This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/effect.c
Sebastian Parborg cf2baa585c Fix T81707: Spline IK Joints "Floating" above curve
The issue was that where_on_path uses a resampled curve to get the data
from the curve. This leads to disconnects between the curve the user
sees and the evaluated location data.

To fix this we simply use the actual curve data the user can see.

The older code needed a cleanup either way as there were hacks in other
parts of the code trying to work around some brokenness. This is now
fixed and we no longer need to clamp the evaluation range to 0-1 or make
helper functions to make it do what we actually want.

Reviewed By: Campbell, Sybren

Differential Revision: http://developer.blender.org/D10898
2021-04-08 15:52:33 +02:00

1416 lines
39 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <stdarg.h>
#include <stddef.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_collection_types.h"
#include "DNA_curve_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_force_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BLI_blenlib.h"
#include "BLI_ghash.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "BLI_utildefines.h"
#include "PIL_time.h"
#include "BKE_anim_path.h" /* needed for where_on_path */
#include "BKE_bvhutils.h"
#include "BKE_collection.h"
#include "BKE_collision.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_fluid.h"
#include "BKE_global.h"
#include "BKE_layer.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_physics.h"
#include "DEG_depsgraph_query.h"
#include "RE_texture.h"
EffectorWeights *BKE_effector_add_weights(Collection *collection)
{
EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
for (int i = 0; i < NUM_PFIELD_TYPES; i++) {
weights->weight[i] = 1.0f;
}
weights->global_gravity = 1.0f;
weights->group = collection;
return weights;
}
PartDeflect *BKE_partdeflect_new(int type)
{
PartDeflect *pd;
pd = MEM_callocN(sizeof(PartDeflect), "PartDeflect");
pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->pdef_cfrict = 5.0f;
pd->seed = ((uint)(ceil(PIL_check_seconds_timer())) + 1) % 128;
pd->f_strength = 1.0f;
pd->f_damp = 1.0f;
/* set sensible defaults based on type */
switch (type) {
case PFIELD_VORTEX:
pd->shape = PFIELD_SHAPE_PLANE;
break;
case PFIELD_WIND:
pd->shape = PFIELD_SHAPE_PLANE;
pd->f_flow = 1.0f; /* realistic wind behavior */
pd->f_wind_factor = 1.0f; /* only act perpendicularly to a surface */
break;
case PFIELD_TEXTURE:
pd->f_size = 1.0f;
break;
case PFIELD_FLUIDFLOW:
pd->f_flow = 1.0f;
break;
}
pd->flag = PFIELD_DO_LOCATION | PFIELD_DO_ROTATION | PFIELD_CLOTH_USE_CULLING;
return pd;
}
/************************ PARTICLES ***************************/
PartDeflect *BKE_partdeflect_copy(const struct PartDeflect *pd_src)
{
if (pd_src == NULL) {
return NULL;
}
PartDeflect *pd_dst = MEM_dupallocN(pd_src);
if (pd_dst->rng != NULL) {
pd_dst->rng = BLI_rng_copy(pd_dst->rng);
}
return pd_dst;
}
void BKE_partdeflect_free(PartDeflect *pd)
{
if (!pd) {
return;
}
if (pd->rng) {
BLI_rng_free(pd->rng);
}
MEM_freeN(pd);
}
/******************** EFFECTOR RELATIONS ***********************/
static void precalculate_effector(struct Depsgraph *depsgraph, EffectorCache *eff)
{
float ctime = DEG_get_ctime(depsgraph);
uint cfra = (uint)(ctime >= 0 ? ctime : -ctime);
if (!eff->pd->rng) {
eff->pd->rng = BLI_rng_new(eff->pd->seed + cfra);
}
else {
BLI_rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
}
if (eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type == OB_CURVE) {
Curve *cu = eff->ob->data;
if (cu->flag & CU_PATH) {
if (eff->ob->runtime.curve_cache == NULL ||
eff->ob->runtime.curve_cache->anim_path_accum_length == NULL) {
BKE_displist_make_curveTypes(depsgraph, eff->scene, eff->ob, false, false);
}
if (eff->ob->runtime.curve_cache->anim_path_accum_length) {
BKE_where_on_path(
eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
mul_m4_v3(eff->ob->obmat, eff->guide_loc);
mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
}
}
}
else if (eff->pd->shape == PFIELD_SHAPE_SURFACE) {
eff->surmd = (SurfaceModifierData *)BKE_modifiers_findby_type(eff->ob, eModifierType_Surface);
if (eff->ob->type == OB_CURVE) {
eff->flag |= PE_USE_NORMAL_DATA;
}
}
else if (eff->psys) {
psys_update_particle_tree(eff->psys, ctime);
}
}
static void add_effector_relation(ListBase *relations,
Object *ob,
ParticleSystem *psys,
PartDeflect *pd)
{
EffectorRelation *relation = MEM_callocN(sizeof(EffectorRelation), "EffectorRelation");
relation->ob = ob;
relation->psys = psys;
relation->pd = pd;
BLI_addtail(relations, relation);
}
static void add_effector_evaluation(ListBase **effectors,
Depsgraph *depsgraph,
Scene *scene,
Object *ob,
ParticleSystem *psys,
PartDeflect *pd)
{
if (*effectors == NULL) {
*effectors = MEM_callocN(sizeof(ListBase), "effector effectors");
}
EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
eff->depsgraph = depsgraph;
eff->scene = scene;
eff->ob = ob;
eff->psys = psys;
eff->pd = pd;
eff->frame = -1;
BLI_addtail(*effectors, eff);
precalculate_effector(depsgraph, eff);
}
/* Create list of effector relations in the collection or entire scene.
* This is used by the depsgraph to build relations, as well as faster
* lookup of effectors during evaluation. */
ListBase *BKE_effector_relations_create(Depsgraph *depsgraph,
ViewLayer *view_layer,
Collection *collection)
{
Base *base = BKE_collection_or_layer_objects(view_layer, collection);
const bool for_render = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
const int base_flag = (for_render) ? BASE_ENABLED_RENDER : BASE_ENABLED_VIEWPORT;
ListBase *relations = MEM_callocN(sizeof(ListBase), "effector relations");
for (; base; base = base->next) {
if (!(base->flag & base_flag)) {
continue;
}
Object *ob = base->object;
if (ob->pd && ob->pd->forcefield) {
add_effector_relation(relations, ob, NULL, ob->pd);
}
LISTBASE_FOREACH (ParticleSystem *, psys, &ob->particlesystem) {
ParticleSettings *part = psys->part;
if (psys_check_enabled(ob, psys, for_render)) {
if (part->pd && part->pd->forcefield) {
add_effector_relation(relations, ob, psys, part->pd);
}
if (part->pd2 && part->pd2->forcefield) {
add_effector_relation(relations, ob, psys, part->pd2);
}
}
}
}
return relations;
}
void BKE_effector_relations_free(ListBase *lb)
{
if (lb) {
BLI_freelistN(lb);
MEM_freeN(lb);
}
}
/* Check that the force field isn't disabled via its flags. */
static bool is_effector_enabled(PartDeflect *pd, bool use_rotation)
{
switch (pd->forcefield) {
case PFIELD_BOID:
case PFIELD_GUIDE:
return true;
case PFIELD_TEXTURE:
return (pd->flag & PFIELD_DO_LOCATION) != 0 && pd->tex != NULL;
default:
if (use_rotation) {
return (pd->flag & (PFIELD_DO_LOCATION | PFIELD_DO_ROTATION)) != 0;
}
else {
return (pd->flag & PFIELD_DO_LOCATION) != 0;
}
}
}
/* Check that the force field won't have zero effect due to strength settings. */
static bool is_effector_nonzero_strength(PartDeflect *pd)
{
if (pd->f_strength != 0.0f) {
return true;
}
if (pd->forcefield == PFIELD_TEXTURE) {
return false;
}
if (pd->f_noise > 0.0f || pd->f_flow != 0.0f) {
return true;
}
switch (pd->forcefield) {
case PFIELD_BOID:
case PFIELD_GUIDE:
return true;
case PFIELD_VORTEX:
return pd->shape != PFIELD_SHAPE_POINT;
case PFIELD_DRAG:
return pd->f_damp != 0.0f;
default:
return false;
}
}
/* Check if the force field will affect its user. */
static bool is_effector_relevant(PartDeflect *pd, EffectorWeights *weights, bool use_rotation)
{
return (weights->weight[pd->forcefield] != 0.0f) && is_effector_enabled(pd, use_rotation) &&
is_effector_nonzero_strength(pd);
}
/* Create effective list of effectors from relations built beforehand. */
ListBase *BKE_effectors_create(Depsgraph *depsgraph,
Object *ob_src,
ParticleSystem *psys_src,
EffectorWeights *weights,
bool use_rotation)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
ListBase *relations = DEG_get_effector_relations(depsgraph, weights->group);
ListBase *effectors = NULL;
if (!relations) {
return NULL;
}
LISTBASE_FOREACH (EffectorRelation *, relation, relations) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (relation->psys) {
/* Get evaluated particle system. */
ParticleSystem *psys = BLI_findstring(
&ob->particlesystem, relation->psys->name, offsetof(ParticleSystem, name));
ParticleSettings *part = psys->part;
if (psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0) {
continue;
}
PartDeflect *pd = (relation->pd == relation->psys->part->pd) ? part->pd : part->pd2;
if (!is_effector_relevant(pd, weights, use_rotation)) {
continue;
}
add_effector_evaluation(&effectors, depsgraph, scene, ob, psys, pd);
}
else {
/* Object effector. */
if (ob == ob_src) {
continue;
}
if (!is_effector_relevant(ob->pd, weights, use_rotation)) {
continue;
}
if (ob->pd->shape == PFIELD_SHAPE_POINTS && BKE_object_get_evaluated_mesh(ob) == NULL) {
continue;
}
add_effector_evaluation(&effectors, depsgraph, scene, ob, NULL, ob->pd);
}
}
return effectors;
}
void BKE_effectors_free(ListBase *lb)
{
if (lb) {
LISTBASE_FOREACH (EffectorCache *, eff, lb) {
if (eff->guide_data) {
MEM_freeN(eff->guide_data);
}
}
BLI_freelistN(lb);
MEM_freeN(lb);
}
}
void pd_point_from_particle(ParticleSimulationData *sim,
ParticleData *pa,
ParticleKey *state,
EffectedPoint *point)
{
ParticleSettings *part = sim->psys->part;
point->loc = state->co;
point->vel = state->vel;
point->index = pa - sim->psys->particles;
point->size = pa->size;
point->charge = 0.0f;
if (part->pd && part->pd->forcefield == PFIELD_CHARGE) {
point->charge += part->pd->f_strength;
}
if (part->pd2 && part->pd2->forcefield == PFIELD_CHARGE) {
point->charge += part->pd2->f_strength;
}
point->vel_to_sec = 1.0f;
point->vel_to_frame = psys_get_timestep(sim);
point->flag = 0;
if (sim->psys->part->flag & PART_ROT_DYN) {
point->ave = state->ave;
point->rot = state->rot;
}
else {
point->ave = point->rot = NULL;
}
point->psys = sim->psys;
}
void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = 0;
point->ave = point->rot = NULL;
point->psys = NULL;
}
void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = PE_WIND_AS_SPEED;
point->ave = point->rot = NULL;
point->psys = NULL;
}
/************************************************/
/* Effectors */
/************************************************/
// triangle - ray callback function
static void eff_tri_ray_hit(void *UNUSED(userData),
int UNUSED(index),
const BVHTreeRay *UNUSED(ray),
BVHTreeRayHit *hit)
{
/* whenever we hit a bounding box, we don't check further */
hit->dist = -1;
hit->index = 1;
}
// get visibility of a wind ray
static float eff_calc_visibility(ListBase *colliders,
EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point)
{
const int raycast_flag = BVH_RAYCAST_DEFAULT & ~BVH_RAYCAST_WATERTIGHT;
ListBase *colls = colliders;
ColliderCache *col;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
if (!(eff->pd->flag & PFIELD_VISIBILITY)) {
return visibility;
}
if (!colls) {
colls = BKE_collider_cache_create(eff->depsgraph, eff->ob, NULL);
}
if (!colls) {
return visibility;
}
negate_v3_v3(norm, efd->vec_to_point);
len = normalize_v3(norm);
/* check all collision objects */
for (col = colls->first; col; col = col->next) {
CollisionModifierData *collmd = col->collmd;
if (col->ob == eff->ob) {
continue;
}
if (collmd->bvhtree) {
BVHTreeRayHit hit;
hit.index = -1;
hit.dist = len + FLT_EPSILON;
/* check if the way is blocked */
if (BLI_bvhtree_ray_cast_ex(collmd->bvhtree,
point->loc,
norm,
0.0f,
&hit,
eff_tri_ray_hit,
NULL,
raycast_flag) != -1) {
absorption = col->ob->pd->absorption;
/* visibility is only between 0 and 1, calculated from 1-absorption */
visibility *= CLAMPIS(1.0f - absorption, 0.0f, 1.0f);
if (visibility <= 0.0f) {
break;
}
}
}
}
if (!colliders) {
BKE_collider_cache_free(&colls);
}
return visibility;
}
// noise function for wind e.g.
static float wind_func(struct RNG *rng, float strength)
{
int random = (BLI_rng_get_int(rng) + 1) % 128; /* max 2357 */
float force = BLI_rng_get_float(rng) + 1.0f;
float ret;
float sign = 0;
/* Dividing by 2 is not giving equal sign distribution. */
sign = ((float)random > 64.0f) ? 1.0f : -1.0f;
ret = sign * ((float)random / force) * strength / 128.0f;
return ret;
}
/* maxdist: zero effect from this distance outwards (if usemax) */
/* mindist: full effect up to this distance (if usemin) */
/* power: falloff with formula 1/r^power */
static float falloff_func(
float fac, int usemin, float mindist, int usemax, float maxdist, float power)
{
/* first quick checks */
if (usemax && fac > maxdist) {
return 0.0f;
}
if (usemin && fac < mindist) {
return 1.0f;
}
if (!usemin) {
mindist = 0.0;
}
return pow((double)(1.0f + fac - mindist), (double)(-power));
}
static float falloff_func_dist(PartDeflect *pd, float fac)
{
return falloff_func(fac,
pd->flag & PFIELD_USEMIN,
pd->mindist,
pd->flag & PFIELD_USEMAX,
pd->maxdist,
pd->f_power);
}
static float falloff_func_rad(PartDeflect *pd, float fac)
{
return falloff_func(fac,
pd->flag & PFIELD_USEMINR,
pd->minrad,
pd->flag & PFIELD_USEMAXR,
pd->maxrad,
pd->f_power_r);
}
float effector_falloff(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *UNUSED(point),
EffectorWeights *weights)
{
float temp[3];
float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
float fac, r_fac;
fac = dot_v3v3(efd->nor, efd->vec_to_point2);
if (eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f) {
falloff = 0.0f;
}
else if (eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f) {
falloff = 0.0f;
}
else {
switch (eff->pd->falloff) {
case PFIELD_FALL_SPHERE:
falloff *= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
falloff *= falloff_func_dist(eff->pd, fabsf(fac));
if (falloff == 0.0f) {
break;
}
madd_v3_v3v3fl(temp, efd->vec_to_point2, efd->nor, -fac);
r_fac = len_v3(temp);
falloff *= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
falloff *= falloff_func_dist(eff->pd, fabsf(fac));
if (falloff == 0.0f) {
break;
}
r_fac = RAD2DEGF(saacos(fac / len_v3(efd->vec_to_point2)));
falloff *= falloff_func_rad(eff->pd, r_fac);
break;
}
}
return falloff;
}
int closest_point_on_surface(SurfaceModifierData *surmd,
const float co[3],
float surface_co[3],
float surface_nor[3],
float surface_vel[3])
{
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(
surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
if (nearest.index != -1) {
copy_v3_v3(surface_co, nearest.co);
if (surface_nor) {
copy_v3_v3(surface_nor, nearest.no);
}
if (surface_vel) {
const MLoop *mloop = surmd->bvhtree->loop;
const MLoopTri *lt = &surmd->bvhtree->looptri[nearest.index];
copy_v3_v3(surface_vel, surmd->v[mloop[lt->tri[0]].v].co);
add_v3_v3(surface_vel, surmd->v[mloop[lt->tri[1]].v].co);
add_v3_v3(surface_vel, surmd->v[mloop[lt->tri[2]].v].co);
mul_v3_fl(surface_vel, (1.0f / 3.0f));
}
return 1;
}
return 0;
}
int get_effector_data(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
int real_velocity)
{
float cfra = DEG_get_ctime(eff->depsgraph);
int ret = 0;
/* In case surface object is in Edit mode when loading the .blend,
* surface modifier is never executed and bvhtree never built, see T48415. */
if (eff->pd && eff->pd->shape == PFIELD_SHAPE_SURFACE && eff->surmd && eff->surmd->bvhtree) {
/* closest point in the object surface is an effector */
float vec[3];
/* using velocity corrected location allows for easier sliding over effector surface */
copy_v3_v3(vec, point->vel);
mul_v3_fl(vec, point->vel_to_frame);
add_v3_v3(vec, point->loc);
ret = closest_point_on_surface(
eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
efd->size = 0.0f;
}
else if (eff->pd && eff->pd->shape == PFIELD_SHAPE_POINTS) {
/* TODO: hair and points object support */
Mesh *me_eval = BKE_object_get_evaluated_mesh(eff->ob);
if (me_eval != NULL) {
copy_v3_v3(efd->loc, me_eval->mvert[*efd->index].co);
normal_short_to_float_v3(efd->nor, me_eval->mvert[*efd->index].no);
mul_m4_v3(eff->ob->obmat, efd->loc);
mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
normalize_v3(efd->nor);
efd->size = 0.0f;
ret = 1;
}
}
else if (eff->psys) {
ParticleData *pa = eff->psys->particles + *efd->index;
ParticleKey state;
/* exclude the particle itself for self effecting particles */
if (eff->psys == point->psys && *efd->index == point->index) {
/* pass */
}
else {
ParticleSimulationData sim = {NULL};
sim.depsgraph = eff->depsgraph;
sim.scene = eff->scene;
sim.ob = eff->ob;
sim.psys = eff->psys;
/* TODO: time from actual previous calculated frame (step might not be 1) */
state.time = cfra - 1.0f;
ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
/* TODO */
// if (eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
// if (pa->dietime < eff->psys->cfra)
// eff->flag |= PE_VELOCITY_TO_IMPULSE;
//}
copy_v3_v3(efd->loc, state.co);
/* rather than use the velocity use rotated x-axis (defaults to velocity) */
efd->nor[0] = 1.0f;
efd->nor[1] = efd->nor[2] = 0.0f;
mul_qt_v3(state.rot, efd->nor);
if (real_velocity) {
copy_v3_v3(efd->vel, state.vel);
}
efd->size = pa->size;
}
}
else {
/* use center of object for distance calculus */
const Object *ob = eff->ob;
/* use z-axis as normal*/
normalize_v3_v3(efd->nor, ob->obmat[2]);
if (eff->pd && ELEM(eff->pd->shape, PFIELD_SHAPE_PLANE, PFIELD_SHAPE_LINE)) {
float temp[3], translate[3];
sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
project_v3_v3v3(translate, temp, efd->nor);
/* for vortex the shape chooses between old / new force */
if (eff->pd->forcefield == PFIELD_VORTEX || eff->pd->shape == PFIELD_SHAPE_LINE) {
add_v3_v3v3(efd->loc, ob->obmat[3], translate);
}
else { /* normally efd->loc is closest point on effector xy-plane */
sub_v3_v3v3(efd->loc, point->loc, translate);
}
}
else {
copy_v3_v3(efd->loc, ob->obmat[3]);
}
zero_v3(efd->vel);
efd->size = 0.0f;
ret = 1;
}
if (ret) {
sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
efd->distance = len_v3(efd->vec_to_point);
/* Rest length for harmonic effector,
* will have to see later if this could be extended to other effectors. */
if (eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size) {
mul_v3_fl(efd->vec_to_point, (efd->distance - eff->pd->f_size) / efd->distance);
}
if (eff->flag & PE_USE_NORMAL_DATA) {
copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
copy_v3_v3(efd->nor2, efd->nor);
}
else {
/* for some effectors we need the object center every time */
sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
}
}
return ret;
}
static void get_effector_tot(
EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step)
{
*p = 0;
efd->index = p;
if (eff->pd->shape == PFIELD_SHAPE_POINTS) {
/* TODO: hair and points object support */
Mesh *me_eval = BKE_object_get_evaluated_mesh(eff->ob);
*tot = me_eval != NULL ? me_eval->totvert : 1;
if (*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
*p = point->index % *tot;
*tot = *p + 1;
}
}
else if (eff->psys) {
*tot = eff->psys->totpart;
if (eff->pd->forcefield == PFIELD_CHARGE) {
/* Only the charge of the effected particle is used for
* interaction, not fall-offs. If the fall-offs aren't the
* same this will be unphysical, but for animation this
* could be the wanted behavior. If you want physical
* correctness the fall-off should be spherical 2.0 anyways.
*/
efd->charge = eff->pd->f_strength;
}
else if (eff->pd->forcefield == PFIELD_HARMONIC &&
(eff->pd->flag & PFIELD_MULTIPLE_SPRINGS) == 0) {
/* every particle is mapped to only one harmonic effector particle */
*p = point->index % eff->psys->totpart;
*tot = *p + 1;
}
if (eff->psys->part->effector_amount) {
int totpart = eff->psys->totpart;
int amount = eff->psys->part->effector_amount;
*step = (totpart > amount) ? totpart / amount : 1;
}
}
else {
*tot = 1;
}
}
static void do_texture_effector(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
float *total_force)
{
TexResult result[4];
float tex_co[3], strength, force[3];
float nabla = eff->pd->tex_nabla;
int hasrgb;
short mode = eff->pd->tex_mode;
bool scene_color_manage;
if (!eff->pd->tex) {
return;
}
result[0].nor = result[1].nor = result[2].nor = result[3].nor = NULL;
strength = eff->pd->f_strength * efd->falloff;
copy_v3_v3(tex_co, point->loc);
if (eff->pd->flag & PFIELD_TEX_OBJECT) {
mul_m4_v3(eff->ob->imat, tex_co);
if (eff->pd->flag & PFIELD_TEX_2D) {
tex_co[2] = 0.0f;
}
}
else if (eff->pd->flag & PFIELD_TEX_2D) {
float fac = -dot_v3v3(tex_co, efd->nor);
madd_v3_v3fl(tex_co, efd->nor, fac);
}
scene_color_manage = BKE_scene_check_color_management_enabled(eff->scene);
hasrgb = multitex_ext(
eff->pd->tex, tex_co, NULL, NULL, 0, result, 0, NULL, scene_color_manage, false);
if (hasrgb && mode == PFIELD_TEX_RGB) {
force[0] = (0.5f - result->tr) * strength;
force[1] = (0.5f - result->tg) * strength;
force[2] = (0.5f - result->tb) * strength;
}
else if (nabla != 0) {
strength /= nabla;
tex_co[0] += nabla;
multitex_ext(
eff->pd->tex, tex_co, NULL, NULL, 0, result + 1, 0, NULL, scene_color_manage, false);
tex_co[0] -= nabla;
tex_co[1] += nabla;
multitex_ext(
eff->pd->tex, tex_co, NULL, NULL, 0, result + 2, 0, NULL, scene_color_manage, false);
tex_co[1] -= nabla;
tex_co[2] += nabla;
multitex_ext(
eff->pd->tex, tex_co, NULL, NULL, 0, result + 3, 0, NULL, scene_color_manage, false);
if (mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we don't have rgb fall back to grad */
/* generate intensity if texture only has rgb value */
if (hasrgb & TEX_RGB) {
for (int i = 0; i < 4; i++) {
result[i].tin = (1.0f / 3.0f) * (result[i].tr + result[i].tg + result[i].tb);
}
}
force[0] = (result[0].tin - result[1].tin) * strength;
force[1] = (result[0].tin - result[2].tin) * strength;
force[2] = (result[0].tin - result[3].tin) * strength;
}
else { /*PFIELD_TEX_CURL*/
float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
dbdy = result[2].tb - result[0].tb;
dgdz = result[3].tg - result[0].tg;
drdz = result[3].tr - result[0].tr;
dbdx = result[1].tb - result[0].tb;
dgdx = result[1].tg - result[0].tg;
drdy = result[2].tr - result[0].tr;
force[0] = (dbdy - dgdz) * strength;
force[1] = (drdz - dbdx) * strength;
force[2] = (dgdx - drdy) * strength;
}
}
else {
zero_v3(force);
}
if (eff->pd->flag & PFIELD_TEX_2D) {
float fac = -dot_v3v3(force, efd->nor);
madd_v3_v3fl(force, efd->nor, fac);
}
if (eff->pd->flag & PFIELD_DO_LOCATION) {
add_v3_v3(total_force, force);
}
}
static void do_physical_effector(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
float *total_force)
{
PartDeflect *pd = eff->pd;
RNG *rng = pd->rng;
float force[3] = {0, 0, 0};
float temp[3];
float fac;
float strength = pd->f_strength;
float damp = pd->f_damp;
float noise_factor = pd->f_noise;
float flow_falloff = efd->falloff;
if (noise_factor > 0.0f) {
strength += wind_func(rng, noise_factor);
if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)) {
damp += wind_func(rng, noise_factor);
}
}
copy_v3_v3(force, efd->vec_to_point);
switch (pd->forcefield) {
case PFIELD_WIND:
copy_v3_v3(force, efd->nor);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_FORCE:
normalize_v3(force);
if (pd->flag & PFIELD_GRAVITATION) { /* Option: Multiply by 1/distance^2 */
if (efd->distance < FLT_EPSILON) {
strength = 0.0f;
}
else {
strength *= powf(efd->distance, -2.0f);
}
}
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_VORTEX:
/* old vortex force */
if (pd->shape == PFIELD_SHAPE_POINT) {
cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
normalize_v3(force);
mul_v3_fl(force, strength * efd->distance * efd->falloff);
}
else {
/* new vortex force */
cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, efd->nor2, temp);
mul_v3_fl(force, strength * efd->falloff);
madd_v3_v3fl(temp, point->vel, -point->vel_to_sec);
add_v3_v3(force, temp);
}
break;
case PFIELD_MAGNET:
if (ELEM(eff->pd->shape, PFIELD_SHAPE_POINT, PFIELD_SHAPE_LINE)) {
/* magnetic field of a moving charge */
cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
}
else {
copy_v3_v3(temp, efd->nor);
}
normalize_v3(temp);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, point->vel, temp);
mul_v3_fl(force, point->vel_to_sec);
break;
case PFIELD_HARMONIC:
mul_v3_fl(force, -strength * efd->falloff);
copy_v3_v3(temp, point->vel);
mul_v3_fl(temp, -damp * 2.0f * sqrtf(fabsf(strength)) * point->vel_to_sec);
add_v3_v3(force, temp);
break;
case PFIELD_CHARGE:
mul_v3_fl(force, point->charge * strength * efd->falloff);
break;
case PFIELD_LENNARDJ:
fac = pow((efd->size + point->size) / efd->distance, 6.0);
fac = -fac * (1.0f - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac > 2.0f) ? 2.0f : fac);
mul_v3_fl(force, strength * fac);
break;
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
return;
case PFIELD_TURBULENCE:
if (pd->flag & PFIELD_GLOBAL_CO) {
copy_v3_v3(temp, point->loc);
}
else {
add_v3_v3v3(temp, efd->vec_to_point2, efd->nor2);
}
force[0] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[0], temp[1], temp[2], 2, 0, 2);
force[1] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[1], temp[2], temp[0], 2, 0, 2);
force[2] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[2], temp[0], temp[1], 2, 0, 2);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_DRAG:
copy_v3_v3(force, point->vel);
fac = normalize_v3(force) * point->vel_to_sec;
strength = MIN2(strength, 2.0f);
damp = MIN2(damp, 2.0f);
mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
break;
case PFIELD_FLUIDFLOW:
zero_v3(force);
flow_falloff = 0;
#ifdef WITH_FLUID
if (pd->f_source) {
float density;
if ((density = BKE_fluid_get_velocity_at(pd->f_source, point->loc, force)) >= 0.0f) {
float influence = strength * efd->falloff;
if (pd->flag & PFIELD_SMOKE_DENSITY) {
influence *= density;
}
mul_v3_fl(force, influence);
flow_falloff = influence;
}
}
#endif
break;
}
if (pd->flag & PFIELD_DO_LOCATION) {
madd_v3_v3fl(total_force, force, 1.0f / point->vel_to_sec);
if (!ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG) && pd->f_flow != 0.0f) {
madd_v3_v3fl(total_force, point->vel, -pd->f_flow * flow_falloff);
}
}
if (pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
float xvec[3] = {1.0f, 0.0f, 0.0f};
float dave[3];
mul_qt_v3(point->rot, xvec);
cross_v3_v3v3(dave, xvec, force);
if (pd->f_flow != 0.0f) {
madd_v3_v3fl(dave, point->ave, -pd->f_flow * efd->falloff);
}
add_v3_v3(point->ave, dave);
}
}
/* -------- BKE_effectors_apply() --------
* generic force/speed system, now used for particles and softbodies
* scene = scene where it runs in, for time and stuff
* lb = listbase with objects that take part in effecting
* opco = global coord, as input
* force = accumulator for force
* wind_force = accumulator for force only acting perpendicular to a surface
* speed = actual current speed which can be altered
* cur_time = "external" time in frames, is constant for static particles
* loc_time = "local" time in frames, range <0-1> for the lifetime of particle
* par_layer = layer the caller is in
* flags = only used for softbody wind now
* guide = old speed of particle
*/
void BKE_effectors_apply(ListBase *effectors,
ListBase *colliders,
EffectorWeights *weights,
EffectedPoint *point,
float *force,
float *wind_force,
float *impulse)
{
/*
* Modifies the force on a particle according to its
* relation with the effector object
* Different kind of effectors include:
* Force-fields: Gravity-like attractor
* (force power is related to the inverse of distance to the power of a falloff value)
* Vortex fields: swirling effectors
* (particles rotate around Z-axis of the object. otherwise, same relation as)
* (Force-fields, but this is not done through a force/acceleration)
* Guide: particles on a path
* (particles are guided along a curve bezier or old nurbs)
* (is independent of other effectors)
*/
EffectorCache *eff;
EffectorData efd;
int p = 0, tot = 1, step = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
if (effectors) {
for (eff = effectors->first; eff; eff = eff->next) {
/* object effectors were fully checked to be OK to evaluate! */
get_effector_tot(eff, &efd, point, &tot, &p, &step);
for (; p < tot; p += step) {
if (get_effector_data(eff, &efd, point, 0)) {
efd.falloff = effector_falloff(eff, &efd, point, weights);
if (efd.falloff > 0.0f) {
efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
}
if (efd.falloff > 0.0f) {
float out_force[3] = {0, 0, 0};
if (eff->pd->forcefield == PFIELD_TEXTURE) {
do_texture_effector(eff, &efd, point, out_force);
}
else {
do_physical_effector(eff, &efd, point, out_force);
/* for softbody backward compatibility */
if (point->flag & PE_WIND_AS_SPEED && impulse) {
sub_v3_v3v3(impulse, impulse, out_force);
}
}
if (wind_force) {
madd_v3_v3fl(force, out_force, 1.0f - eff->pd->f_wind_factor);
madd_v3_v3fl(wind_force, out_force, eff->pd->f_wind_factor);
}
else {
add_v3_v3(force, out_force);
}
}
}
else if (eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
/* special case for harmonic effector */
add_v3_v3v3(impulse, impulse, efd.vel);
}
}
}
}
}
/* ======== Simulation Debugging ======== */
SimDebugData *_sim_debug_data = NULL;
uint BKE_sim_debug_data_hash(int i)
{
return BLI_ghashutil_uinthash((uint)i);
}
uint BKE_sim_debug_data_hash_combine(uint kx, uint ky)
{
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
uint a, b, c;
a = b = c = 0xdeadbeef + (2 << 2) + 13;
a += kx;
b += ky;
c ^= b;
c -= rot(b, 14);
a ^= c;
a -= rot(c, 11);
b ^= a;
b -= rot(a, 25);
c ^= b;
c -= rot(b, 16);
a ^= c;
a -= rot(c, 4);
b ^= a;
b -= rot(a, 14);
c ^= b;
c -= rot(b, 24);
return c;
#undef rot
}
static uint debug_element_hash(const void *key)
{
const SimDebugElement *elem = key;
return elem->hash;
}
static bool debug_element_compare(const void *a, const void *b)
{
const SimDebugElement *elem1 = a;
const SimDebugElement *elem2 = b;
if (elem1->hash == elem2->hash) {
return false;
}
return true;
}
static void debug_element_free(void *val)
{
SimDebugElement *elem = val;
MEM_freeN(elem);
}
void BKE_sim_debug_data_set_enabled(bool enable)
{
if (enable) {
if (!_sim_debug_data) {
_sim_debug_data = MEM_callocN(sizeof(SimDebugData), "sim debug data");
_sim_debug_data->gh = BLI_ghash_new(
debug_element_hash, debug_element_compare, "sim debug element hash");
}
}
else {
BKE_sim_debug_data_free();
}
}
bool BKE_sim_debug_data_get_enabled(void)
{
return _sim_debug_data != NULL;
}
void BKE_sim_debug_data_free(void)
{
if (_sim_debug_data) {
if (_sim_debug_data->gh) {
BLI_ghash_free(_sim_debug_data->gh, NULL, debug_element_free);
}
MEM_freeN(_sim_debug_data);
}
}
static void debug_data_insert(SimDebugData *debug_data, SimDebugElement *elem)
{
SimDebugElement *old_elem = BLI_ghash_lookup(debug_data->gh, elem);
if (old_elem) {
*old_elem = *elem;
MEM_freeN(elem);
}
else {
BLI_ghash_insert(debug_data->gh, elem, elem);
}
}
void BKE_sim_debug_data_add_element(int type,
const float v1[3],
const float v2[3],
const char *str,
float r,
float g,
float b,
const char *category,
uint hash)
{
uint category_hash = BLI_ghashutil_strhash_p(category);
SimDebugElement *elem;
if (!_sim_debug_data) {
if (G.debug & G_DEBUG_SIMDATA) {
BKE_sim_debug_data_set_enabled(true);
}
else {
return;
}
}
elem = MEM_callocN(sizeof(SimDebugElement), "sim debug data element");
elem->type = type;
elem->category_hash = category_hash;
elem->hash = hash;
elem->color[0] = r;
elem->color[1] = g;
elem->color[2] = b;
if (v1) {
copy_v3_v3(elem->v1, v1);
}
else {
zero_v3(elem->v1);
}
if (v2) {
copy_v3_v3(elem->v2, v2);
}
else {
zero_v3(elem->v2);
}
if (str) {
BLI_strncpy(elem->str, str, sizeof(elem->str));
}
else {
elem->str[0] = '\0';
}
debug_data_insert(_sim_debug_data, elem);
}
void BKE_sim_debug_data_remove_element(uint hash)
{
SimDebugElement dummy;
if (!_sim_debug_data) {
return;
}
dummy.hash = hash;
BLI_ghash_remove(_sim_debug_data->gh, &dummy, NULL, debug_element_free);
}
void BKE_sim_debug_data_clear(void)
{
if (!_sim_debug_data) {
return;
}
if (_sim_debug_data->gh) {
BLI_ghash_clear(_sim_debug_data->gh, NULL, debug_element_free);
}
}
void BKE_sim_debug_data_clear_category(const char *category)
{
int category_hash = (int)BLI_ghashutil_strhash_p(category);
if (!_sim_debug_data) {
return;
}
if (_sim_debug_data->gh) {
GHashIterator iter;
BLI_ghashIterator_init(&iter, _sim_debug_data->gh);
while (!BLI_ghashIterator_done(&iter)) {
const SimDebugElement *elem = BLI_ghashIterator_getValue(&iter);
/* Removing invalidates the current iterator, so step before removing. */
BLI_ghashIterator_step(&iter);
if (elem->category_hash == category_hash) {
BLI_ghash_remove(_sim_debug_data->gh, elem, NULL, debug_element_free);
}
}
}
}