-function contains the functions name and expected parameters. New
* signatures should be build using the #MFSignatureBuilder class.
*/
#include "FN_multi_function_param_type.hh"
#include "BLI_vector.hh"
namespace blender::fn {
struct MFSignature {
/**
* The name should be statically allocated so that it lives longer than this signature. This is
* used instead of an #std::string because of the overhead when many functions are created.
* If the name of the function has to be more dynamic for debugging purposes, override
* #MultiFunction::debug_name() instead. Then the dynamic name will only be computed when it is
* actually needed.
*/
const char *function_name;
Vector<const char *> param_names;
Vector<MFParamType> param_types;
Vector<int> param_data_indices;
bool depends_on_context = false;
int data_index(int param_index) const
{
return param_data_indices[param_index];
}
};
class MFSignatureBuilder {
private:
MFSignature signature_;
int span_count_ = 0;
int virtual_array_count_ = 0;
int virtual_vector_array_count_ = 0;
int vector_array_count_ = 0;
public:
MFSignatureBuilder(const char *function_name)
{
signature_.function_name = function_name;
}
MFSignature build() const
{
return std::move(signature_);
}
/* Input Parameter Types */
template<typename T> void single_input(const char *name)
{
this->single_input(name, CPPType::get<T>());
}
void single_input(const char *name, const CPPType &type)
{
this->input(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_input(const char *name)
{
this->vector_input(name, CPPType::get<T>());
}
void vector_input(const char *name, const CPPType &base_type)
{
this->input(name, MFDataType::ForVector(base_type));
}
void input(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Input, data_type));
switch (data_type.category()) {
case MFDataType::Single:
signature_.param_data_indices.append(virtual_array_count_++);
break;
case MFDataType::Vector:
signature_.param_data_indices.append(virtual_vector_array_count_++);
break;
}
}
/* Output Parameter Types */
template<typename T> void single_output(const char *name)
{
this->single_output(name, CPPType::get<T>());
}
void single_output(const char *name, const CPPType &type)
{
this->output(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_output(const char *name)
{
this->vector_output(name, CPPType::get<T>());
}
void vector_output(const char *name, const CPPType &base_type)
{
this->output(name, MFDataType::ForVector(base_type));
}
void output(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Output, data_type));
switch (data_type.category()) {
case MFDataType::Single:
signature_.param_data_indices.append(span_count_++);
break;
case MFDataType::Vector:
signature_.param_data_indices.append(vector_array_count_++);
break;
}
}
/* Mutable Parameter Types */
template<typename T> void single_mutable(const char *name)
{
this->single_mutable(name, CPPType::get<T>());
}
void single_mutable(const char *name, const CPPType &type)
{
this->mutable_(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_mutable(const char *name)
{
this->vector_mutable(name, CPPType::get<T>());
}
void vector_mutable(const char *name, const CPPType &base_type)
{
this->mutable_(name, MFDataType::ForVector(base_type));
}
void mutable_(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Mutable, data_type));
switch (data_type.category()) {
case MFDataType::Single:
signature_.param_data_indices.append(span_count_++);
break;
case MFDataType::Vector:
signature_.param_data_indices.append(vector_array_count_++);
break;
}
}
void add(const char *name, const MFParamType &param_type)
{
switch (param_type.interface_type()) {
case MFParamType::Input:
this->input(name, param_type.data_type());
break;
case MFParamType::Mutable:
this->mutable_(name, param_type.data_type());
break;
case MFParamType::Output:
this->output(name, param_type.data_type());
break;
}
}
/* Context */
/** This indicates that the function accesses the context. This disables optimizations that
* depend on the fact that the function always performers the same operation. */
void depends_on_context()
{
signature_.depends_on_context = true;
}
};
} // namespace blender::fn