This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle_system.c
Brecht Van Lommel 41af27c582 Fix deadlocks in mesh modifier evaluation and particles
The recent task isolation changes missed two mutex locks that also need task
isolation.

Ref D11603, T89194
2021-06-21 19:25:12 +02:00

5076 lines
150 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
* Adaptive time step
* Classical SPH
* Copyright 2011-2012 AutoCRC
*/
/** \file
* \ingroup bke
*/
#include <stddef.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_boid_types.h"
#include "DNA_cloth_types.h"
#include "DNA_curve_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BLI_blenlib.h"
#include "BLI_edgehash.h"
#include "BLI_kdopbvh.h"
#include "BLI_kdtree.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_string_utils.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_collision.h"
#include "BKE_colortools.h"
#include "BKE_effect.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_particle.h"
#include "BKE_bvhutils.h"
#include "BKE_cloth.h"
#include "BKE_collection.h"
#include "BKE_lattice.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_pointcache.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_physics.h"
#include "DEG_depsgraph_query.h"
#include "PIL_time.h"
#include "RE_texture.h"
/* FLUID sim particle import */
#ifdef WITH_FLUID
# include "DNA_fluid_types.h"
# include "manta_fluid_API.h"
#endif // WITH_FLUID
static ThreadRWMutex psys_bvhtree_rwlock = BLI_RWLOCK_INITIALIZER;
/************************************************/
/* Reacting to system events */
/************************************************/
static int particles_are_dynamic(ParticleSystem *psys)
{
if (psys->pointcache->flag & PTCACHE_BAKED) {
return 0;
}
if (psys->part->type == PART_HAIR) {
return psys->flag & PSYS_HAIR_DYNAMICS;
}
return ELEM(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
}
float psys_get_current_display_percentage(ParticleSystem *psys, const bool use_render_params)
{
ParticleSettings *part = psys->part;
if ((use_render_params &&
!particles_are_dynamic(psys)) || /* non-dynamic particles can be rendered fully */
(part->child_nbr && part->childtype) || /* display percentage applies to children */
(psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
{
return 1.0f;
}
return psys->part->disp / 100.0f;
}
static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
{
if (pid && psys->pointcache->flag & PTCACHE_EXTERNAL) {
return pid->cache->totpoint;
}
if (psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT) {
return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
}
return psys->part->totpart - psys->totunexist;
}
void psys_reset(ParticleSystem *psys, int mode)
{
PARTICLE_P;
if (ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
if (mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
/* don't free if not absolutely necessary */
if (psys->totpart != tot_particles(psys, NULL)) {
psys_free_particles(psys);
psys->totpart = 0;
}
psys->totkeyed = 0;
psys->flag &= ~(PSYS_HAIR_DONE | PSYS_KEYED);
if (psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
}
}
else if (mode == PSYS_RESET_CACHE_MISS) {
/* set all particles to be skipped */
LOOP_PARTICLES
{
pa->flag |= PARS_NO_DISP;
}
}
/* reset children */
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
}
psys->totchild = 0;
/* reset path cache */
psys_free_path_cache(psys, psys->edit);
/* reset point cache */
BKE_ptcache_invalidate(psys->pointcache);
if (psys->fluid_springs) {
MEM_freeN(psys->fluid_springs);
psys->fluid_springs = NULL;
}
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
}
void psys_unique_name(Object *object, ParticleSystem *psys, const char *defname)
{
BLI_uniquename(&object->particlesystem,
psys,
defname,
'.',
offsetof(ParticleSystem, name),
sizeof(psys->name));
}
static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *newpars = NULL;
BoidParticle *newboids = NULL;
PARTICLE_P;
int totpart, totsaved = 0;
if (new_totpart < 0) {
if ((part->distr == PART_DISTR_GRID) && (part->from != PART_FROM_VERT)) {
totpart = part->grid_res;
totpart *= totpart * totpart;
}
else {
totpart = part->totpart;
}
}
else {
totpart = new_totpart;
}
if (totpart != psys->totpart) {
if (psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
if (totpart) {
newpars = MEM_callocN(totpart * sizeof(ParticleData), "particles");
if (newpars == NULL) {
return;
}
if (psys->part->phystype == PART_PHYS_BOIDS) {
newboids = MEM_callocN(totpart * sizeof(BoidParticle), "boid particles");
if (newboids == NULL) {
/* allocation error! */
if (newpars) {
MEM_freeN(newpars);
}
return;
}
}
}
if (psys->particles) {
totsaved = MIN2(psys->totpart, totpart);
/*save old pars*/
if (totsaved) {
memcpy(newpars, psys->particles, totsaved * sizeof(ParticleData));
if (psys->particles->boid) {
memcpy(newboids, psys->particles->boid, totsaved * sizeof(BoidParticle));
}
}
if (psys->particles->keys) {
MEM_freeN(psys->particles->keys);
}
if (psys->particles->boid) {
MEM_freeN(psys->particles->boid);
}
for (p = 0, pa = newpars; p < totsaved; p++, pa++) {
if (pa->keys) {
pa->keys = NULL;
pa->totkey = 0;
}
}
for (p = totsaved, pa = psys->particles + totsaved; p < psys->totpart; p++, pa++) {
if (pa->hair) {
MEM_freeN(pa->hair);
}
}
MEM_freeN(psys->particles);
psys_free_pdd(psys);
}
psys->particles = newpars;
psys->totpart = totpart;
if (newboids) {
LOOP_PARTICLES
{
pa->boid = newboids++;
}
}
}
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
}
int psys_get_child_number(Scene *scene, ParticleSystem *psys, const bool use_render_params)
{
int nbr;
if (!psys->part->childtype) {
return 0;
}
if (use_render_params) {
nbr = psys->part->ren_child_nbr;
}
else {
nbr = psys->part->child_nbr;
}
return get_render_child_particle_number(&scene->r, nbr, use_render_params);
}
int psys_get_tot_child(Scene *scene, ParticleSystem *psys, const bool use_render_params)
{
return psys->totpart * psys_get_child_number(scene, psys, use_render_params);
}
/************************************************/
/* Distribution */
/************************************************/
void psys_calc_dmcache(Object *ob, Mesh *mesh_final, Mesh *mesh_original, ParticleSystem *psys)
{
/* use for building derived mesh mapping info:
*
* node: the allocated links - total derived mesh element count
* nodearray: the array of nodes aligned with the base mesh's elements, so
* each original elements can reference its derived elements
*/
Mesh *me = (Mesh *)ob->data;
bool use_modifier_stack = psys->part->use_modifier_stack;
PARTICLE_P;
/* CACHE LOCATIONS */
if (!mesh_final->runtime.deformed_only) {
/* Will use later to speed up subsurf/evaluated mesh. */
LinkNode *node, *nodedmelem, **nodearray;
int totdmelem, totelem, i, *origindex, *origindex_poly = NULL;
if (psys->part->from == PART_FROM_VERT) {
totdmelem = mesh_final->totvert;
if (use_modifier_stack) {
totelem = totdmelem;
origindex = NULL;
}
else {
totelem = me->totvert;
origindex = CustomData_get_layer(&mesh_final->vdata, CD_ORIGINDEX);
}
}
else { /* FROM_FACE/FROM_VOLUME */
totdmelem = mesh_final->totface;
if (use_modifier_stack) {
totelem = totdmelem;
origindex = NULL;
origindex_poly = NULL;
}
else {
totelem = mesh_original->totface;
origindex = CustomData_get_layer(&mesh_final->fdata, CD_ORIGINDEX);
/* for face lookups we need the poly origindex too */
origindex_poly = CustomData_get_layer(&mesh_final->pdata, CD_ORIGINDEX);
if (origindex_poly == NULL) {
origindex = NULL;
}
}
}
nodedmelem = MEM_callocN(sizeof(LinkNode) * totdmelem, "psys node elems");
nodearray = MEM_callocN(sizeof(LinkNode *) * totelem, "psys node array");
for (i = 0, node = nodedmelem; i < totdmelem; i++, node++) {
int origindex_final;
node->link = POINTER_FROM_INT(i);
/* may be vertex or face origindex */
if (use_modifier_stack) {
origindex_final = i;
}
else {
origindex_final = origindex ? origindex[i] : ORIGINDEX_NONE;
/* if we have a poly source, do an index lookup */
if (origindex_poly && origindex_final != ORIGINDEX_NONE) {
origindex_final = origindex_poly[origindex_final];
}
}
if (origindex_final != ORIGINDEX_NONE && origindex_final < totelem) {
if (nodearray[origindex_final]) {
/* prepend */
node->next = nodearray[origindex_final];
nodearray[origindex_final] = node;
}
else {
nodearray[origindex_final] = node;
}
}
}
/* cache the verts/faces! */
LOOP_PARTICLES
{
if (pa->num < 0) {
pa->num_dmcache = DMCACHE_NOTFOUND;
continue;
}
if (use_modifier_stack) {
if (pa->num < totelem) {
pa->num_dmcache = DMCACHE_ISCHILD;
}
else {
pa->num_dmcache = DMCACHE_NOTFOUND;
}
}
else {
if (psys->part->from == PART_FROM_VERT) {
if (pa->num < totelem && nodearray[pa->num]) {
pa->num_dmcache = POINTER_AS_INT(nodearray[pa->num]->link);
}
else {
pa->num_dmcache = DMCACHE_NOTFOUND;
}
}
else { /* FROM_FACE/FROM_VOLUME */
pa->num_dmcache = psys_particle_dm_face_lookup(
mesh_final, mesh_original, pa->num, pa->fuv, nodearray);
}
}
}
MEM_freeN(nodearray);
MEM_freeN(nodedmelem);
}
else {
/* TODO PARTICLE, make the following line unnecessary, each function
* should know to use the num or num_dmcache, set the num_dmcache to
* an invalid value, just in case */
LOOP_PARTICLES
{
pa->num_dmcache = DMCACHE_NOTFOUND;
}
}
}
/* threaded child particle distribution and path caching */
void psys_thread_context_init(ParticleThreadContext *ctx, ParticleSimulationData *sim)
{
memset(ctx, 0, sizeof(ParticleThreadContext));
ctx->sim = *sim;
ctx->mesh = ctx->sim.psmd->mesh_final;
ctx->ma = BKE_object_material_get(sim->ob, sim->psys->part->omat);
}
void psys_tasks_create(ParticleThreadContext *ctx,
int startpart,
int endpart,
ParticleTask **r_tasks,
int *r_numtasks)
{
ParticleTask *tasks;
int numtasks = min_ii(BLI_system_thread_count() * 4, endpart - startpart);
int particles_per_task = numtasks > 0 ? (endpart - startpart) / numtasks : 0;
int remainder = numtasks > 0 ? (endpart - startpart) - particles_per_task * numtasks : 0;
tasks = MEM_callocN(sizeof(ParticleTask) * numtasks, "ParticleThread");
*r_numtasks = numtasks;
*r_tasks = tasks;
int p = startpart;
for (int i = 0; i < numtasks; i++) {
tasks[i].ctx = ctx;
tasks[i].begin = p;
p = p + particles_per_task + (i < remainder ? 1 : 0);
tasks[i].end = p;
}
/* Verify that all particles are accounted for. */
if (numtasks > 0) {
BLI_assert(tasks[numtasks - 1].end == endpart);
}
}
void psys_tasks_free(ParticleTask *tasks, int numtasks)
{
int i;
/* threads */
for (i = 0; i < numtasks; i++) {
if (tasks[i].rng) {
BLI_rng_free(tasks[i].rng);
}
if (tasks[i].rng_path) {
BLI_rng_free(tasks[i].rng_path);
}
}
MEM_freeN(tasks);
}
void psys_thread_context_free(ParticleThreadContext *ctx)
{
/* path caching */
if (ctx->vg_length) {
MEM_freeN(ctx->vg_length);
}
if (ctx->vg_clump) {
MEM_freeN(ctx->vg_clump);
}
if (ctx->vg_kink) {
MEM_freeN(ctx->vg_kink);
}
if (ctx->vg_rough1) {
MEM_freeN(ctx->vg_rough1);
}
if (ctx->vg_rough2) {
MEM_freeN(ctx->vg_rough2);
}
if (ctx->vg_roughe) {
MEM_freeN(ctx->vg_roughe);
}
if (ctx->vg_twist) {
MEM_freeN(ctx->vg_twist);
}
if (ctx->sim.psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(ctx->sim.psys->lattice_deform_data);
ctx->sim.psys->lattice_deform_data = NULL;
}
/* distribution */
if (ctx->jit) {
MEM_freeN(ctx->jit);
}
if (ctx->jitoff) {
MEM_freeN(ctx->jitoff);
}
if (ctx->weight) {
MEM_freeN(ctx->weight);
}
if (ctx->index) {
MEM_freeN(ctx->index);
}
if (ctx->seams) {
MEM_freeN(ctx->seams);
}
// if (ctx->vertpart) MEM_freeN(ctx->vertpart);
BLI_kdtree_3d_free(ctx->tree);
if (ctx->clumpcurve != NULL) {
BKE_curvemapping_free(ctx->clumpcurve);
}
if (ctx->roughcurve != NULL) {
BKE_curvemapping_free(ctx->roughcurve);
}
if (ctx->twistcurve != NULL) {
BKE_curvemapping_free(ctx->twistcurve);
}
}
static void init_particle_texture(ParticleSimulationData *sim, ParticleData *pa, int p)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleTexture ptex;
psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.0f);
switch (part->type) {
case PART_EMITTER:
if (ptex.exist < psys_frand(psys, p + 125)) {
pa->flag |= PARS_UNEXIST;
}
pa->time = part->sta + (part->end - part->sta) * ptex.time;
break;
case PART_HAIR:
if (ptex.exist < psys_frand(psys, p + 125)) {
pa->flag |= PARS_UNEXIST;
}
pa->time = 0.0f;
break;
}
}
/* set particle parameters that don't change during particle's life */
void init_particle(ParticleSimulationData *sim, ParticleData *pa)
{
ParticleSettings *part = sim->psys->part;
float birth_time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
pa->flag &= ~PARS_UNEXIST;
pa->time = part->sta + (part->end - part->sta) * birth_time;
pa->hair_index = 0;
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
/* usage other than straight after distribute has to handle this index by itself - jahka*/
// pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we don't have a derived mesh face */
}
static void initialize_all_particles(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
/* Grid distributionsets UNEXIST flag, need to take care of
* it here because later this flag is being reset.
*
* We can't do it for any distribution, because it'll then
* conflict with texture influence, which does not free
* unexisting particles and only sets flag.
*
* It's not so bad, because only grid distribution sets
* UNEXIST flag.
*/
const bool emit_from_volume_grid = (part->distr == PART_DISTR_GRID) &&
(!ELEM(part->from, PART_FROM_VERT, PART_FROM_CHILD));
PARTICLE_P;
LOOP_PARTICLES
{
if (!(emit_from_volume_grid && (pa->flag & PARS_UNEXIST) != 0)) {
init_particle(sim, pa);
}
}
}
static void free_unexisting_particles(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
PARTICLE_P;
psys->totunexist = 0;
LOOP_PARTICLES
{
if (pa->flag & PARS_UNEXIST) {
psys->totunexist++;
}
}
if (psys->totpart && psys->totunexist == psys->totpart) {
if (psys->particles->boid) {
MEM_freeN(psys->particles->boid);
}
MEM_freeN(psys->particles);
psys->particles = NULL;
psys->totpart = psys->totunexist = 0;
}
if (psys->totunexist) {
int newtotpart = psys->totpart - psys->totunexist;
ParticleData *npa, *newpars;
npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
for (p = 0, pa = psys->particles; p < newtotpart; p++, pa++, npa++) {
while (pa->flag & PARS_UNEXIST) {
pa++;
}
memcpy(npa, pa, sizeof(ParticleData));
}
if (psys->particles->boid) {
MEM_freeN(psys->particles->boid);
}
MEM_freeN(psys->particles);
psys->particles = newpars;
psys->totpart -= psys->totunexist;
if (psys->particles->boid) {
BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
LOOP_PARTICLES
{
pa->boid = newboids++;
}
}
}
}
static void get_angular_velocity_vector(short avemode, ParticleKey *state, float vec[3])
{
switch (avemode) {
case PART_AVE_VELOCITY:
copy_v3_v3(vec, state->vel);
break;
case PART_AVE_HORIZONTAL: {
float zvec[3];
zvec[0] = zvec[1] = 0;
zvec[2] = 1.0f;
cross_v3_v3v3(vec, state->vel, zvec);
break;
}
case PART_AVE_VERTICAL: {
float zvec[3], temp[3];
zvec[0] = zvec[1] = 0;
zvec[2] = 1.0f;
cross_v3_v3v3(temp, state->vel, zvec);
cross_v3_v3v3(vec, temp, state->vel);
break;
}
case PART_AVE_GLOBAL_X:
vec[0] = 1.0f;
vec[1] = vec[2] = 0;
break;
case PART_AVE_GLOBAL_Y:
vec[1] = 1.0f;
vec[0] = vec[2] = 0;
break;
case PART_AVE_GLOBAL_Z:
vec[2] = 1.0f;
vec[0] = vec[1] = 0;
break;
}
}
void psys_get_birth_coords(
ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleTexture ptex;
float fac, phasefac, nor[3] = {0, 0, 0}, loc[3], vel[3] = {0.0, 0.0, 0.0}, rot[4], q2[4];
float r_vel[3], r_ave[3], r_rot[4], vec[3], p_vel[3] = {0.0, 0.0, 0.0};
float x_vec[3] = {1.0, 0.0, 0.0}, utan[3] = {0.0, 1.0, 0.0}, vtan[3] = {0.0, 0.0, 1.0},
rot_vec[3] = {0.0, 0.0, 0.0};
float q_phase[4];
const bool use_boids = ((part->phystype == PART_PHYS_BOIDS) && (pa->boid != NULL));
const bool use_tangents = ((use_boids == false) &&
((part->tanfac != 0.0f) || (part->rotmode == PART_ROT_NOR_TAN)));
int p = pa - psys->particles;
/* get birth location from object */
if (use_tangents) {
psys_particle_on_emitter(sim->psmd,
part->from,
pa->num,
pa->num_dmcache,
pa->fuv,
pa->foffset,
loc,
nor,
utan,
vtan,
0);
}
else {
psys_particle_on_emitter(
sim->psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0);
}
/* get possible textural influence */
psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
/* particles live in global space so */
/* let's convert: */
/* -location */
mul_m4_v3(ob->obmat, loc);
/* -normal */
mul_mat3_m4_v3(ob->obmat, nor);
normalize_v3(nor);
/* -tangent */
if (use_tangents) {
#if 0
float phase = vg_rot ?
2.0f *
(psys_particle_value_from_verts(sim->psmd->dm, part->from, pa, vg_rot) -
0.5f) :
0.0f;
#else
float phase = 0.0f;
#endif
mul_v3_fl(vtan, -cosf((float)M_PI * (part->tanphase + phase)));
fac = -sinf((float)M_PI * (part->tanphase + phase));
madd_v3_v3fl(vtan, utan, fac);
mul_mat3_m4_v3(ob->obmat, vtan);
copy_v3_v3(utan, nor);
mul_v3_fl(utan, dot_v3v3(vtan, nor));
sub_v3_v3(vtan, utan);
normalize_v3(vtan);
}
/* -velocity (boids need this even if there's no random velocity) */
if (part->randfac != 0.0f || (part->phystype == PART_PHYS_BOIDS && pa->boid)) {
r_vel[0] = 2.0f * (psys_frand(psys, p + 10) - 0.5f);
r_vel[1] = 2.0f * (psys_frand(psys, p + 11) - 0.5f);
r_vel[2] = 2.0f * (psys_frand(psys, p + 12) - 0.5f);
mul_mat3_m4_v3(ob->obmat, r_vel);
normalize_v3(r_vel);
}
/* -angular velocity */
if (part->avemode == PART_AVE_RAND) {
r_ave[0] = 2.0f * (psys_frand(psys, p + 13) - 0.5f);
r_ave[1] = 2.0f * (psys_frand(psys, p + 14) - 0.5f);
r_ave[2] = 2.0f * (psys_frand(psys, p + 15) - 0.5f);
mul_mat3_m4_v3(ob->obmat, r_ave);
normalize_v3(r_ave);
}
/* -rotation */
if (part->randrotfac != 0.0f) {
r_rot[0] = 2.0f * (psys_frand(psys, p + 16) - 0.5f);
r_rot[1] = 2.0f * (psys_frand(psys, p + 17) - 0.5f);
r_rot[2] = 2.0f * (psys_frand(psys, p + 18) - 0.5f);
r_rot[3] = 2.0f * (psys_frand(psys, p + 19) - 0.5f);
normalize_qt(r_rot);
mat4_to_quat(rot, ob->obmat);
mul_qt_qtqt(r_rot, r_rot, rot);
}
if (use_boids) {
float dvec[3], q[4], mat[3][3];
copy_v3_v3(state->co, loc);
/* boids don't get any initial velocity */
zero_v3(state->vel);
/* boids store direction in ave */
if (fabsf(nor[2]) == 1.0f) {
sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
normalize_v3(state->ave);
}
else {
copy_v3_v3(state->ave, nor);
}
/* calculate rotation matrix */
project_v3_v3v3(dvec, r_vel, state->ave);
sub_v3_v3v3(mat[0], state->ave, dvec);
normalize_v3(mat[0]);
negate_v3_v3(mat[2], r_vel);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
/* apply rotation */
mat3_to_quat_is_ok(q, mat);
copy_qt_qt(state->rot, q);
}
else {
/* conversion done so now we apply new: */
/* -velocity from: */
/* *reactions */
if (dtime > 0.0f) {
sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
}
/* *emitter velocity */
if (dtime != 0.0f && part->obfac != 0.0f) {
sub_v3_v3v3(vel, loc, state->co);
mul_v3_fl(vel, part->obfac / dtime);
}
/* *emitter normal */
if (part->normfac != 0.0f) {
madd_v3_v3fl(vel, nor, part->normfac);
}
/* *emitter tangent */
if (sim->psmd && part->tanfac != 0.0f) {
madd_v3_v3fl(vel, vtan, part->tanfac);
}
/* *emitter object orientation */
if (part->ob_vel[0] != 0.0f) {
normalize_v3_v3(vec, ob->obmat[0]);
madd_v3_v3fl(vel, vec, part->ob_vel[0]);
}
if (part->ob_vel[1] != 0.0f) {
normalize_v3_v3(vec, ob->obmat[1]);
madd_v3_v3fl(vel, vec, part->ob_vel[1]);
}
if (part->ob_vel[2] != 0.0f) {
normalize_v3_v3(vec, ob->obmat[2]);
madd_v3_v3fl(vel, vec, part->ob_vel[2]);
}
/* *texture */
/* TODO */
/* *random */
if (part->randfac != 0.0f) {
madd_v3_v3fl(vel, r_vel, part->randfac);
}
/* *particle */
if (part->partfac != 0.0f) {
madd_v3_v3fl(vel, p_vel, part->partfac);
}
mul_v3_v3fl(state->vel, vel, ptex.ivel);
/* -location from emitter */
copy_v3_v3(state->co, loc);
/* -rotation */
unit_qt(state->rot);
if (part->rotmode) {
bool use_global_space;
/* create vector into which rotation is aligned */
switch (part->rotmode) {
case PART_ROT_NOR:
case PART_ROT_NOR_TAN:
copy_v3_v3(rot_vec, nor);
use_global_space = false;
break;
case PART_ROT_VEL:
copy_v3_v3(rot_vec, vel);
use_global_space = true;
break;
case PART_ROT_GLOB_X:
case PART_ROT_GLOB_Y:
case PART_ROT_GLOB_Z:
rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
use_global_space = true;
break;
case PART_ROT_OB_X:
case PART_ROT_OB_Y:
case PART_ROT_OB_Z:
copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
use_global_space = false;
break;
default:
use_global_space = true;
break;
}
/* create rotation quat */
if (use_global_space) {
negate_v3(rot_vec);
vec_to_quat(q2, rot_vec, OB_POSX, OB_POSZ);
/* randomize rotation quat */
if (part->randrotfac != 0.0f) {
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
}
else {
copy_qt_qt(rot, q2);
}
}
else {
/* calculate rotation in local-space */
float q_obmat[4];
float q_imat[4];
mat4_to_quat(q_obmat, ob->obmat);
invert_qt_qt_normalized(q_imat, q_obmat);
if (part->rotmode != PART_ROT_NOR_TAN) {
float rot_vec_local[3];
/* rot_vec */
negate_v3(rot_vec);
copy_v3_v3(rot_vec_local, rot_vec);
mul_qt_v3(q_imat, rot_vec_local);
normalize_v3(rot_vec_local);
vec_to_quat(q2, rot_vec_local, OB_POSX, OB_POSZ);
}
else {
/* (part->rotmode == PART_ROT_NOR_TAN) */
float tmat[3][3];
/* note: utan_local is not taken from 'utan', we calculate from rot_vec/vtan */
/* note: it looks like rotation phase may be applied twice (once with vtan, again below)
* however this isn't the case - campbell */
float *rot_vec_local = tmat[0];
float *vtan_local = tmat[1];
float *utan_local = tmat[2];
/* use tangents */
BLI_assert(use_tangents == true);
/* rot_vec */
copy_v3_v3(rot_vec_local, rot_vec);
mul_qt_v3(q_imat, rot_vec_local);
/* vtan_local */
copy_v3_v3(vtan_local, vtan); /* flips, cant use */
mul_qt_v3(q_imat, vtan_local);
/* ensure orthogonal matrix (rot_vec aligned) */
cross_v3_v3v3(utan_local, vtan_local, rot_vec_local);
cross_v3_v3v3(vtan_local, utan_local, rot_vec_local);
/* note: no need to normalize */
mat3_to_quat(q2, tmat);
}
/* randomize rotation quat */
if (part->randrotfac != 0.0f) {
mul_qt_qtqt(r_rot, r_rot, q_imat);
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
}
else {
copy_qt_qt(rot, q2);
}
mul_qt_qtqt(rot, q_obmat, rot);
}
/* rotation phase */
phasefac = part->phasefac;
if (part->randphasefac != 0.0f) {
phasefac += part->randphasefac * psys_frand(psys, p + 20);
}
axis_angle_to_quat(q_phase, x_vec, phasefac * (float)M_PI);
/* combine base rotation & phase */
mul_qt_qtqt(state->rot, rot, q_phase);
}
/* -angular velocity */
zero_v3(state->ave);
if (part->avemode) {
if (part->avemode == PART_AVE_RAND) {
copy_v3_v3(state->ave, r_ave);
}
else {
get_angular_velocity_vector(part->avemode, state, state->ave);
}
normalize_v3(state->ave);
mul_v3_fl(state->ave, part->avefac);
}
}
}
/* recursively evaluate emitter parent anim at cfra */
static void evaluate_emitter_anim(struct Depsgraph *depsgraph,
Scene *scene,
Object *ob,
float cfra)
{
if (ob->parent) {
evaluate_emitter_anim(depsgraph, scene, ob->parent, cfra);
}
BKE_object_where_is_calc_time(depsgraph, scene, ob, cfra);
}
/* sets particle to the emitter surface with initial velocity & rotation */
void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part;
ParticleTexture ptex;
int p = pa - psys->particles;
part = psys->part;
/* get precise emitter matrix if particle is born */
if (part->type != PART_HAIR && dtime > 0.0f && pa->time < cfra && pa->time >= sim->psys->cfra) {
evaluate_emitter_anim(sim->depsgraph, sim->scene, sim->ob, pa->time);
psys->flag |= PSYS_OB_ANIM_RESTORE;
}
psys_get_birth_coords(sim, pa, &pa->state, dtime, cfra);
/* Initialize particle settings which depends on texture.
*
* We could only do it now because we'll need to know coordinate
* before sampling the texture.
*/
init_particle_texture(sim, pa, p);
if (part->phystype == PART_PHYS_BOIDS && pa->boid) {
BoidParticle *bpa = pa->boid;
/* and gravity in r_ve */
bpa->gravity[0] = bpa->gravity[1] = 0.0f;
bpa->gravity[2] = -1.0f;
if ((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) &&
(sim->scene->physics_settings.gravity[2] != 0.0f)) {
bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
}
bpa->data.health = part->boids->health;
bpa->data.mode = eBoidMode_InAir;
bpa->data.state_id = ((BoidState *)part->boids->states.first)->id;
bpa->data.acc[0] = bpa->data.acc[1] = bpa->data.acc[2] = 0.0f;
}
if (part->type == PART_HAIR) {
pa->lifetime = 100.0f;
}
else {
/* initialize the lifetime, in case the texture coordinates
* are from Particles/Strands, which would cause undefined values
*/
pa->lifetime = part->lifetime * (1.0f - part->randlife * psys_frand(psys, p + 21));
pa->dietime = pa->time + pa->lifetime;
/* get possible textural influence */
psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
pa->lifetime = part->lifetime * ptex.life;
if (part->randlife != 0.0f) {
pa->lifetime *= 1.0f - part->randlife * psys_frand(psys, p + 21);
}
}
pa->dietime = pa->time + pa->lifetime;
if ((sim->psys->pointcache) && (sim->psys->pointcache->flag & PTCACHE_BAKED) &&
(sim->psys->pointcache->mem_cache.first)) {
float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
pa->dietime = MIN2(pa->dietime, dietime);
}
if (pa->time > cfra) {
pa->alive = PARS_UNBORN;
}
else if (pa->dietime <= cfra) {
pa->alive = PARS_DEAD;
}
else {
pa->alive = PARS_ALIVE;
}
pa->state.time = cfra;
}
static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
{
ParticleData *pa;
int p, totpart = sim->psys->totpart;
for (p = from, pa = sim->psys->particles + from; p < totpart; p++, pa++) {
reset_particle(sim, pa, dtime, cfra);
}
}
/************************************************/
/* Particle targets */
/************************************************/
ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
{
ParticleSystem *psys = NULL;
if (ELEM(pt->ob, NULL, ob)) {
psys = BLI_findlink(&ob->particlesystem, pt->psys - 1);
}
else {
psys = BLI_findlink(&pt->ob->particlesystem, pt->psys - 1);
}
if (psys) {
pt->flag |= PTARGET_VALID;
}
else {
pt->flag &= ~PTARGET_VALID;
}
return psys;
}
/************************************************/
/* Keyed particles */
/************************************************/
/* Counts valid keyed targets */
void psys_count_keyed_targets(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys, *kpsys;
ParticleTarget *pt = psys->targets.first;
int keys_valid = 1;
psys->totkeyed = 0;
for (; pt; pt = pt->next) {
kpsys = psys_get_target_system(sim->ob, pt);
if (kpsys && kpsys->totpart) {
psys->totkeyed += keys_valid;
if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f) {
psys->totkeyed += 1;
}
}
else {
keys_valid = 0;
}
}
psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
}
static void set_keyed_keys(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
ParticleSimulationData ksim = {0};
ParticleTarget *pt;
PARTICLE_P;
ParticleKey *key;
int totpart = psys->totpart, k, totkeys = psys->totkeyed;
int keyed_flag = 0;
ksim.depsgraph = sim->depsgraph;
ksim.scene = sim->scene;
/* no proper targets so let's clear and bail out */
if (psys->totkeyed == 0) {
free_keyed_keys(psys);
psys->flag &= ~PSYS_KEYED;
return;
}
if (totpart && psys->particles->totkey != totkeys) {
free_keyed_keys(psys);
key = MEM_callocN(totpart * totkeys * sizeof(ParticleKey), "Keyed keys");
LOOP_PARTICLES
{
pa->keys = key;
pa->totkey = totkeys;
key += totkeys;
}
}
psys->flag &= ~PSYS_KEYED;
pt = psys->targets.first;
for (k = 0; k < totkeys; k++) {
ksim.ob = pt->ob ? pt->ob : sim->ob;
ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
keyed_flag = (ksim.psys->flag & PSYS_KEYED);
ksim.psys->flag &= ~PSYS_KEYED;
LOOP_PARTICLES
{
key = pa->keys + k;
key->time = -1.0; /* use current time */
const int p_ksim = (ksim.psys->totpart) ? p % ksim.psys->totpart : 0;
psys_get_particle_state(&ksim, p_ksim, key, 1);
if (psys->flag & PSYS_KEYED_TIMING) {
key->time = pa->time + pt->time;
if (pt->duration != 0.0f && k + 1 < totkeys) {
copy_particle_key(key + 1, key, 1);
(key + 1)->time = pa->time + pt->time + pt->duration;
}
}
else if (totkeys > 1) {
key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
}
else {
key->time = pa->time;
}
}
if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f) {
k++;
}
ksim.psys->flag |= keyed_flag;
pt = (pt->next && pt->next->flag & PTARGET_VALID) ? pt->next : psys->targets.first;
}
psys->flag |= PSYS_KEYED;
}
/************************************************/
/* Point Cache */
/************************************************/
void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
{
PointCache *cache = psys->pointcache;
if (cache->flag & PTCACHE_DISK_CACHE && BLI_listbase_is_empty(&cache->mem_cache)) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, ob, psys);
cache->flag &= ~PTCACHE_DISK_CACHE;
BKE_ptcache_disk_to_mem(&pid);
cache->flag |= PTCACHE_DISK_CACHE;
}
}
static void psys_clear_temp_pointcache(ParticleSystem *psys)
{
if (psys->pointcache->flag & PTCACHE_DISK_CACHE) {
BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
}
}
void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
{
ParticleSettings *part = psys->part;
*sfra = max_ii(1, (int)part->sta);
*efra = min_ii((int)(part->end + part->lifetime + 1.0f), max_ii(scene->r.pefra, scene->r.efra));
}
/* BVH tree balancing inside a mutex lock must be run in isolation. Balancing
* is multithreaded, and we do not want the current thread to start another task
* that may involve acquiring the same mutex lock that it is waiting for. */
static void bvhtree_balance_isolated(void *userdata)
{
BLI_bvhtree_balance((BVHTree *)userdata);
}
/************************************************/
/* Effectors */
/************************************************/
static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
{
if (psys) {
PARTICLE_P;
int totpart = 0;
bool need_rebuild;
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
need_rebuild = !psys->bvhtree || psys->bvhtree_frame != cfra;
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
if (need_rebuild) {
LOOP_SHOWN_PARTICLES
{
totpart++;
}
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_WRITE);
BLI_bvhtree_free(psys->bvhtree);
psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
LOOP_SHOWN_PARTICLES
{
if (pa->alive == PARS_ALIVE) {
if (pa->state.time == cfra) {
BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
}
else {
BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
}
}
}
BLI_task_isolate(bvhtree_balance_isolated, psys->bvhtree);
psys->bvhtree_frame = cfra;
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
}
}
}
void psys_update_particle_tree(ParticleSystem *psys, float cfra)
{
if (psys) {
PARTICLE_P;
int totpart = 0;
if (!psys->tree || psys->tree_frame != cfra) {
LOOP_SHOWN_PARTICLES
{
totpart++;
}
BLI_kdtree_3d_free(psys->tree);
psys->tree = BLI_kdtree_3d_new(psys->totpart);
LOOP_SHOWN_PARTICLES
{
if (pa->alive == PARS_ALIVE) {
if (pa->state.time == cfra) {
BLI_kdtree_3d_insert(psys->tree, p, pa->prev_state.co);
}
else {
BLI_kdtree_3d_insert(psys->tree, p, pa->state.co);
}
}
}
BLI_kdtree_3d_balance(psys->tree);
psys->tree_frame = cfra;
}
}
}
static void psys_update_effectors(ParticleSimulationData *sim)
{
BKE_effectors_free(sim->psys->effectors);
bool use_rotation = (sim->psys->part->flag & PART_ROT_DYN) != 0;
sim->psys->effectors = BKE_effectors_create(
sim->depsgraph, sim->ob, sim->psys, sim->psys->part->effector_weights, use_rotation);
precalc_guides(sim, sim->psys->effectors);
}
static void integrate_particle(
ParticleSettings *part,
ParticleData *pa,
float dtime,
float *external_acceleration,
void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse),
void *forcedata)
{
#define ZERO_F43 \
{ \
{0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, \
{ \
0.0f, 0.0f, 0.0f \
} \
}
ParticleKey states[5];
float force[3], acceleration[3], impulse[3], dx[4][3] = ZERO_F43, dv[4][3] = ZERO_F43, oldpos[3];
float pa_mass = (part->flag & PART_SIZEMASS) ? (part->mass * pa->size) : part->mass;
int i, steps = 1;
int integrator = part->integrator;
#undef ZERO_F43
copy_v3_v3(oldpos, pa->state.co);
/* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
if (pa->prev_state.time < 0.0f && integrator == PART_INT_VERLET) {
integrator = PART_INT_EULER;
}
switch (integrator) {
case PART_INT_EULER:
steps = 1;
break;
case PART_INT_MIDPOINT:
steps = 2;
break;
case PART_INT_RK4:
steps = 4;
break;
case PART_INT_VERLET:
steps = 1;
break;
}
for (i = 0; i < steps; i++) {
copy_particle_key(states + i, &pa->state, 1);
}
states->time = 0.0f;
for (i = 0; i < steps; i++) {
zero_v3(force);
zero_v3(impulse);
force_func(forcedata, states + i, force, impulse);
/* force to acceleration*/
mul_v3_v3fl(acceleration, force, 1.0f / pa_mass);
if (external_acceleration) {
add_v3_v3(acceleration, external_acceleration);
}
/* calculate next state */
add_v3_v3(states[i].vel, impulse);
switch (integrator) {
case PART_INT_EULER:
madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
break;
case PART_INT_MIDPOINT:
if (i == 0) {
madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime * 0.5f);
madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime * 0.5f);
states[1].time = dtime * 0.5f;
/*fra=sim->psys->cfra+0.5f*dfra;*/
}
else {
madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
}
break;
case PART_INT_RK4:
switch (i) {
case 0:
copy_v3_v3(dx[0], states->vel);
mul_v3_fl(dx[0], dtime);
copy_v3_v3(dv[0], acceleration);
mul_v3_fl(dv[0], dtime);
madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
states[1].time = dtime * 0.5f;
/*fra=sim->psys->cfra+0.5f*dfra;*/
break;
case 1:
madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
mul_v3_fl(dx[1], dtime);
copy_v3_v3(dv[1], acceleration);
mul_v3_fl(dv[1], dtime);
madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
states[2].time = dtime * 0.5f;
break;
case 2:
madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
mul_v3_fl(dx[2], dtime);
copy_v3_v3(dv[2], acceleration);
mul_v3_fl(dv[2], dtime);
add_v3_v3v3(states[3].co, states->co, dx[2]);
add_v3_v3v3(states[3].vel, states->vel, dv[2]);
states[3].time = dtime;
/*fra=cfra;*/
break;
case 3:
add_v3_v3v3(dx[3], states->vel, dv[2]);
mul_v3_fl(dx[3], dtime);
copy_v3_v3(dv[3], acceleration);
mul_v3_fl(dv[3], dtime);
madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f / 6.0f);
madd_v3_v3fl(pa->state.co, dx[1], 1.0f / 3.0f);
madd_v3_v3fl(pa->state.co, dx[2], 1.0f / 3.0f);
madd_v3_v3fl(pa->state.co, dx[3], 1.0f / 6.0f);
madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f / 6.0f);
madd_v3_v3fl(pa->state.vel, dv[1], 1.0f / 3.0f);
madd_v3_v3fl(pa->state.vel, dv[2], 1.0f / 3.0f);
madd_v3_v3fl(pa->state.vel, dv[3], 1.0f / 6.0f);
}
break;
case PART_INT_VERLET: /* Verlet integration */
madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
mul_v3_fl(pa->state.vel, 1.0f / dtime);
break;
}
}
}
/* -------------------------------------------------------------------- */
/** \name SPH fluid physics
*
* In theory, there could be unlimited implementation of SPH simulators
*
* This code uses in some parts adapted algorithms
* from the pseudo code as outlined in the Research paper:
*
* Titled: Particle-based Viscoelastic Fluid Simulation.
* Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
* Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
*
* Presented at Siggraph, (2005)
*
* \{ */
#define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
{
/* Are more refs required? */
if (psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
psys->fluid_springs = (ParticleSpring *)MEM_callocN(
psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
}
else if (psys->tot_fluidsprings == psys->alloc_fluidsprings) {
/* Double the number of refs allocated */
psys->alloc_fluidsprings *= 2;
psys->fluid_springs = (ParticleSpring *)MEM_reallocN(
psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
}
memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
psys->tot_fluidsprings++;
return psys->fluid_springs + psys->tot_fluidsprings - 1;
}
static void sph_spring_delete(ParticleSystem *psys, int j)
{
if (j != psys->tot_fluidsprings - 1) {
psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
}
psys->tot_fluidsprings--;
if (psys->tot_fluidsprings < psys->alloc_fluidsprings / 2 &&
psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE) {
psys->alloc_fluidsprings /= 2;
psys->fluid_springs = (ParticleSpring *)MEM_reallocN(
psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
}
}
static void sph_springs_modify(ParticleSystem *psys, float dtime)
{
SPHFluidSettings *fluid = psys->part->fluid;
ParticleData *pa1, *pa2;
ParticleSpring *spring = psys->fluid_springs;
float h, d, Rij[3], rij, Lij;
int i;
float yield_ratio = fluid->yield_ratio;
float plasticity = fluid->plasticity_constant;
/* scale things according to dtime */
float timefix = 25.0f * dtime;
if ((fluid->flag & SPH_VISCOELASTIC_SPRINGS) == 0 || fluid->spring_k == 0.0f) {
return;
}
/* Loop through the springs */
for (i = 0; i < psys->tot_fluidsprings; i++, spring++) {
pa1 = psys->particles + spring->particle_index[0];
pa2 = psys->particles + spring->particle_index[1];
sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
rij = normalize_v3(Rij);
/* adjust rest length */
Lij = spring->rest_length;
d = yield_ratio * timefix * Lij;
if (rij > Lij + d) { // Stretch
spring->rest_length += plasticity * (rij - Lij - d) * timefix;
}
else if (rij < Lij - d) { // Compress
spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
}
h = 4.0f * pa1->size;
if (spring->rest_length > h) {
spring->delete_flag = 1;
}
}
/* Loop through springs backwaqrds - for efficient delete function */
for (i = psys->tot_fluidsprings - 1; i >= 0; i--) {
if (psys->fluid_springs[i].delete_flag) {
sph_spring_delete(psys, i);
}
}
}
static EdgeHash *sph_springhash_build(ParticleSystem *psys)
{
EdgeHash *springhash = NULL;
ParticleSpring *spring;
int i = 0;
springhash = BLI_edgehash_new_ex(__func__, psys->tot_fluidsprings);
for (i = 0, spring = psys->fluid_springs; i < psys->tot_fluidsprings; i++, spring++) {
BLI_edgehash_insert(
springhash, spring->particle_index[0], spring->particle_index[1], POINTER_FROM_INT(i + 1));
}
return springhash;
}
#define SPH_NEIGHBORS 512
typedef struct SPHNeighbor {
ParticleSystem *psys;
int index;
} SPHNeighbor;
typedef struct SPHRangeData {
SPHNeighbor neighbors[SPH_NEIGHBORS];
int tot_neighbors;
float *data;
ParticleSystem *npsys;
ParticleData *pa;
float h;
float mass;
float massfac;
int use_size;
} SPHRangeData;
static void sph_evaluate_func(BVHTree *tree,
ParticleSystem **psys,
const float co[3],
SPHRangeData *pfr,
float interaction_radius,
BVHTree_RangeQuery callback)
{
int i;
pfr->tot_neighbors = 0;
for (i = 0; i < 10 && psys[i]; i++) {
pfr->npsys = psys[i];
pfr->massfac = psys[i]->part->mass / pfr->mass;
pfr->use_size = psys[i]->part->flag & PART_SIZEMASS;
if (tree) {
BLI_bvhtree_range_query(tree, co, interaction_radius, callback, pfr);
break;
}
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
BLI_bvhtree_range_query(psys[i]->bvhtree, co, interaction_radius, callback, pfr);
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
}
}
static void sph_density_accum_cb(void *userdata, int index, const float co[3], float squared_dist)
{
SPHRangeData *pfr = (SPHRangeData *)userdata;
ParticleData *npa = pfr->npsys->particles + index;
float q;
float dist;
UNUSED_VARS(co);
if (npa == pfr->pa || squared_dist < FLT_EPSILON) {
return;
}
/* Ugh! One particle has too many neighbors! If some aren't taken into
* account, the forces will be biased by the tree search order. This
* effectively adds energy to the system, and results in a churning motion.
* But, we have to stop somewhere, and it's not the end of the world.
* - jahka and z0r
*/
if (pfr->tot_neighbors >= SPH_NEIGHBORS) {
return;
}
pfr->neighbors[pfr->tot_neighbors].index = index;
pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
pfr->tot_neighbors++;
dist = sqrtf(squared_dist);
q = (1.0f - dist / pfr->h) * pfr->massfac;
if (pfr->use_size) {
q *= npa->size;
}
pfr->data[0] += q * q;
pfr->data[1] += q * q * q;
}
/*
* Find the Courant number for an SPH particle (used for adaptive time step).
*/
static void sph_particle_courant(SPHData *sphdata, SPHRangeData *pfr)
{
ParticleData *pa, *npa;
int i;
float flow[3], offset[3], dist;
zero_v3(flow);
dist = 0.0f;
if (pfr->tot_neighbors > 0) {
pa = pfr->pa;
for (i = 0; i < pfr->tot_neighbors; i++) {
npa = pfr->neighbors[i].psys->particles + pfr->neighbors[i].index;
sub_v3_v3v3(offset, pa->prev_state.co, npa->prev_state.co);
dist += len_v3(offset);
add_v3_v3(flow, npa->prev_state.vel);
}
dist += sphdata->psys[0]->part->fluid->radius; // TODO: remove this? - z0r
sphdata->element_size = dist / pfr->tot_neighbors;
mul_v3_v3fl(sphdata->flow, flow, 1.0f / pfr->tot_neighbors);
}
else {
sphdata->element_size = FLT_MAX;
copy_v3_v3(sphdata->flow, flow);
}
}
static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
{
SPHData *sphdata = (SPHData *)sphdata_v;
ParticleSystem **psys = sphdata->psys;
ParticleData *pa = sphdata->pa;
SPHFluidSettings *fluid = psys[0]->part->fluid;
ParticleSpring *spring = NULL;
SPHRangeData pfr;
SPHNeighbor *pfn;
float *gravity = sphdata->gravity;
EdgeHash *springhash = sphdata->eh;
float q, u, rij, dv[3];
float pressure, near_pressure;
float visc = fluid->viscosity_omega;
float stiff_visc = fluid->viscosity_beta *
(fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.0f);
float inv_mass = 1.0f / sphdata->mass;
float spring_constant = fluid->spring_k;
/* 4.0 seems to be a pretty good value */
float interaction_radius = fluid->radius *
(fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
float h = interaction_radius * sphdata->hfac;
/* 4.77 is an experimentally determined density factor */
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
float rest_length = fluid->rest_length *
(fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.0f);
float stiffness = fluid->stiffness_k;
float stiffness_near_fac = fluid->stiffness_knear *
(fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.0f);
ParticleData *npa;
float vec[3];
float vel[3];
float co[3];
float data[2];
float density, near_density;
int i, spring_index, index = pa - psys[0]->particles;
data[0] = data[1] = 0;
pfr.data = data;
pfr.h = h;
pfr.pa = pa;
pfr.mass = sphdata->mass;
sph_evaluate_func(NULL, psys, state->co, &pfr, interaction_radius, sph_density_accum_cb);
density = data[0];
near_density = data[1];
pressure = stiffness * (density - rest_density);
near_pressure = stiffness_near_fac * near_density;
pfn = pfr.neighbors;
for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
npa = pfn->psys->particles + pfn->index;
madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
sub_v3_v3v3(vec, co, state->co);
rij = normalize_v3(vec);
q = (1.0f - rij / h) * pfn->psys->part->mass * inv_mass;
if (pfn->psys->part->flag & PART_SIZEMASS) {
q *= npa->size;
}
copy_v3_v3(vel, npa->prev_state.vel);
/* Double Density Relaxation */
madd_v3_v3fl(force, vec, -(pressure + near_pressure * q) * q);
/* Viscosity */
if (visc > 0.0f || stiff_visc > 0.0f) {
sub_v3_v3v3(dv, vel, state->vel);
u = dot_v3v3(vec, dv);
if (u < 0.0f && visc > 0.0f) {
madd_v3_v3fl(force, vec, 0.5f * q * visc * u);
}
if (u > 0.0f && stiff_visc > 0.0f) {
madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u);
}
}
if (spring_constant > 0.0f) {
/* Viscoelastic spring force */
if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
/* BLI_edgehash_lookup appears to be thread-safe. - z0r */
spring_index = POINTER_AS_INT(BLI_edgehash_lookup(springhash, index, pfn->index));
if (spring_index) {
spring = psys[0]->fluid_springs + spring_index - 1;
madd_v3_v3fl(force,
vec,
-10.0f * spring_constant * (1.0f - rij / h) * (spring->rest_length - rij));
}
else if (fluid->spring_frames == 0 ||
(pa->prev_state.time - pa->time) <= fluid->spring_frames) {
ParticleSpring temp_spring;
temp_spring.particle_index[0] = index;
temp_spring.particle_index[1] = pfn->index;
temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
temp_spring.delete_flag = 0;
BLI_buffer_append(&sphdata->new_springs, ParticleSpring, temp_spring);
}
}
else { /* PART_SPRING_HOOKES - Hooke's spring force */
madd_v3_v3fl(
force, vec, -10.0f * spring_constant * (1.0f - rij / h) * (rest_length - rij));
}
}
}
/* Artificial buoyancy force in negative gravity direction */
if (fluid->buoyancy > 0.0f && gravity) {
madd_v3_v3fl(force, gravity, fluid->buoyancy * (density - rest_density));
}
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF) {
sph_particle_courant(sphdata, &pfr);
}
sphdata->pass++;
}
static void sphclassical_density_accum_cb(void *userdata,
int index,
const float co[3],
float UNUSED(squared_dist))
{
SPHRangeData *pfr = (SPHRangeData *)userdata;
ParticleData *npa = pfr->npsys->particles + index;
float q;
float qfac = 21.0f / (256.0f * (float)M_PI);
float rij, rij_h;
float vec[3];
/* Exclude particles that are more than 2h away. Can't use squared_dist here
* because it is not accurate enough. Use current state, i.e. the output of
* basic_integrate() - z0r */
sub_v3_v3v3(vec, npa->state.co, co);
rij = len_v3(vec);
rij_h = rij / pfr->h;
if (rij_h > 2.0f) {
return;
}
/* Smoothing factor. Utilize the Wendland kernel. gnuplot:
* q1(x) = (2.0 - x)**4 * ( 1.0 + 2.0 * x)
* plot [0:2] q1(x) */
q = qfac / pow3f(pfr->h) * pow4f(2.0f - rij_h) * (1.0f + 2.0f * rij_h);
q *= pfr->npsys->part->mass;
if (pfr->use_size) {
q *= pfr->pa->size;
}
pfr->data[0] += q;
pfr->data[1] += q / npa->sphdensity;
}
static void sphclassical_neighbor_accum_cb(void *userdata,
int index,
const float co[3],
float UNUSED(squared_dist))
{
SPHRangeData *pfr = (SPHRangeData *)userdata;
ParticleData *npa = pfr->npsys->particles + index;
float rij, rij_h;
float vec[3];
if (pfr->tot_neighbors >= SPH_NEIGHBORS) {
return;
}
/* Exclude particles that are more than 2h away. Can't use squared_dist here
* because it is not accurate enough. Use current state, i.e. the output of
* basic_integrate() - z0r */
sub_v3_v3v3(vec, npa->state.co, co);
rij = len_v3(vec);
rij_h = rij / pfr->h;
if (rij_h > 2.0f) {
return;
}
pfr->neighbors[pfr->tot_neighbors].index = index;
pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
pfr->tot_neighbors++;
}
static void sphclassical_force_cb(void *sphdata_v,
ParticleKey *state,
float *force,
float *UNUSED(impulse))
{
SPHData *sphdata = (SPHData *)sphdata_v;
ParticleSystem **psys = sphdata->psys;
ParticleData *pa = sphdata->pa;
SPHFluidSettings *fluid = psys[0]->part->fluid;
SPHRangeData pfr;
SPHNeighbor *pfn;
float *gravity = sphdata->gravity;
float dq, u, rij, dv[3];
float pressure, npressure;
float visc = fluid->viscosity_omega;
float interaction_radius;
float h, hinv;
/* 4.77 is an experimentally determined density factor */
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
/* Use speed of sound squared */
float stiffness = pow2f(fluid->stiffness_k);
ParticleData *npa;
float vec[3];
float co[3];
float pressureTerm;
int i;
float qfac2 = 42.0f / (256.0f * (float)M_PI);
float rij_h;
/* 4.0 here is to be consistent with previous formulation/interface */
interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
h = interaction_radius * sphdata->hfac;
hinv = 1.0f / h;
pfr.h = h;
pfr.pa = pa;
sph_evaluate_func(
NULL, psys, state->co, &pfr, interaction_radius, sphclassical_neighbor_accum_cb);
pressure = stiffness * (pow7f(pa->sphdensity / rest_density) - 1.0f);
/* multiply by mass so that we return a force, not accel */
qfac2 *= sphdata->mass / pow3f(pfr.h);
pfn = pfr.neighbors;
for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
npa = pfn->psys->particles + pfn->index;
if (npa == pa) {
/* we do not contribute to ourselves */
continue;
}
/* Find vector to neighbor. Exclude particles that are more than 2h
* away. Can't use current state here because it may have changed on
* another thread - so do own mini integration. Unlike basic_integrate,
* SPH integration depends on neighboring particles. - z0r */
madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
sub_v3_v3v3(vec, co, state->co);
rij = normalize_v3(vec);
rij_h = rij / pfr.h;
if (rij_h > 2.0f) {
continue;
}
npressure = stiffness * (pow7f(npa->sphdensity / rest_density) - 1.0f);
/* First derivative of smoothing factor. Utilize the Wendland kernel.
* gnuplot:
* q2(x) = 2.0 * (2.0 - x)**4 - 4.0 * (2.0 - x)**3 * (1.0 + 2.0 * x)
* plot [0:2] q2(x)
* Particles > 2h away are excluded above. */
dq = qfac2 * (2.0f * pow4f(2.0f - rij_h) - 4.0f * pow3f(2.0f - rij_h) * (1.0f + 2.0f * rij_h));
if (pfn->psys->part->flag & PART_SIZEMASS) {
dq *= npa->size;
}
pressureTerm = pressure / pow2f(pa->sphdensity) + npressure / pow2f(npa->sphdensity);
/* Note that 'minus' is removed, because vec = vecBA, not vecAB.
* This applies to the viscosity calculation below, too. */
madd_v3_v3fl(force, vec, pressureTerm * dq);
/* Viscosity */
if (visc > 0.0f) {
sub_v3_v3v3(dv, npa->prev_state.vel, pa->prev_state.vel);
u = dot_v3v3(vec, dv);
/* Apply parameters */
u *= -dq * hinv * visc / (0.5f * npa->sphdensity + 0.5f * pa->sphdensity);
madd_v3_v3fl(force, vec, u);
}
}
/* Artificial buoyancy force in negative gravity direction */
if (fluid->buoyancy > 0.0f && gravity) {
madd_v3_v3fl(force, gravity, fluid->buoyancy * (pa->sphdensity - rest_density));
}
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF) {
sph_particle_courant(sphdata, &pfr);
}
sphdata->pass++;
}
static void sphclassical_calc_dens(ParticleData *pa, float UNUSED(dfra), SPHData *sphdata)
{
ParticleSystem **psys = sphdata->psys;
SPHFluidSettings *fluid = psys[0]->part->fluid;
/* 4.0 seems to be a pretty good value */
float interaction_radius = fluid->radius *
(fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
SPHRangeData pfr;
float data[2];
data[0] = 0;
data[1] = 0;
pfr.data = data;
pfr.h = interaction_radius * sphdata->hfac;
pfr.pa = pa;
pfr.mass = sphdata->mass;
sph_evaluate_func(
NULL, psys, pa->state.co, &pfr, interaction_radius, sphclassical_density_accum_cb);
pa->sphdensity = min_ff(max_ff(data[0], fluid->rest_density * 0.9f), fluid->rest_density * 1.1f);
}
void psys_sph_init(ParticleSimulationData *sim, SPHData *sphdata)
{
ParticleTarget *pt;
int i;
BLI_buffer_field_init(&sphdata->new_springs, ParticleSpring);
/* Add other coupled particle systems. */
sphdata->psys[0] = sim->psys;
for (i = 1, pt = sim->psys->targets.first; i < 10; i++, pt = (pt ? pt->next : NULL)) {
sphdata->psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
}
if (psys_uses_gravity(sim)) {
sphdata->gravity = sim->scene->physics_settings.gravity;
}
else {
sphdata->gravity = NULL;
}
sphdata->eh = sph_springhash_build(sim->psys);
/* These per-particle values should be overridden later, but just for
* completeness we give them default values now. */
sphdata->pa = NULL;
sphdata->mass = 1.0f;
if (sim->psys->part->fluid->solver == SPH_SOLVER_DDR) {
sphdata->force_cb = sph_force_cb;
sphdata->density_cb = sph_density_accum_cb;
sphdata->hfac = 1.0f;
}
else {
/* SPH_SOLVER_CLASSICAL */
sphdata->force_cb = sphclassical_force_cb;
sphdata->density_cb = sphclassical_density_accum_cb;
sphdata->hfac = 0.5f;
}
}
static void psys_sph_flush_springs(SPHData *sphdata)
{
for (int i = 0; i < sphdata->new_springs.count; i++) {
/* sph_spring_add is not thread-safe. - z0r */
sph_spring_add(sphdata->psys[0], &BLI_buffer_at(&sphdata->new_springs, ParticleSpring, i));
}
BLI_buffer_field_free(&sphdata->new_springs);
}
void psys_sph_finalize(SPHData *sphdata)
{
psys_sph_flush_springs(sphdata);
if (sphdata->eh) {
BLI_edgehash_free(sphdata->eh, NULL);
sphdata->eh = NULL;
}
}
/* Sample the density field at a point in space. */
void psys_sph_density(BVHTree *tree, SPHData *sphdata, float co[3], float vars[2])
{
ParticleSystem **psys = sphdata->psys;
SPHFluidSettings *fluid = psys[0]->part->fluid;
/* 4.0 seems to be a pretty good value */
float interaction_radius = fluid->radius *
(fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
SPHRangeData pfr;
float density[2];
density[0] = density[1] = 0.0f;
pfr.data = density;
pfr.h = interaction_radius * sphdata->hfac;
pfr.mass = sphdata->mass;
sph_evaluate_func(tree, psys, co, &pfr, interaction_radius, sphdata->density_cb);
vars[0] = pfr.data[0];
vars[1] = pfr.data[1];
}
static void sph_integrate(ParticleSimulationData *sim,
ParticleData *pa,
float dfra,
SPHData *sphdata)
{
ParticleSettings *part = sim->psys->part;
// float timestep = psys_get_timestep(sim); // UNUSED
float pa_mass = part->mass * ((part->flag & PART_SIZEMASS) ? pa->size : 1.0f);
float dtime = dfra * psys_get_timestep(sim);
// int steps = 1; // UNUSED
float effector_acceleration[3];
sphdata->pa = pa;
sphdata->mass = pa_mass;
sphdata->pass = 0;
// sphdata.element_size and sphdata.flow are set in the callback.
/* restore previous state and treat gravity & effectors as external acceleration*/
sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
mul_v3_fl(effector_acceleration, 1.0f / dtime);
copy_particle_key(&pa->state, &pa->prev_state, 0);
integrate_particle(part, pa, dtime, effector_acceleration, sphdata->force_cb, sphdata);
}
/** \} */
/************************************************/
/* Basic physics */
/************************************************/
typedef struct EfData {
ParticleTexture ptex;
ParticleSimulationData *sim;
ParticleData *pa;
} EfData;
static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
{
EfData *efdata = (EfData *)efdata_v;
ParticleSimulationData *sim = efdata->sim;
ParticleSettings *part = sim->psys->part;
ParticleData *pa = efdata->pa;
EffectedPoint epoint;
RNG *rng = sim->rng;
/* add effectors */
pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
if (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR) {
BKE_effectors_apply(sim->psys->effectors,
sim->colliders,
part->effector_weights,
&epoint,
force,
NULL,
impulse);
}
mul_v3_fl(force, efdata->ptex.field);
mul_v3_fl(impulse, efdata->ptex.field);
/* calculate air-particle interaction */
if (part->dragfac != 0.0f) {
madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
}
/* brownian force */
if (part->brownfac != 0.0f) {
force[0] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
force[1] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
force[2] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
}
if (part->flag & PART_ROT_DYN && epoint.ave) {
copy_v3_v3(pa->state.ave, epoint.ave);
}
}
/* gathers all forces that effect particles and calculates a new state for the particle */
static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
{
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
ParticleKey tkey;
float dtime = dfra * psys_get_timestep(sim), time;
float *gravity = NULL, gr[3];
EfData efdata;
psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
efdata.pa = pa;
efdata.sim = sim;
/* add global acceleration (gravitation) */
if (psys_uses_gravity(sim) &&
/* normal gravity is too strong for hair so it's disabled by default */
(part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)) {
zero_v3(gr);
madd_v3_v3fl(gr,
sim->scene->physics_settings.gravity,
part->effector_weights->global_gravity * efdata.ptex.gravity);
gravity = gr;
}
/* maintain angular velocity */
copy_v3_v3(pa->state.ave, pa->prev_state.ave);
integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
/* damp affects final velocity */
if (part->dampfac != 0.0f) {
mul_v3_fl(pa->state.vel, 1.0f - part->dampfac * efdata.ptex.damp * 25.0f * dtime);
}
// copy_v3_v3(pa->state.ave, states->ave);
/* finally we do guides */
time = (cfra - pa->time) / pa->lifetime;
CLAMP(time, 0.0f, 1.0f);
copy_v3_v3(tkey.co, pa->state.co);
copy_v3_v3(tkey.vel, pa->state.vel);
tkey.time = pa->state.time;
if (part->type != PART_HAIR) {
if (do_guides(sim->depsgraph, sim->psys->part, sim->psys->effectors, &tkey, p, time)) {
copy_v3_v3(pa->state.co, tkey.co);
/* guides don't produce valid velocity */
sub_v3_v3v3(pa->state.vel, tkey.co, pa->prev_state.co);
mul_v3_fl(pa->state.vel, 1.0f / dtime);
pa->state.time = tkey.time;
}
}
}
static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
{
float rotfac, rot1[4], rot2[4] = {1.0, 0.0, 0.0, 0.0}, dtime = dfra * timestep, extrotfac;
if ((part->flag & PART_ROTATIONS) == 0) {
unit_qt(pa->state.rot);
return;
}
if (part->flag & PART_ROT_DYN) {
extrotfac = len_v3(pa->state.ave);
}
else {
extrotfac = 0.0f;
}
if ((part->flag & PART_ROT_DYN) &&
ELEM(part->avemode, PART_AVE_VELOCITY, PART_AVE_HORIZONTAL, PART_AVE_VERTICAL)) {
float angle;
float len1 = len_v3(pa->prev_state.vel);
float len2 = len_v3(pa->state.vel);
float vec[3];
if (len1 == 0.0f || len2 == 0.0f) {
zero_v3(pa->state.ave);
}
else {
cross_v3_v3v3(pa->state.ave, pa->prev_state.vel, pa->state.vel);
normalize_v3(pa->state.ave);
angle = dot_v3v3(pa->prev_state.vel, pa->state.vel) / (len1 * len2);
mul_v3_fl(pa->state.ave, saacos(angle) / dtime);
}
get_angular_velocity_vector(part->avemode, &pa->state, vec);
axis_angle_to_quat(rot2, vec, dtime * part->avefac);
}
rotfac = len_v3(pa->state.ave);
if (rotfac == 0.0f || (part->flag & PART_ROT_DYN) == 0 || extrotfac == 0.0f) {
unit_qt(rot1);
}
else {
axis_angle_to_quat(rot1, pa->state.ave, rotfac * dtime);
}
mul_qt_qtqt(pa->state.rot, rot1, pa->prev_state.rot);
mul_qt_qtqt(pa->state.rot, rot2, pa->state.rot);
/* keep rotation quat in good health */
normalize_qt(pa->state.rot);
}
/************************************************
* Collisions
*
* The algorithm is roughly:
* 1. Use a BVH tree to search for faces that a particle may collide with.
* 2. Use Newton's method to find the exact time at which the collision occurs.
* https://en.wikipedia.org/wiki/Newton's_method
*
************************************************/
#define COLLISION_MIN_RADIUS 0.001f
#define COLLISION_MIN_DISTANCE 0.0001f
#define COLLISION_ZERO 0.00001f
#define COLLISION_INIT_STEP 0.00008f
typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
static float nr_signed_distance_to_plane(float *p,
float radius,
ParticleCollisionElement *pce,
float *nor)
{
float p0[3], e1[3], e2[3], d;
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
sub_v3_v3v3(p0, p, pce->x0);
cross_v3_v3v3(nor, e1, e2);
normalize_v3(nor);
d = dot_v3v3(p0, nor);
if (pce->inv_nor == -1) {
if (d < 0.0f) {
pce->inv_nor = 1;
}
else {
pce->inv_nor = 0;
}
}
if (pce->inv_nor == 1) {
negate_v3(nor);
d = -d;
}
return d - radius;
}
static float nr_distance_to_edge(float *p,
float radius,
ParticleCollisionElement *pce,
float *UNUSED(nor))
{
float v0[3], v1[3], v2[3], c[3];
sub_v3_v3v3(v0, pce->x1, pce->x0);
sub_v3_v3v3(v1, p, pce->x0);
sub_v3_v3v3(v2, p, pce->x1);
cross_v3_v3v3(c, v1, v2);
return fabsf(len_v3(c) / len_v3(v0)) - radius;
}
static float nr_distance_to_vert(float *p,
float radius,
ParticleCollisionElement *pce,
float *UNUSED(nor))
{
return len_v3v3(p, pce->x0) - radius;
}
static void collision_interpolate_element(ParticleCollisionElement *pce,
float t,
float fac,
ParticleCollision *col)
{
/* t is the current time for newton rhapson */
/* fac is the starting factor for current collision iteration */
/* The col->fac's are factors for the particle subframe step start
* and end during collision modifier step. */
float f = fac + t * (1.0f - fac);
float mul = col->fac1 + f * (col->fac2 - col->fac1);
if (pce->tot > 0) {
madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
if (pce->tot > 1) {
madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
if (pce->tot > 2) {
madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
}
}
}
}
static void collision_point_velocity(ParticleCollisionElement *pce)
{
float v[3];
copy_v3_v3(pce->vel, pce->v[0]);
if (pce->tot > 1) {
sub_v3_v3v3(v, pce->v[1], pce->v[0]);
madd_v3_v3fl(pce->vel, v, pce->uv[0]);
if (pce->tot > 2) {
sub_v3_v3v3(v, pce->v[2], pce->v[0]);
madd_v3_v3fl(pce->vel, v, pce->uv[1]);
}
}
}
static float collision_point_distance_with_normal(
float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
{
if (fac >= 0.0f) {
collision_interpolate_element(pce, 0.0f, fac, col);
}
switch (pce->tot) {
case 1: {
sub_v3_v3v3(nor, p, pce->x0);
return normalize_v3(nor);
}
case 2: {
float u, e[3], vec[3];
sub_v3_v3v3(e, pce->x1, pce->x0);
sub_v3_v3v3(vec, p, pce->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
madd_v3_v3v3fl(nor, vec, e, -u);
return normalize_v3(nor);
}
case 3:
return nr_signed_distance_to_plane(p, 0.0f, pce, nor);
}
return 0;
}
static void collision_point_on_surface(
const float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
{
collision_interpolate_element(pce, 0.0f, fac, col);
switch (pce->tot) {
case 1: {
sub_v3_v3v3(co, p, pce->x0);
normalize_v3(co);
madd_v3_v3v3fl(co, pce->x0, co, col->radius);
break;
}
case 2: {
float u, e[3], vec[3], nor[3];
sub_v3_v3v3(e, pce->x1, pce->x0);
sub_v3_v3v3(vec, p, pce->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
madd_v3_v3v3fl(nor, vec, e, -u);
normalize_v3(nor);
madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
madd_v3_v3fl(co, nor, col->radius);
break;
}
case 3: {
float p0[3], e1[3], e2[3], nor[3];
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
sub_v3_v3v3(p0, p, pce->x0);
cross_v3_v3v3(nor, e1, e2);
normalize_v3(nor);
if (pce->inv_nor == 1) {
negate_v3(nor);
}
madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
madd_v3_v3fl(co, e1, pce->uv[0]);
madd_v3_v3fl(co, e2, pce->uv[1]);
break;
}
}
}
/* find first root in range [0-1] starting from 0 */
static float collision_newton_rhapson(ParticleCollision *col,
float radius,
ParticleCollisionElement *pce,
NRDistanceFunc distance_func)
{
float t0, t1, dt_init, d0, d1, dd, n[3];
int iter;
pce->inv_nor = -1;
if (col->inv_total_time > 0.0f) {
/* Initial step size should be small, but not too small or floating point
* precision errors will appear. - z0r */
dt_init = COLLISION_INIT_STEP * col->inv_total_time;
}
else {
dt_init = 0.001f;
}
/* start from the beginning */
t0 = 0.0f;
collision_interpolate_element(pce, t0, col->f, col);
d0 = distance_func(col->co1, radius, pce, n);
t1 = dt_init;
d1 = 0.0f;
for (iter = 0; iter < 10; iter++) { //, itersum++) {
/* get current location */
collision_interpolate_element(pce, t1, col->f, col);
interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
d1 = distance_func(pce->p, radius, pce, n);
/* particle already inside face, so report collision */
if (iter == 0 && d0 < 0.0f && d0 > -radius) {
copy_v3_v3(pce->p, col->co1);
copy_v3_v3(pce->nor, n);
pce->inside = 1;
return 0.0f;
}
/* Zero gradient (no movement relative to element). Can't step from
* here. */
if (d1 == d0) {
/* If first iteration, try from other end where the gradient may be
* greater. Note: code duplicated below. */
if (iter == 0) {
t0 = 1.0f;
collision_interpolate_element(pce, t0, col->f, col);
d0 = distance_func(col->co2, radius, pce, n);
t1 = 1.0f - dt_init;
d1 = 0.0f;
continue;
}
return -1.0f;
}
dd = (t1 - t0) / (d1 - d0);
t0 = t1;
d0 = d1;
t1 -= d1 * dd;
/* Particle moving away from plane could also mean a strangely rotating
* face, so check from end. Note: code duplicated above. */
if (iter == 0 && t1 < 0.0f) {
t0 = 1.0f;
collision_interpolate_element(pce, t0, col->f, col);
d0 = distance_func(col->co2, radius, pce, n);
t1 = 1.0f - dt_init;
d1 = 0.0f;
continue;
}
if (iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.0f)) {
return -1.0f;
}
if (d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
if (t1 >= -COLLISION_ZERO && t1 <= 1.0f) {
if (distance_func == nr_signed_distance_to_plane) {
copy_v3_v3(pce->nor, n);
}
CLAMP(t1, 0.0f, 1.0f);
return t1;
}
return -1.0f;
}
}
return -1.0;
}
static int collision_sphere_to_tri(ParticleCollision *col,
float radius,
ParticleCollisionElement *pce,
float *t)
{
ParticleCollisionElement *result = &col->pce;
float ct, u, v;
pce->inv_nor = -1;
pce->inside = 0;
ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
if (ct >= 0.0f && ct < *t && (result->inside == 0 || pce->inside == 1)) {
float e1[3], e2[3], p0[3];
float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
/* XXX: add radius correction here? */
sub_v3_v3v3(p0, pce->p, pce->x0);
e1e1 = dot_v3v3(e1, e1);
e1e2 = dot_v3v3(e1, e2);
e1p0 = dot_v3v3(e1, p0);
e2e2 = dot_v3v3(e2, e2);
e2p0 = dot_v3v3(e2, p0);
inv = 1.0f / (e1e1 * e2e2 - e1e2 * e1e2);
u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
if (u >= 0.0f && u <= 1.0f && v >= 0.0f && u + v <= 1.0f) {
*result = *pce;
/* normal already calculated in pce */
result->uv[0] = u;
result->uv[1] = v;
*t = ct;
return 1;
}
}
return 0;
}
static int collision_sphere_to_edges(ParticleCollision *col,
float radius,
ParticleCollisionElement *pce,
float *t)
{
ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
ParticleCollisionElement *result = &col->pce;
float ct;
int i;
for (i = 0; i < 3; i++) {
cur = edge + i;
cur->x[0] = pce->x[i];
cur->x[1] = pce->x[(i + 1) % 3];
cur->v[0] = pce->v[i];
cur->v[1] = pce->v[(i + 1) % 3];
cur->tot = 2;
cur->inside = 0;
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
if (ct >= 0.0f && ct < *t) {
float u, e[3], vec[3];
sub_v3_v3v3(e, cur->x1, cur->x0);
sub_v3_v3v3(vec, cur->p, cur->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
if (u < 0.0f || u > 1.0f) {
break;
}
*result = *cur;
madd_v3_v3v3fl(result->nor, vec, e, -u);
normalize_v3(result->nor);
result->uv[0] = u;
hit = cur;
*t = ct;
}
}
return hit != NULL;
}
static int collision_sphere_to_verts(ParticleCollision *col,
float radius,
ParticleCollisionElement *pce,
float *t)
{
ParticleCollisionElement vert[3], *cur = NULL, *hit = NULL;
ParticleCollisionElement *result = &col->pce;
float ct;
int i;
for (i = 0; i < 3; i++) {
cur = vert + i;
cur->x[0] = pce->x[i];
cur->v[0] = pce->v[i];
cur->tot = 1;
cur->inside = 0;
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_vert);
if (ct >= 0.0f && ct < *t) {
*result = *cur;
sub_v3_v3v3(result->nor, cur->p, cur->x0);
normalize_v3(result->nor);
hit = cur;
*t = ct;
}
}
return hit != NULL;
}
/* Callback for BVHTree near test */
void BKE_psys_collision_neartest_cb(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
ParticleCollision *col = (ParticleCollision *)userdata;
ParticleCollisionElement pce;
const MVertTri *vt = &col->md->tri[index];
MVert *x = col->md->x;
MVert *v = col->md->current_v;
float t = hit->dist / col->original_ray_length;
int collision = 0;
pce.x[0] = x[vt->tri[0]].co;
pce.x[1] = x[vt->tri[1]].co;
pce.x[2] = x[vt->tri[2]].co;
pce.v[0] = v[vt->tri[0]].co;
pce.v[1] = v[vt->tri[1]].co;
pce.v[2] = v[vt->tri[2]].co;
pce.tot = 3;
pce.inside = 0;
pce.index = index;
collision = collision_sphere_to_tri(col, ray->radius, &pce, &t);
if (col->pce.inside == 0) {
collision += collision_sphere_to_edges(col, ray->radius, &pce, &t);
collision += collision_sphere_to_verts(col, ray->radius, &pce, &t);
}
if (collision) {
hit->dist = col->original_ray_length * t;
hit->index = index;
collision_point_velocity(&col->pce);
col->hit = col->current;
}
}
static int collision_detect(ParticleData *pa,
ParticleCollision *col,
BVHTreeRayHit *hit,
ListBase *colliders)
{
const int raycast_flag = BVH_RAYCAST_DEFAULT & ~(BVH_RAYCAST_WATERTIGHT);
ColliderCache *coll;
float ray_dir[3];
if (BLI_listbase_is_empty(colliders)) {
return 0;
}
sub_v3_v3v3(ray_dir, col->co2, col->co1);
hit->index = -1;
hit->dist = col->original_ray_length = normalize_v3(ray_dir);
col->pce.inside = 0;
/* even if particle is stationary we want to check for moving colliders */
/* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
if (hit->dist == 0.0f) {
hit->dist = col->original_ray_length = 0.000001f;
}
for (coll = colliders->first; coll; coll = coll->next) {
/* for boids: don't check with current ground object; also skip if permeated */
bool skip = false;
for (int i = 0; i < col->skip_count; i++) {
if (coll->ob == col->skip[i]) {
skip = true;
break;
}
}
if (skip) {
continue;
}
/* particles should not collide with emitter at birth */
if (coll->ob == col->emitter && pa->time < col->cfra && pa->time >= col->old_cfra) {
continue;
}
col->current = coll->ob;
col->md = coll->collmd;
col->fac1 = (col->old_cfra - coll->collmd->time_x) /
(coll->collmd->time_xnew - coll->collmd->time_x);
col->fac2 = (col->cfra - coll->collmd->time_x) /
(coll->collmd->time_xnew - coll->collmd->time_x);
if (col->md && col->md->bvhtree) {
BLI_bvhtree_ray_cast_ex(col->md->bvhtree,
col->co1,
ray_dir,
col->radius,
hit,
BKE_psys_collision_neartest_cb,
col,
raycast_flag);
}
}
return hit->index >= 0;
}
static int collision_response(ParticleSimulationData *sim,
ParticleData *pa,
ParticleCollision *col,
BVHTreeRayHit *hit,
int kill,
int dynamic_rotation)
{
ParticleCollisionElement *pce = &col->pce;
PartDeflect *pd = col->hit->pd;
RNG *rng = sim->rng;
/* point of collision */
float co[3];
/* location factor of collision between this iteration */
float x = hit->dist / col->original_ray_length;
/* time factor of collision between timestep */
float f = col->f + x * (1.0f - col->f);
/* time since previous collision (in seconds) */
float dt1 = (f - col->f) * col->total_time;
/* time left after collision (in seconds) */
float dt2 = (1.0f - f) * col->total_time;
/* did particle pass through the collision surface? */
int through = (BLI_rng_get_float(rng) < pd->pdef_perm) ? 1 : 0;
/* calculate exact collision location */
interp_v3_v3v3(co, col->co1, col->co2, x);
/* particle dies in collision */
if (through == 0 && (kill || pd->flag & PDEFLE_KILL_PART)) {
pa->alive = PARS_DYING;
pa->dietime = col->old_cfra + (col->cfra - col->old_cfra) * f;
copy_v3_v3(pa->state.co, co);
interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, f);
interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, f);
interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, f);
/* particle is dead so we don't need to calculate further */
return 0;
}
/* figure out velocity and other data after collision */
/* velocity directly before collision to be modified into velocity directly after collision */
float v0[3];
/* normal component of v0 */
float v0_nor[3];
/* tangential component of v0 */
float v0_tan[3];
/* tangential component of collision surface velocity */
float vc_tan[3];
float v0_dot, vc_dot;
float damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_rng_get_float(rng) - 0.5f);
float frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_rng_get_float(rng) - 0.5f);
float distance, nor[3], dot;
CLAMP(damp, 0.0f, 1.0f);
CLAMP(frict, 0.0f, 1.0f);
/* get exact velocity right before collision */
madd_v3_v3v3fl(v0, col->ve1, col->acc, dt1);
/* Convert collider velocity from `1/frame_step` to `1/s` TODO:
* here we assume 1 frame step for collision modifier. */
mul_v3_fl(pce->vel, col->inv_timestep);
/* calculate tangential particle velocity */
v0_dot = dot_v3v3(pce->nor, v0);
madd_v3_v3v3fl(v0_tan, v0, pce->nor, -v0_dot);
/* calculate tangential collider velocity */
vc_dot = dot_v3v3(pce->nor, pce->vel);
madd_v3_v3v3fl(vc_tan, pce->vel, pce->nor, -vc_dot);
/* handle friction effects (tangential and angular velocity) */
if (frict > 0.0f) {
/* angular <-> linear velocity */
if (dynamic_rotation) {
float vr_tan[3], v1_tan[3], ave[3];
/* linear velocity of particle surface */
cross_v3_v3v3(vr_tan, pce->nor, pa->state.ave);
mul_v3_fl(vr_tan, pa->size);
/* change to coordinates that move with the collision plane */
sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
/* The resulting velocity is a weighted average of particle cm & surface
* velocity. This weight (related to particle's moment of inertia) could
* be made a parameter for angular <-> linear conversion.
*/
madd_v3_v3fl(v1_tan, vr_tan, -0.4);
mul_v3_fl(v1_tan, 1.0f / 1.4f); /* 1/(1+0.4) */
/* rolling friction is around 0.01 of sliding friction
* (could be made a parameter) */
mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
/* surface_velocity is opposite to cm velocity */
negate_v3_v3(vr_tan, v1_tan);
/* get back to global coordinates */
add_v3_v3(v1_tan, vc_tan);
/* convert to angular velocity*/
cross_v3_v3v3(ave, vr_tan, pce->nor);
mul_v3_fl(ave, 1.0f / MAX2(pa->size, 0.001f));
/* only friction will cause change in linear & angular velocity */
interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
}
else {
/* just basic friction (unphysical due to the friction model used in Blender) */
interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
}
}
/* Stickiness was possibly added before,
* so cancel that before calculating new normal velocity.
* Otherwise particles go flying out of the surface
* because of high reversed sticky velocity. */
if (v0_dot < 0.0f) {
v0_dot += pd->pdef_stickness;
if (v0_dot > 0.0f) {
v0_dot = 0.0f;
}
}
/* damping and flipping of velocity around normal */
v0_dot *= 1.0f - damp;
vc_dot *= through ? damp : 1.0f;
/* calculate normal particle velocity */
/* special case for object hitting the particle from behind */
if (through == 0 && ((vc_dot > 0.0f && v0_dot > 0.0f && vc_dot > v0_dot) ||
(vc_dot < 0.0f && v0_dot < 0.0f && vc_dot < v0_dot))) {
mul_v3_v3fl(v0_nor, pce->nor, vc_dot);
}
else if (v0_dot > 0.0f) {
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + v0_dot);
}
else {
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
}
/* combine components together again */
add_v3_v3v3(v0, v0_nor, v0_tan);
if (col->boid) {
/* keep boids above ground */
BoidParticle *bpa = pa->boid;
if (bpa->data.mode == eBoidMode_OnLand || co[2] <= col->boid_z) {
co[2] = col->boid_z;
v0[2] = 0.0f;
}
}
/* re-apply acceleration to final location and velocity */
madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
madd_v3_v3fl(pa->state.co, col->acc, 0.5f * dt2 * dt2);
madd_v3_v3v3fl(pa->state.vel, v0, col->acc, dt2);
/* make sure particle stays on the right side of the surface */
if (!through) {
distance = collision_point_distance_with_normal(co, pce, -1.0f, col, nor);
if (distance < col->radius + COLLISION_MIN_DISTANCE) {
madd_v3_v3fl(co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
}
dot = dot_v3v3(nor, v0);
if (dot < 0.0f) {
madd_v3_v3fl(v0, nor, -dot);
}
distance = collision_point_distance_with_normal(pa->state.co, pce, 1.0f, col, nor);
if (distance < col->radius + COLLISION_MIN_DISTANCE) {
madd_v3_v3fl(pa->state.co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
}
dot = dot_v3v3(nor, pa->state.vel);
if (dot < 0.0f) {
madd_v3_v3fl(pa->state.vel, nor, -dot);
}
}
/* add stickiness to surface */
madd_v3_v3fl(pa->state.vel, pce->nor, -pd->pdef_stickness);
/* set coordinates for next iteration */
copy_v3_v3(col->co1, co);
copy_v3_v3(col->co2, pa->state.co);
copy_v3_v3(col->ve1, v0);
copy_v3_v3(col->ve2, pa->state.vel);
col->f = f;
/* if permeability random roll succeeded, disable collider for this sim step */
if (through) {
col->skip[col->skip_count++] = col->hit;
}
return 1;
}
static void collision_fail(ParticleData *pa, ParticleCollision *col)
{
/* final chance to prevent total failure, so stick to the surface and hope for the best */
collision_point_on_surface(col->co1, &col->pce, 1.0f, col, pa->state.co);
copy_v3_v3(pa->state.vel, col->pce.vel);
mul_v3_fl(pa->state.vel, col->inv_timestep);
/* printf("max iterations\n"); */
}
/* Particle - Mesh collision detection and response
* Features:
* -friction and damping
* -angular momentum <-> linear momentum
* -high accuracy by re-applying particle acceleration after collision
* -handles moving, rotating and deforming meshes
* -uses Newton-Rhapson iteration to find the collisions
* -handles spherical particles and (nearly) point like particles
*/
static void collision_check(ParticleSimulationData *sim, int p, float dfra, float cfra)
{
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
ParticleCollision col;
BVHTreeRayHit hit;
int collision_count = 0;
float timestep = psys_get_timestep(sim);
memset(&col, 0, sizeof(ParticleCollision));
col.total_time = timestep * dfra;
col.inv_total_time = 1.0f / col.total_time;
col.inv_timestep = 1.0f / timestep;
col.cfra = cfra;
col.old_cfra = sim->psys->cfra;
/* get acceleration (from gravity, forcefields etc. to be re-applied in collision response) */
sub_v3_v3v3(col.acc, pa->state.vel, pa->prev_state.vel);
mul_v3_fl(col.acc, 1.0f / col.total_time);
/* set values for first iteration */
copy_v3_v3(col.co1, pa->prev_state.co);
copy_v3_v3(col.co2, pa->state.co);
copy_v3_v3(col.ve1, pa->prev_state.vel);
copy_v3_v3(col.ve2, pa->state.vel);
col.f = 0.0f;
col.radius = ((part->flag & PART_SIZE_DEFL) || (part->phystype == PART_PHYS_BOIDS)) ?
pa->size :
COLLISION_MIN_RADIUS;
/* override for boids */
if (part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
col.boid = 1;
col.boid_z = pa->state.co[2];
col.skip[col.skip_count++] = pa->boid->ground;
}
/* 10 iterations to catch multiple collisions */
while (collision_count < PARTICLE_COLLISION_MAX_COLLISIONS) {
if (collision_detect(pa, &col, &hit, sim->colliders)) {
collision_count++;
if (collision_count == PARTICLE_COLLISION_MAX_COLLISIONS) {
collision_fail(pa, &col);
}
else if (collision_response(
sim, pa, &col, &hit, part->flag & PART_DIE_ON_COL, part->flag & PART_ROT_DYN) ==
0) {
return;
}
}
else {
return;
}
}
}
/************************************************/
/* Hair */
/************************************************/
/* check if path cache or children need updating and do it if needed */
static void psys_update_path_cache(ParticleSimulationData *sim,
float cfra,
const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
int distr = 0, alloc = 0, skip = 0;
if ((psys->part->childtype &&
psys->totchild != psys_get_tot_child(sim->scene, psys, use_render_params)) ||
psys->recalc & ID_RECALC_PSYS_RESET) {
alloc = 1;
}
if (alloc || psys->recalc & ID_RECALC_PSYS_CHILD ||
(psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT))) {
distr = 1;
}
if (distr) {
if (alloc) {
realloc_particles(sim, sim->psys->totpart);
}
if (psys_get_tot_child(sim->scene, psys, use_render_params)) {
/* don't generate children while computing the hair keys */
if (!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
distribute_particles(sim, PART_FROM_CHILD);
if (part->childtype == PART_CHILD_FACES && part->parents != 0.0f) {
psys_find_parents(sim, use_render_params);
}
}
}
else {
psys_free_children(psys);
}
}
if ((part->type == PART_HAIR || psys->flag & PSYS_KEYED ||
psys->pointcache->flag & PTCACHE_BAKED) == 0) {
skip = 1; /* only hair, keyed and baked stuff can have paths */
}
else if (part->ren_as != PART_DRAW_PATH &&
!(part->type == PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR))) {
skip = 1; /* particle visualization must be set as path */
}
else if (DEG_get_mode(sim->depsgraph) != DAG_EVAL_RENDER) {
if (part->draw_as != PART_DRAW_REND) {
skip = 1; /* draw visualization */
}
else if (psys->pointcache->flag & PTCACHE_BAKING) {
skip = 1; /* no need to cache paths while baking dynamics */
}
else if (psys_in_edit_mode(sim->depsgraph, psys)) {
if ((pset->flag & PE_DRAW_PART) == 0) {
skip = 1;
}
else if (part->childtype == 0 &&
(psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED) == 0) {
skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
}
}
}
if (!skip) {
psys_cache_paths(sim, cfra, use_render_params);
/* for render, child particle paths are computed on the fly */
if (part->childtype) {
if (!psys->totchild) {
skip = 1;
}
else if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE) == 0) {
skip = 1;
}
if (!skip) {
psys_cache_child_paths(sim, cfra, 0, use_render_params);
}
}
}
else if (psys->pathcache) {
psys_free_path_cache(psys, NULL);
}
}
static bool psys_hair_use_simulation(ParticleData *pa, float max_length)
{
/* Minimum segment length relative to average length.
* Hairs with segments below this length will be excluded from the simulation,
* because otherwise the solver will become unstable.
* The hair system should always make sure the hair segments have reasonable length ratios,
* but this can happen in old files when e.g. cutting hair.
*/
const float min_length = 0.1f * max_length;
HairKey *key;
int k;
if (pa->totkey < 2) {
return false;
}
for (k = 1, key = pa->hair + 1; k < pa->totkey; k++, key++) {
float length = len_v3v3(key->co, (key - 1)->co);
if (length < min_length) {
return false;
}
}
return true;
}
static MDeformVert *hair_set_pinning(MDeformVert *dvert, float weight)
{
if (dvert) {
if (!dvert->totweight) {
dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
dvert->totweight = 1;
}
dvert->dw->weight = weight;
dvert++;
}
return dvert;
}
static void hair_create_input_mesh(ParticleSimulationData *sim,
int totpoint,
int totedge,
Mesh **r_mesh)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
Mesh *mesh;
MVert *mvert;
MEdge *medge;
MDeformVert *dvert;
HairKey *key;
PARTICLE_P;
int k, hair_index;
float hairmat[4][4];
float max_length;
float hair_radius;
mesh = *r_mesh;
if (!mesh) {
*r_mesh = mesh = BKE_mesh_new_nomain(totpoint, totedge, 0, 0, 0);
CustomData_add_layer(&mesh->vdata, CD_MDEFORMVERT, CD_CALLOC, NULL, mesh->totvert);
BKE_mesh_update_customdata_pointers(mesh, false);
}
mvert = mesh->mvert;
medge = mesh->medge;
dvert = mesh->dvert;
if (psys->clmd->hairdata == NULL) {
psys->clmd->hairdata = MEM_mallocN(sizeof(ClothHairData) * totpoint, "hair data");
}
/* calculate maximum segment length */
max_length = 0.0f;
LOOP_PARTICLES
{
if (!(pa->flag & PARS_UNEXIST)) {
for (k = 1, key = pa->hair + 1; k < pa->totkey; k++, key++) {
float length = len_v3v3(key->co, (key - 1)->co);
if (max_length < length) {
max_length = length;
}
}
}
}
psys->clmd->sim_parms->vgroup_mass = 1;
/* XXX placeholder for more flexible future hair settings */
hair_radius = part->size;
/* make vgroup for pin roots etc.. */
hair_index = 1;
LOOP_PARTICLES
{
if (!(pa->flag & PARS_UNEXIST)) {
float root_mat[4][4];
float bending_stiffness;
bool use_hair;
pa->hair_index = hair_index;
use_hair = psys_hair_use_simulation(pa, max_length);
psys_mat_hair_to_object(sim->ob, sim->psmd->mesh_final, psys->part->from, pa, hairmat);
mul_m4_m4m4(root_mat, sim->ob->obmat, hairmat);
normalize_m4(root_mat);
bending_stiffness = CLAMPIS(
1.0f - part->bending_random * psys_frand(psys, p + 666), 0.0f, 1.0f);
for (k = 0, key = pa->hair; k < pa->totkey; k++, key++) {
ClothHairData *hair;
float *co, *co_next;
co = key->co;
co_next = (key + 1)->co;
/* create fake root before actual root to resist bending */
if (k == 0) {
hair = &psys->clmd->hairdata[pa->hair_index - 1];
copy_v3_v3(hair->loc, root_mat[3]);
copy_m3_m4(hair->rot, root_mat);
hair->radius = hair_radius;
hair->bending_stiffness = bending_stiffness;
add_v3_v3v3(mvert->co, co, co);
sub_v3_v3(mvert->co, co_next);
mul_m4_v3(hairmat, mvert->co);
medge->v1 = pa->hair_index - 1;
medge->v2 = pa->hair_index;
dvert = hair_set_pinning(dvert, 1.0f);
mvert++;
medge++;
}
/* store root transform in cloth data */
hair = &psys->clmd->hairdata[pa->hair_index + k];
copy_v3_v3(hair->loc, root_mat[3]);
copy_m3_m4(hair->rot, root_mat);
hair->radius = hair_radius;
hair->bending_stiffness = bending_stiffness;
copy_v3_v3(mvert->co, co);
mul_m4_v3(hairmat, mvert->co);
if (k) {
medge->v1 = pa->hair_index + k - 1;
medge->v2 = pa->hair_index + k;
}
/* roots and disabled hairs should be 1.0, the rest can be anything from 0.0 to 1.0 */
if (use_hair) {
dvert = hair_set_pinning(dvert, key->weight);
}
else {
dvert = hair_set_pinning(dvert, 1.0f);
}
mvert++;
if (k) {
medge++;
}
}
hair_index += pa->totkey + 1;
}
}
}
static void do_hair_dynamics(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
PARTICLE_P;
EffectorWeights *clmd_effweights;
int totpoint;
int totedge;
float(*deformedVerts)[3];
bool realloc_roots;
if (!psys->clmd) {
psys->clmd = (ClothModifierData *)BKE_modifier_new(eModifierType_Cloth);
psys->clmd->sim_parms->goalspring = 0.0f;
psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_RESIST_SPRING_COMPRESS;
psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
}
/* count simulated points */
totpoint = 0;
totedge = 0;
LOOP_PARTICLES
{
if (!(pa->flag & PARS_UNEXIST)) {
/* "out" dm contains all hairs */
totedge += pa->totkey;
totpoint += pa->totkey + 1; /* +1 for virtual root point */
}
}
/* whether hair root info array has to be reallocated */
realloc_roots = false;
if (psys->hair_in_mesh) {
Mesh *mesh = psys->hair_in_mesh;
if (totpoint != mesh->totvert || totedge != mesh->totedge) {
BKE_id_free(NULL, mesh);
psys->hair_in_mesh = NULL;
realloc_roots = true;
}
}
if (!psys->hair_in_mesh || !psys->clmd->hairdata || realloc_roots) {
if (psys->clmd->hairdata) {
MEM_freeN(psys->clmd->hairdata);
psys->clmd->hairdata = NULL;
}
}
hair_create_input_mesh(sim, totpoint, totedge, &psys->hair_in_mesh);
if (psys->hair_out_mesh) {
BKE_id_free(NULL, psys->hair_out_mesh);
}
psys->clmd->point_cache = psys->pointcache;
/* for hair sim we replace the internal cloth effector weights temporarily
* to use the particle settings
*/
clmd_effweights = psys->clmd->sim_parms->effector_weights;
psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
BKE_id_copy_ex(NULL, &psys->hair_in_mesh->id, (ID **)&psys->hair_out_mesh, LIB_ID_COPY_LOCALIZE);
deformedVerts = BKE_mesh_vert_coords_alloc(psys->hair_out_mesh, NULL);
clothModifier_do(
psys->clmd, sim->depsgraph, sim->scene, sim->ob, psys->hair_in_mesh, deformedVerts);
BKE_mesh_vert_coords_apply(psys->hair_out_mesh, deformedVerts);
MEM_freeN(deformedVerts);
/* restore cloth effector weights */
psys->clmd->sim_parms->effector_weights = clmd_effweights;
}
static void hair_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PARTICLE_P;
float disp = psys_get_current_display_percentage(psys, use_render_params);
LOOP_PARTICLES
{
pa->size = part->size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
if (psys_frand(psys, p) > disp) {
pa->flag |= PARS_NO_DISP;
}
else {
pa->flag &= ~PARS_NO_DISP;
}
}
if (psys->recalc & ID_RECALC_PSYS_RESET) {
/* need this for changing subsurf levels */
psys_calc_dmcache(sim->ob, sim->psmd->mesh_final, sim->psmd->mesh_original, psys);
if (psys->clmd) {
cloth_free_modifier(psys->clmd);
}
}
/* dynamics with cloth simulation, psys->particles can be NULL with 0 particles T25519. */
if (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS && psys->particles) {
do_hair_dynamics(sim);
}
/* following lines were removed r29079 but cause bug T22811, see report for details */
psys_update_effectors(sim);
psys_update_path_cache(sim, cfra, use_render_params);
psys->flag |= PSYS_HAIR_UPDATED;
}
static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
HairKey *key, *root;
PARTICLE_P;
invert_m4_m4(ob->imat, ob->obmat);
psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
if (psys->totpart == 0) {
return;
}
/* save new keys for elements if needed */
LOOP_PARTICLES
{
/* first time alloc */
if (pa->totkey == 0 || pa->hair == NULL) {
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
pa->totkey = 0;
}
key = root = pa->hair;
key += pa->totkey;
/* convert from global to geometry space */
copy_v3_v3(key->co, pa->state.co);
mul_m4_v3(ob->imat, key->co);
if (pa->totkey) {
sub_v3_v3(key->co, root->co);
psys_vec_rot_to_face(sim->psmd->mesh_final, pa, key->co);
}
key->time = pa->state.time;
key->weight = 1.0f - key->time / 100.0f;
pa->totkey++;
/* Root is always in the origin of hair space
* so we set it to be so after the last key is saved. */
if (pa->totkey == psys->part->hair_step + 1) {
zero_v3(root->co);
}
}
}
/* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
* condition. */
static const float MIN_TIMESTEP = 1.0f / 101.0f;
/* Tolerance of 1.5 means the last subframe neither favors growing nor
* shrinking (e.g if it were 1.3, the last subframe would tend to be too
* small). */
static const float TIMESTEP_EXPANSION_FACTOR = 0.1f;
static const float TIMESTEP_EXPANSION_TOLERANCE = 1.5f;
/* Calculate the speed of the particle relative to the local scale of the
* simulation. This should be called once per particle during a simulation
* step, after the velocity has been updated. element_size defines the scale of
* the simulation, and is typically the distance to neighboring particles. */
static void update_courant_num(
ParticleSimulationData *sim, ParticleData *pa, float dtime, SPHData *sphdata, SpinLock *spin)
{
float relative_vel[3];
sub_v3_v3v3(relative_vel, pa->prev_state.vel, sphdata->flow);
const float courant_num = len_v3(relative_vel) * dtime / sphdata->element_size;
if (sim->courant_num < courant_num) {
BLI_spin_lock(spin);
if (sim->courant_num < courant_num) {
sim->courant_num = courant_num;
}
BLI_spin_unlock(spin);
}
}
static float get_base_time_step(ParticleSettings *part)
{
return 1.0f / (float)(part->subframes + 1);
}
/* Update time step size to suit current conditions. */
static void update_timestep(ParticleSystem *psys, ParticleSimulationData *sim)
{
float dt_target;
if (sim->courant_num == 0.0f) {
dt_target = 1.0f;
}
else {
dt_target = psys->dt_frac * (psys->part->courant_target / sim->courant_num);
}
/* Make sure the time step is reasonable. For some reason, the CLAMP macro
* doesn't work here. The time step becomes too large. - z0r */
if (dt_target < MIN_TIMESTEP) {
dt_target = MIN_TIMESTEP;
}
else if (dt_target > get_base_time_step(psys->part)) {
dt_target = get_base_time_step(psys->part);
}
/* Decrease time step instantly, but increase slowly. */
if (dt_target > psys->dt_frac) {
psys->dt_frac = interpf(dt_target, psys->dt_frac, TIMESTEP_EXPANSION_FACTOR);
}
else {
psys->dt_frac = dt_target;
}
}
static float sync_timestep(ParticleSystem *psys, float t_frac)
{
/* Sync with frame end if it's close. */
if (t_frac == 1.0f) {
return psys->dt_frac;
}
if (t_frac + (psys->dt_frac * TIMESTEP_EXPANSION_TOLERANCE) >= 1.0f) {
return 1.0f - t_frac;
}
return psys->dt_frac;
}
/************************************************/
/* System Core */
/************************************************/
typedef struct DynamicStepSolverTaskData {
ParticleSimulationData *sim;
float cfra;
float timestep;
float dtime;
SpinLock spin;
} DynamicStepSolverTaskData;
static void dynamics_step_sphdata_reduce(const void *__restrict UNUSED(userdata),
void *__restrict join_v,
void *__restrict chunk_v)
{
SPHData *sphdata_to = join_v;
SPHData *sphdata_from = chunk_v;
if (sphdata_from->new_springs.count > 0) {
BLI_buffer_append_array(&sphdata_to->new_springs,
ParticleSpring,
&BLI_buffer_at(&sphdata_from->new_springs, ParticleSpring, 0),
sphdata_from->new_springs.count);
}
BLI_buffer_field_free(&sphdata_from->new_springs);
}
static void dynamics_step_sph_ddr_task_cb_ex(void *__restrict userdata,
const int p,
const TaskParallelTLS *__restrict tls)
{
DynamicStepSolverTaskData *data = userdata;
ParticleSimulationData *sim = data->sim;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
SPHData *sphdata = tls->userdata_chunk;
ParticleData *pa;
if ((pa = psys->particles + p)->state.time <= 0.0f) {
return;
}
/* do global forces & effectors */
basic_integrate(sim, p, pa->state.time, data->cfra);
/* actual fluids calculations */
sph_integrate(sim, pa, pa->state.time, sphdata);
if (sim->colliders) {
collision_check(sim, p, pa->state.time, data->cfra);
}
/* SPH particles are not physical particles, just interpolation
* particles, thus rotation has not a direct sense for them */
basic_rotate(part, pa, pa->state.time, data->timestep);
if (part->time_flag & PART_TIME_AUTOSF) {
update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
}
}
static void dynamics_step_sph_classical_basic_integrate_task_cb_ex(
void *__restrict userdata, const int p, const TaskParallelTLS *__restrict UNUSED(tls))
{
DynamicStepSolverTaskData *data = userdata;
ParticleSimulationData *sim = data->sim;
ParticleSystem *psys = sim->psys;
ParticleData *pa;
if ((pa = psys->particles + p)->state.time <= 0.0f) {
return;
}
basic_integrate(sim, p, pa->state.time, data->cfra);
}
static void dynamics_step_sph_classical_calc_density_task_cb_ex(
void *__restrict userdata, const int p, const TaskParallelTLS *__restrict tls)
{
DynamicStepSolverTaskData *data = userdata;
ParticleSimulationData *sim = data->sim;
ParticleSystem *psys = sim->psys;
SPHData *sphdata = tls->userdata_chunk;
ParticleData *pa;
if ((pa = psys->particles + p)->state.time <= 0.0f) {
return;
}
sphclassical_calc_dens(pa, pa->state.time, sphdata);
}
static void dynamics_step_sph_classical_integrate_task_cb_ex(void *__restrict userdata,
const int p,
const TaskParallelTLS *__restrict tls)
{
DynamicStepSolverTaskData *data = userdata;
ParticleSimulationData *sim = data->sim;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
SPHData *sphdata = tls->userdata_chunk;
ParticleData *pa;
if ((pa = psys->particles + p)->state.time <= 0.0f) {
return;
}
/* actual fluids calculations */
sph_integrate(sim, pa, pa->state.time, sphdata);
if (sim->colliders) {
collision_check(sim, p, pa->state.time, data->cfra);
}
/* SPH particles are not physical particles, just interpolation
* particles, thus rotation has not a direct sense for them */
basic_rotate(part, pa, pa->state.time, data->timestep);
if (part->time_flag & PART_TIME_AUTOSF) {
update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
}
}
/* unbaked particles are calculated dynamically */
static void dynamics_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
BoidBrainData bbd;
ParticleTexture ptex;
PARTICLE_P;
float timestep;
/* frame & time changes */
float dfra, dtime;
float birthtime, dietime;
/* where have we gone in time since last time */
dfra = cfra - psys->cfra;
timestep = psys_get_timestep(sim);
dtime = dfra * timestep;
if (dfra < 0.0f) {
LOOP_EXISTING_PARTICLES
{
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size * ptex.size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
reset_particle(sim, pa, dtime, cfra);
}
return;
}
/* for now do both, boids us 'rng' */
sim->rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
psys_update_effectors(sim);
if (part->type != PART_HAIR) {
sim->colliders = BKE_collider_cache_create(sim->depsgraph, sim->ob, part->collision_group);
}
/* initialize physics type specific stuff */
switch (part->phystype) {
case PART_PHYS_BOIDS: {
ParticleTarget *pt = psys->targets.first;
bbd.sim = sim;
bbd.part = part;
bbd.cfra = cfra;
bbd.dfra = dfra;
bbd.timestep = timestep;
bbd.rng = sim->rng;
psys_update_particle_tree(psys, cfra);
boids_precalc_rules(part, cfra);
for (; pt; pt = pt->next) {
ParticleSystem *psys_target = psys_get_target_system(sim->ob, pt);
if (psys_target && psys_target != psys) {
psys_update_particle_tree(psys_target, cfra);
}
}
break;
}
case PART_PHYS_FLUID: {
ParticleTarget *pt = psys->targets.first;
psys_update_particle_bvhtree(psys, cfra);
for (; pt;
pt = pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
if (pt->ob) {
psys_update_particle_bvhtree(BLI_findlink(&pt->ob->particlesystem, pt->psys - 1), cfra);
}
}
break;
}
}
/* initialize all particles for dynamics */
LOOP_SHOWN_PARTICLES
{
copy_particle_key(&pa->prev_state, &pa->state, 1);
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size * ptex.size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
birthtime = pa->time;
dietime = pa->dietime;
/* store this, so we can do multiple loops over particles */
pa->state.time = dfra;
if (dietime <= cfra && psys->cfra < dietime) {
/* particle dies some time between this and last step */
pa->state.time = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
pa->alive = PARS_DYING;
}
else if (birthtime <= cfra && birthtime >= psys->cfra) {
/* particle is born some time between this and last step*/
reset_particle(sim, pa, dfra * timestep, cfra);
pa->alive = PARS_ALIVE;
pa->state.time = cfra - birthtime;
}
else if (dietime < cfra) {
/* nothing to be done when particle is dead */
}
/* only reset unborn particles if they're shown or if the particle is born soon*/
if (pa->alive == PARS_UNBORN &&
(part->flag & PART_UNBORN || (cfra + psys->pointcache->step > pa->time))) {
reset_particle(sim, pa, dtime, cfra);
}
else if (part->phystype == PART_PHYS_NO) {
reset_particle(sim, pa, dtime, cfra);
}
if (ELEM(pa->alive, PARS_ALIVE, PARS_DYING) == 0 ||
(pa->flag & (PARS_UNEXIST | PARS_NO_DISP))) {
pa->state.time = -1.0f;
}
}
switch (part->phystype) {
case PART_PHYS_NEWTON: {
LOOP_DYNAMIC_PARTICLES
{
/* do global forces & effectors */
basic_integrate(sim, p, pa->state.time, cfra);
/* deflection */
if (sim->colliders) {
collision_check(sim, p, pa->state.time, cfra);
}
/* rotations */
basic_rotate(part, pa, pa->state.time, timestep);
}
break;
}
case PART_PHYS_BOIDS: {
LOOP_DYNAMIC_PARTICLES
{
bbd.goal_ob = NULL;
boid_brain(&bbd, p, pa);
if (pa->alive != PARS_DYING) {
boid_body(&bbd, pa);
/* deflection */
if (sim->colliders) {
collision_check(sim, p, pa->state.time, cfra);
}
}
}
break;
}
case PART_PHYS_FLUID: {
SPHData sphdata;
psys_sph_init(sim, &sphdata);
DynamicStepSolverTaskData task_data = {
.sim = sim,
.cfra = cfra,
.timestep = timestep,
.dtime = dtime,
};
BLI_spin_init(&task_data.spin);
if (part->fluid->solver == SPH_SOLVER_DDR) {
/* Apply SPH forces using double-density relaxation algorithm
* (Clavat et. al.) */
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (psys->totpart > 100);
settings.userdata_chunk = &sphdata;
settings.userdata_chunk_size = sizeof(sphdata);
settings.func_reduce = dynamics_step_sphdata_reduce;
BLI_task_parallel_range(
0, psys->totpart, &task_data, dynamics_step_sph_ddr_task_cb_ex, &settings);
sph_springs_modify(psys, timestep);
}
else {
/* SPH_SOLVER_CLASSICAL */
/* Apply SPH forces using classical algorithm (due to Gingold
* and Monaghan). Note that, unlike double-density relaxation,
* this algorithm is separated into distinct loops. */
{
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (psys->totpart > 100);
BLI_task_parallel_range(0,
psys->totpart,
&task_data,
dynamics_step_sph_classical_basic_integrate_task_cb_ex,
&settings);
}
/* calculate summation density */
/* Note that we could avoid copying sphdata for each thread here (it's only read here),
* but doubt this would gain us anything except confusion... */
{
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (psys->totpart > 100);
settings.userdata_chunk = &sphdata;
settings.userdata_chunk_size = sizeof(sphdata);
BLI_task_parallel_range(0,
psys->totpart,
&task_data,
dynamics_step_sph_classical_calc_density_task_cb_ex,
&settings);
}
/* do global forces & effectors */
{
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (psys->totpart > 100);
settings.userdata_chunk = &sphdata;
settings.userdata_chunk_size = sizeof(sphdata);
BLI_task_parallel_range(0,
psys->totpart,
&task_data,
dynamics_step_sph_classical_integrate_task_cb_ex,
&settings);
}
}
BLI_spin_end(&task_data.spin);
psys_sph_finalize(&sphdata);
break;
}
}
/* finalize particle state and time after dynamics */
LOOP_DYNAMIC_PARTICLES
{
if (pa->alive == PARS_DYING) {
pa->alive = PARS_DEAD;
pa->state.time = pa->dietime;
}
else {
pa->state.time = cfra;
}
}
BKE_collider_cache_free(&sim->colliders);
BLI_rng_free(sim->rng);
sim->rng = NULL;
}
static void update_children(ParticleSimulationData *sim, const bool use_render_params)
{
if ((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE) == 0) {
/* don't generate children while growing hair - waste of time */
psys_free_children(sim->psys);
}
else if (sim->psys->part->childtype) {
if (sim->psys->totchild != psys_get_tot_child(sim->scene, sim->psys, use_render_params)) {
distribute_particles(sim, PART_FROM_CHILD);
}
else {
/* Children are up to date, nothing to do. */
}
}
else {
psys_free_children(sim->psys);
}
}
/* updates cached particles' alive & other flags etc..*/
static void cached_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleTexture ptex;
PARTICLE_P;
float disp, dietime;
psys_update_effectors(sim);
disp = psys_get_current_display_percentage(psys, use_render_params);
LOOP_PARTICLES
{
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size * ptex.size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
dietime = pa->dietime;
/* update alive status and push events */
if (pa->time > cfra) {
pa->alive = PARS_UNBORN;
if (part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0) {
reset_particle(sim, pa, 0.0f, cfra);
}
}
else if (dietime <= cfra) {
pa->alive = PARS_DEAD;
}
else {
pa->alive = PARS_ALIVE;
}
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
if (psys_frand(psys, p) > disp) {
pa->flag |= PARS_NO_DISP;
}
else {
pa->flag &= ~PARS_NO_DISP;
}
}
}
static bool particles_has_flip(short parttype)
{
return (parttype == PART_FLUID_FLIP);
}
static bool particles_has_tracer(short parttype)
{
return (parttype == PART_FLUID_TRACER);
}
static bool particles_has_spray(short parttype)
{
return (ELEM(parttype, PART_FLUID_SPRAY, PART_FLUID_SPRAYFOAM, PART_FLUID_SPRAYFOAMBUBBLE));
}
static bool particles_has_bubble(short parttype)
{
return (ELEM(parttype, PART_FLUID_BUBBLE, PART_FLUID_FOAMBUBBLE, PART_FLUID_SPRAYFOAMBUBBLE));
}
static bool particles_has_foam(short parttype)
{
return (ELEM(parttype, PART_FLUID_FOAM, PART_FLUID_SPRAYFOAM, PART_FLUID_SPRAYFOAMBUBBLE));
}
static void particles_fluid_step(ParticleSimulationData *sim,
int cfra,
const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
if (psys->particles) {
MEM_freeN(psys->particles);
psys->particles = 0;
psys->totpart = 0;
}
#ifndef WITH_FLUID
UNUSED_VARS(use_render_params, cfra);
#else
{
Object *ob = sim->ob;
FluidModifierData *fmd = (FluidModifierData *)BKE_modifiers_findby_type(ob,
eModifierType_Fluid);
if (fmd && fmd->domain && fmd->domain->fluid) {
FluidDomainSettings *fds = fmd->domain;
ParticleSettings *part = psys->part;
ParticleData *pa = NULL;
int p, totpart = 0, tottypepart = 0;
int flagActivePart, activeParts = 0;
float posX, posY, posZ, velX, velY, velZ;
float resX, resY, resZ;
int upres = 1;
char debugStrBuffer[256];
float tmp[3] = {0}, tmp2[3] = {0};
/* Helper variables for scaling. */
float min[3], max[3], size[3], cell_size_scaled[3], max_size;
/* Sanity check: parts also enabled in fluid domain? */
if ((particles_has_flip(part->type) &&
(fds->particle_type & FLUID_DOMAIN_PARTICLE_FLIP) == 0) ||
(particles_has_spray(part->type) &&
(fds->particle_type & FLUID_DOMAIN_PARTICLE_SPRAY) == 0) ||
(particles_has_bubble(part->type) &&
(fds->particle_type & FLUID_DOMAIN_PARTICLE_BUBBLE) == 0) ||
(particles_has_foam(part->type) &&
(fds->particle_type & FLUID_DOMAIN_PARTICLE_FOAM) == 0) ||
(particles_has_tracer(part->type) &&
(fds->particle_type & FLUID_DOMAIN_PARTICLE_TRACER) == 0)) {
BLI_snprintf(debugStrBuffer,
sizeof(debugStrBuffer),
"particles_fluid_step::error - found particle system that is not enabled in "
"fluid domain\n");
return;
}
/* Count particle amount. tottypepart is only important for snd particles. */
if (part->type == PART_FLUID_FLIP) {
tottypepart = totpart = manta_liquid_get_num_flip_particles(fds->fluid);
}
if (particles_has_spray(part->type) || particles_has_bubble(part->type) ||
particles_has_foam(part->type) || particles_has_tracer(part->type)) {
totpart = manta_liquid_get_num_snd_particles(fds->fluid);
/* tottypepart is the amount of particles of a snd particle type. */
for (p = 0; p < totpart; p++) {
flagActivePart = manta_liquid_get_snd_particle_flag_at(fds->fluid, p);
if (particles_has_spray(part->type) && (flagActivePart & PARTICLE_TYPE_SPRAY)) {
tottypepart++;
}
if (particles_has_bubble(part->type) && (flagActivePart & PARTICLE_TYPE_BUBBLE)) {
tottypepart++;
}
if (particles_has_foam(part->type) && (flagActivePart & PARTICLE_TYPE_FOAM)) {
tottypepart++;
}
if (particles_has_tracer(part->type) && (flagActivePart & PARTICLE_TYPE_TRACER)) {
tottypepart++;
}
}
}
/* Sanity check: no particles present. */
if (!totpart || !tottypepart) {
return;
}
/* How many particles to display? */
tottypepart = (use_render_params) ? tottypepart : (part->disp * tottypepart) / 100;
part->totpart = tottypepart;
part->sta = part->end = 1.0f;
part->lifetime = sim->scene->r.efra + 1;
/* Allocate particles. */
realloc_particles(sim, part->totpart);
/* Set some randomness when choosing which particles to display. */
sim->rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
double r, dispProb = (double)part->disp / 100.0;
/* Loop over *all* particles. Will break out of loop before tottypepart amount exceeded. */
for (p = 0, pa = psys->particles; p < totpart; p++) {
/* Apply some randomness and determine which particles to skip. */
r = BLI_rng_get_double(sim->rng);
if (r > dispProb) {
continue;
}
/* flag, res, upres, pos, vel for FLIP and snd particles have different getters. */
if (part->type == PART_FLUID_FLIP) {
flagActivePart = manta_liquid_get_flip_particle_flag_at(fds->fluid, p);
resX = (float)manta_get_res_x(fds->fluid);
resY = (float)manta_get_res_y(fds->fluid);
resZ = (float)manta_get_res_z(fds->fluid);
upres = 1;
posX = manta_liquid_get_flip_particle_position_x_at(fds->fluid, p);
posY = manta_liquid_get_flip_particle_position_y_at(fds->fluid, p);
posZ = manta_liquid_get_flip_particle_position_z_at(fds->fluid, p);
velX = manta_liquid_get_flip_particle_velocity_x_at(fds->fluid, p);
velY = manta_liquid_get_flip_particle_velocity_y_at(fds->fluid, p);
velZ = manta_liquid_get_flip_particle_velocity_z_at(fds->fluid, p);
}
else if (particles_has_spray(part->type) || particles_has_bubble(part->type) ||
particles_has_foam(part->type) || particles_has_tracer(part->type)) {
flagActivePart = manta_liquid_get_snd_particle_flag_at(fds->fluid, p);
resX = (float)manta_liquid_get_particle_res_x(fds->fluid);
resY = (float)manta_liquid_get_particle_res_y(fds->fluid);
resZ = (float)manta_liquid_get_particle_res_z(fds->fluid);
upres = manta_liquid_get_particle_upres(fds->fluid);
posX = manta_liquid_get_snd_particle_position_x_at(fds->fluid, p);
posY = manta_liquid_get_snd_particle_position_y_at(fds->fluid, p);
posZ = manta_liquid_get_snd_particle_position_z_at(fds->fluid, p);
velX = manta_liquid_get_snd_particle_velocity_x_at(fds->fluid, p);
velY = manta_liquid_get_snd_particle_velocity_y_at(fds->fluid, p);
velZ = manta_liquid_get_snd_particle_velocity_z_at(fds->fluid, p);
}
else {
BLI_snprintf(debugStrBuffer,
sizeof(debugStrBuffer),
"particles_fluid_step::error - unknown particle system type\n");
return;
}
# if 0
/* Debugging: Print type of particle system and current particles. */
printf("system type is %d and particle type is %d\n", part->type, flagActivePart);
# endif
/* Type of particle must match current particle system type
* (only important for snd particles). */
if ((flagActivePart & PARTICLE_TYPE_SPRAY) && !particles_has_spray(part->type)) {
continue;
}
if ((flagActivePart & PARTICLE_TYPE_BUBBLE) && !particles_has_bubble(part->type)) {
continue;
}
if ((flagActivePart & PARTICLE_TYPE_FOAM) && !particles_has_foam(part->type)) {
continue;
}
if ((flagActivePart & PARTICLE_TYPE_TRACER) && !particles_has_tracer(part->type)) {
continue;
}
# if 0
/* Debugging: Print type of particle system and current particles. */
printf("system type is %d and particle type is %d\n", part->type, flagActivePart);
# endif
/* Particle system has allocated 'tottypepart' particles - so break early before exceeded.
*/
if (activeParts >= tottypepart) {
break;
}
/* Only show active particles, i.e. filter out dead particles that just Mantaflow needs.
* Mantaflow convention: PARTICLE_TYPE_DELETE == inactive particle. */
if ((flagActivePart & PARTICLE_TYPE_DELETE) == 0) {
activeParts++;
/* Use particle system settings for particle size. */
pa->size = part->size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
/* Get size (dimension) but considering scaling */
copy_v3_v3(cell_size_scaled, fds->cell_size);
mul_v3_v3(cell_size_scaled, ob->scale);
madd_v3fl_v3fl_v3fl_v3i(min, fds->p0, cell_size_scaled, fds->res_min);
madd_v3fl_v3fl_v3fl_v3i(max, fds->p0, cell_size_scaled, fds->res_max);
sub_v3_v3v3(size, max, min);
/* Biggest dimension will be used for up-scaling. */
max_size = MAX3(size[0] / (float)upres, size[1] / (float)upres, size[2] / (float)upres);
/* Set particle position. */
const float posParticle[3] = {posX, posY, posZ};
copy_v3_v3(pa->state.co, posParticle);
/* Normalize to unit cube around 0. */
float resDomain[3] = {resX, resY, resZ};
mul_v3_fl(resDomain, 0.5f);
sub_v3_v3(pa->state.co, resDomain);
mul_v3_fl(pa->state.co, fds->dx);
/* Match domain dimension / size. */
float scaleAbs[3] = {
1. / fabsf(ob->scale[0]), 1. / fabsf(ob->scale[1]), 1. / fabsf(ob->scale[2])};
mul_v3_fl(scaleAbs, max_size);
mul_v3_v3(pa->state.co, scaleAbs);
/* Match domain scale. */
mul_m4_v3(ob->obmat, pa->state.co);
/* Add origin offset to particle position. */
zero_v3(tmp);
zero_v3(tmp2);
sub_v3_v3v3(tmp2, fds->p1, fds->p0);
mul_v3_fl(tmp2, 0.5f);
add_v3_v3v3(tmp, tmp, fds->p1);
sub_v3_v3(tmp, tmp2);
mul_v3_v3(tmp, ob->scale);
add_v3_v3(pa->state.co, tmp);
# if 0
/* Debugging: Print particle coordinates. */
printf("pa->state.co[0]: %f, pa->state.co[1]: %f, pa->state.co[2]: %f\n",
pa->state.co[0], pa->state.co[1], pa->state.co[2]);
# endif
/* Set particle velocity. */
const float velParticle[3] = {velX, velY, velZ};
copy_v3_v3(pa->state.vel, velParticle);
mul_v3_fl(pa->state.vel, fds->dx);
# if 0
/* Debugging: Print particle velocity. */
printf("pa->state.vel[0]: %f, pa->state.vel[1]: %f, pa->state.vel[2]: %f\n",
pa->state.vel[0], pa->state.vel[1], pa->state.vel[2]);
# endif
/* Set default angular velocity and particle rotation. */
zero_v3(pa->state.ave);
unit_qt(pa->state.rot);
pa->time = 1.0f;
pa->dietime = sim->scene->r.efra + 1;
pa->lifetime = sim->scene->r.efra;
pa->alive = PARS_ALIVE;
/* Increasing particle settings pointer only for active particles. */
pa++;
}
}
# if 0
/* Debugging: Print number of active particles. */
printf("active parts: %d\n", activeParts);
# endif
totpart = psys->totpart = part->totpart = activeParts;
BLI_rng_free(sim->rng);
sim->rng = NULL;
} /* Fluid sim particles done. */
}
#endif /* WITH_FLUID */
}
static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
{
ParticleSystem *psys = sim->psys;
int oldtotpart = psys->totpart;
int totpart = tot_particles(psys, pid);
if (totpart != oldtotpart) {
realloc_particles(sim, totpart);
}
return totpart - oldtotpart;
}
/**
* Calculates the next state for all particles of the system.
* In particles code most 'cfra - ending' are frames,
* 'time - ending' are 'cfra * timestep' (seconds).
*
* 1. Emit particles
* 2. Check cache (if used) and return if frame is cached
* 3. Do dynamics
* 4. Save to cache
*/
static void system_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PointCache *cache = psys->pointcache;
PTCacheID ptcacheid, *pid = NULL;
PARTICLE_P;
float disp, cache_cfra = cfra; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
int startframe = 0, endframe = 100, oldtotpart = 0;
/* cache shouldn't be used for hair or "continue physics" */
if (part->type != PART_HAIR) {
psys_clear_temp_pointcache(psys);
/* set suitable cache range automatically */
if ((cache->flag & (PTCACHE_BAKING | PTCACHE_BAKED)) == 0) {
psys_get_pointcache_start_end(sim->scene, psys, &cache->startframe, &cache->endframe);
}
pid = &ptcacheid;
BKE_ptcache_id_from_particles(pid, sim->ob, psys);
BKE_ptcache_id_time(pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
/* clear everything on start frame, or when psys needs full reset! */
if ((cfra == startframe) || (psys->recalc & ID_RECALC_PSYS_RESET)) {
BKE_ptcache_id_reset(sim->scene, pid, PTCACHE_RESET_OUTDATED);
BKE_ptcache_validate(cache, startframe);
cache->flag &= ~PTCACHE_REDO_NEEDED;
}
CLAMP(cache_cfra, startframe, endframe);
}
/* 1. emit particles and redo particles if needed */
oldtotpart = psys->totpart;
if (emit_particles(sim, pid, cfra) || psys->recalc & ID_RECALC_PSYS_RESET) {
distribute_particles(sim, part->from);
initialize_all_particles(sim);
/* reset only just created particles (on startframe all particles are recreated) */
reset_all_particles(sim, 0.0, cfra, oldtotpart);
free_unexisting_particles(sim);
if (psys->fluid_springs) {
MEM_freeN(psys->fluid_springs);
psys->fluid_springs = NULL;
}
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
/* flag for possible explode modifiers after this system */
sim->psmd->flag |= eParticleSystemFlag_Pars;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfra);
}
/* 2. try to read from the cache */
if (pid) {
int cache_result = BKE_ptcache_read(pid, cache_cfra, true);
if (ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
cached_step(sim, cfra, use_render_params);
update_children(sim, use_render_params);
psys_update_path_cache(sim, cfra, use_render_params);
BKE_ptcache_validate(cache, (int)cache_cfra);
if (cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED) {
BKE_ptcache_write(pid, (int)cache_cfra);
}
return;
}
/* Cache is supposed to be baked, but no data was found so bail out */
if (cache->flag & PTCACHE_BAKED) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
return;
}
if (cache_result == PTCACHE_READ_OLD) {
psys->cfra = (float)cache->simframe;
cached_step(sim, psys->cfra, use_render_params);
}
/* if on second frame, write cache for first frame */
if (psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact == 0)) {
BKE_ptcache_write(pid, startframe);
}
}
else {
BKE_ptcache_invalidate(cache);
}
/* 3. do dynamics */
/* set particles to be not calculated TODO: can't work with pointcache */
disp = psys_get_current_display_percentage(psys, use_render_params);
LOOP_PARTICLES
{
if (psys_frand(psys, p) > disp) {
pa->flag |= PARS_NO_DISP;
}
else {
pa->flag &= ~PARS_NO_DISP;
}
}
if (psys->totpart) {
int dframe, totframesback = 0;
float t_frac, dt_frac;
/* handle negative frame start at the first frame by doing
* all the steps before the first frame */
if ((int)cfra == startframe && part->sta < startframe) {
totframesback = (startframe - (int)part->sta);
}
if (!(part->time_flag & PART_TIME_AUTOSF)) {
/* Constant time step */
psys->dt_frac = get_base_time_step(part);
}
else if ((int)cfra == startframe) {
/* Variable time step; initialize to sub-frames. */
psys->dt_frac = get_base_time_step(part);
}
else if (psys->dt_frac < MIN_TIMESTEP) {
/* Variable time step; subsequent frames */
psys->dt_frac = MIN_TIMESTEP;
}
for (dframe = -totframesback; dframe <= 0; dframe++) {
/* simulate each subframe */
dt_frac = psys->dt_frac;
for (t_frac = dt_frac; t_frac <= 1.0f; t_frac += dt_frac) {
sim->courant_num = 0.0f;
dynamics_step(sim, cfra + dframe + t_frac - 1.0f);
psys->cfra = cfra + dframe + t_frac - 1.0f;
if (part->time_flag & PART_TIME_AUTOSF) {
update_timestep(psys, sim);
}
/* Even without AUTOSF dt_frac may not add up to 1.0 due to float precision. */
dt_frac = sync_timestep(psys, t_frac);
}
}
}
/* 4. only write cache starting from second frame */
if (pid) {
BKE_ptcache_validate(cache, (int)cache_cfra);
if ((int)cache_cfra != startframe) {
BKE_ptcache_write(pid, (int)cache_cfra);
}
}
update_children(sim, use_render_params);
/* cleanup */
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
}
/* system type has changed so set sensible defaults and clear non applicable flags */
void psys_changed_type(Object *ob, ParticleSystem *psys)
{
ParticleSettings *part = psys->part;
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, ob, psys);
if (part->phystype != PART_PHYS_KEYED) {
psys->flag &= ~PSYS_KEYED;
}
if (part->type == PART_HAIR) {
if (ELEM(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR) == 0) {
part->ren_as = PART_DRAW_PATH;
}
if (part->distr == PART_DISTR_GRID) {
part->distr = PART_DISTR_JIT;
}
if (ELEM(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH) == 0) {
part->draw_as = PART_DRAW_REND;
}
CLAMP(part->path_start, 0.0f, 100.0f);
CLAMP(part->path_end, 0.0f, 100.0f);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_hair(ob, psys, 1);
CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
}
psys_reset(psys, PSYS_RESET_ALL);
}
void psys_check_boid_data(ParticleSystem *psys)
{
BoidParticle *bpa;
PARTICLE_P;
pa = psys->particles;
if (!pa) {
return;
}
if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
if (!pa->boid) {
bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
LOOP_PARTICLES
{
pa->boid = bpa++;
}
}
}
else if (pa->boid) {
MEM_freeN(pa->boid);
LOOP_PARTICLES
{
pa->boid = NULL;
}
}
}
void BKE_particlesettings_fluid_default_settings(ParticleSettings *part)
{
SPHFluidSettings *fluid = part->fluid;
fluid->spring_k = 0.0f;
fluid->plasticity_constant = 0.1f;
fluid->yield_ratio = 0.1f;
fluid->rest_length = 1.0f;
fluid->viscosity_omega = 2.0f;
fluid->viscosity_beta = 0.1f;
fluid->stiffness_k = 1.0f;
fluid->stiffness_knear = 1.0f;
fluid->rest_density = 1.0f;
fluid->buoyancy = 0.0f;
fluid->radius = 1.0f;
fluid->flag |= SPH_FAC_REPULSION | SPH_FAC_DENSITY | SPH_FAC_RADIUS | SPH_FAC_VISCOSITY |
SPH_FAC_REST_LENGTH;
}
static void psys_prepare_physics(ParticleSimulationData *sim)
{
ParticleSettings *part = sim->psys->part;
if (ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_keyed_keys(sim->psys);
sim->psys->flag &= ~PSYS_KEYED;
}
/* RNA Update must ensure this is true. */
if (part->phystype == PART_PHYS_BOIDS) {
BLI_assert(part->boids != NULL);
}
else if (part->phystype == PART_PHYS_FLUID) {
BLI_assert(part->fluid != NULL);
}
psys_check_boid_data(sim->psys);
}
static int hair_needs_recalc(ParticleSystem *psys)
{
if (!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
((psys->flag & PSYS_HAIR_DONE) == 0 || psys->recalc & ID_RECALC_PSYS_RESET ||
(psys->part->flag & PART_HAIR_REGROW && !psys->edit))) {
return 1;
}
return 0;
}
static ParticleSettings *particle_settings_localize(ParticleSettings *particle_settings)
{
ParticleSettings *particle_settings_local = (ParticleSettings *)BKE_id_copy_ex(
NULL, (ID *)&particle_settings->id, NULL, LIB_ID_COPY_LOCALIZE);
return particle_settings_local;
}
static void particle_settings_free_local(ParticleSettings *particle_settings)
{
BKE_libblock_free_datablock(&particle_settings->id, 0);
BKE_libblock_free_data(&particle_settings->id, false);
MEM_freeN(particle_settings);
}
/* main particle update call, checks that things are ok on the large scale and
* then advances in to actual particle calculations depending on particle type */
void particle_system_update(struct Depsgraph *depsgraph,
Scene *scene,
Object *ob,
ParticleSystem *psys,
const bool use_render_params)
{
ParticleSimulationData sim = {0};
ParticleSettings *part = psys->part;
ParticleSystem *psys_orig = psys_orig_get(psys);
float cfra;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
/* drawdata is outdated after ANY change */
if (psys->pdd) {
psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
}
if (!psys_check_enabled(ob, psys, use_render_params)) {
return;
}
cfra = DEG_get_ctime(depsgraph);
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psmd;
/* system was already updated from modifier stack */
if (sim.psmd->flag & eParticleSystemFlag_psys_updated) {
sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
/* make sure it really was updated to cfra */
if (psys->cfra == cfra) {
return;
}
}
if (!sim.psmd->mesh_final) {
return;
}
if (part->from != PART_FROM_VERT) {
BKE_mesh_tessface_ensure(sim.psmd->mesh_final);
}
/* to verify if we need to restore object afterwards */
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
if (psys->recalc & ID_RECALC_PSYS_RESET) {
psys->totunexist = 0;
}
/* setup necessary physics type dependent additional data if it doesn't yet exist */
psys_prepare_physics(&sim);
if (part->type == PART_HAIR) {
/* nothing to do so bail out early */
if (psys->totpart == 0 && part->totpart == 0) {
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 0);
psys->flag |= PSYS_HAIR_DONE;
}
/* (re-)create hair */
else if (hair_needs_recalc(psys)) {
float hcfra = 0.0f;
int i, recalc = psys->recalc;
free_hair(ob, psys, 0);
if (psys_orig->edit && psys_orig->free_edit) {
psys_orig->free_edit(psys_orig->edit);
psys_orig->edit = NULL;
psys_orig->free_edit = NULL;
}
/* first step is negative so particles get killed and reset */
psys->cfra = 1.0f;
ParticleSettings *part_local = part;
if ((part->flag & PART_HAIR_REGROW) == 0) {
part_local = particle_settings_localize(part);
psys->part = part_local;
}
for (i = 0; i <= part->hair_step; i++) {
hcfra = 100.0f * (float)i / (float)psys->part->hair_step;
if ((part->flag & PART_HAIR_REGROW) == 0) {
const AnimationEvalContext anim_eval_context = BKE_animsys_eval_context_construct(
depsgraph, hcfra);
BKE_animsys_evaluate_animdata(
&part_local->id, part_local->adt, &anim_eval_context, ADT_RECALC_ANIM, false);
}
system_step(&sim, hcfra, use_render_params);
psys->cfra = hcfra;
psys->recalc = 0;
save_hair(&sim, hcfra);
}
if (part_local != part) {
particle_settings_free_local(part_local);
psys->part = part;
}
psys->flag |= PSYS_HAIR_DONE;
psys->recalc = recalc;
}
else if (psys->flag & PSYS_EDITED) {
psys->flag |= PSYS_HAIR_DONE;
}
if (psys->flag & PSYS_HAIR_DONE) {
hair_step(&sim, cfra, use_render_params);
}
}
else if (particles_has_flip(part->type) || particles_has_spray(part->type) ||
particles_has_bubble(part->type) || particles_has_foam(part->type) ||
particles_has_tracer(part->type)) {
particles_fluid_step(&sim, (int)cfra, use_render_params);
}
else {
switch (part->phystype) {
case PART_PHYS_NO:
case PART_PHYS_KEYED: {
PARTICLE_P;
float disp = psys_get_current_display_percentage(psys, use_render_params);
bool free_unexisting = false;
/* Particles without dynamics haven't been reset yet because they don't use pointcache */
if (psys->recalc & ID_RECALC_PSYS_RESET) {
psys_reset(psys, PSYS_RESET_ALL);
}
if (emit_particles(&sim, NULL, cfra) || (psys->recalc & ID_RECALC_PSYS_RESET)) {
free_keyed_keys(psys);
distribute_particles(&sim, part->from);
initialize_all_particles(&sim);
free_unexisting = true;
/* flag for possible explode modifiers after this system */
sim.psmd->flag |= eParticleSystemFlag_Pars;
}
ParticleTexture ptex;
LOOP_EXISTING_PARTICLES
{
psys_get_texture(&sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size * ptex.size;
if (part->randsize > 0.0f) {
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
}
reset_particle(&sim, pa, 0.0, cfra);
if (psys_frand(psys, p) > disp) {
pa->flag |= PARS_NO_DISP;
}
else {
pa->flag &= ~PARS_NO_DISP;
}
}
/* free unexisting after resetting particles */
if (free_unexisting) {
free_unexisting_particles(&sim);
}
if (part->phystype == PART_PHYS_KEYED) {
psys_count_keyed_targets(&sim);
set_keyed_keys(&sim);
psys_update_path_cache(&sim, (int)cfra, use_render_params);
}
break;
}
default: {
/* the main dynamic particle system step */
system_step(&sim, cfra, use_render_params);
break;
}
}
}
/* make sure emitter is left at correct time (particle emission can change this) */
if (psys->flag & PSYS_OB_ANIM_RESTORE) {
evaluate_emitter_anim(depsgraph, scene, ob, cfra);
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
}
if (psys_orig->edit) {
psys_orig->edit->flags |= PT_CACHE_EDIT_UPDATE_PARTICLE_FROM_EVAL;
}
psys->cfra = cfra;
psys->recalc = 0;
if (DEG_is_active(depsgraph)) {
if (psys_orig != psys) {
if (psys_orig->edit != NULL && psys_orig->edit->psys == psys_orig) {
psys_orig->edit->psys_eval = psys;
psys_orig->edit->psmd_eval = psmd;
}
psys_orig->flag = (psys->flag & ~PSYS_SHARED_CACHES);
psys_orig->cfra = psys->cfra;
psys_orig->recalc = psys->recalc;
psys_orig->part->totpart = part->totpart;
}
}
/* Save matrix for duplicators,
* at rendertime the actual dupliobject's matrix is used so don't update! */
invert_m4_m4(psys->imat, ob->obmat);
BKE_particle_batch_cache_dirty_tag(psys, BKE_PARTICLE_BATCH_DIRTY_ALL);
}
/* ID looper */
/* unfortunately PSys and modifier ID loopers are not directly compatible, so we need this struct
* and the callback below to map the former to the latter (thanks to psys embedding a Cloth
* modifier data struct now, for Hair physics simulations). */
typedef struct ParticleSystemIDLoopForModifier {
ParticleSystem *psys;
ParticleSystemIDFunc func;
void *userdata;
} ParticleSystemIDLoopForModifier;
static void particlesystem_modifiersForeachIDLink(void *user_data,
Object *UNUSED(object),
ID **id_pointer,
int cb_flag)
{
ParticleSystemIDLoopForModifier *data = (ParticleSystemIDLoopForModifier *)user_data;
data->func(data->psys, id_pointer, data->userdata, cb_flag);
}
void BKE_particlesystem_id_loop(ParticleSystem *psys, ParticleSystemIDFunc func, void *userdata)
{
ParticleTarget *pt;
func(psys, (ID **)&psys->part, userdata, IDWALK_CB_USER | IDWALK_CB_NEVER_NULL);
func(psys, (ID **)&psys->target_ob, userdata, IDWALK_CB_NOP);
func(psys, (ID **)&psys->parent, userdata, IDWALK_CB_NOP);
if (psys->clmd != NULL) {
const ModifierTypeInfo *mti = BKE_modifier_get_info(psys->clmd->modifier.type);
if (mti->foreachIDLink != NULL) {
ParticleSystemIDLoopForModifier data = {.psys = psys, .func = func, .userdata = userdata};
mti->foreachIDLink(
&psys->clmd->modifier, NULL, particlesystem_modifiersForeachIDLink, &data);
}
}
for (pt = psys->targets.first; pt; pt = pt->next) {
func(psys, (ID **)&pt->ob, userdata, IDWALK_CB_NOP);
}
/* Even though psys->part should never be NULL, this can happen as an exception during deletion.
* See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
ParticleData *pa;
int p;
for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++) {
func(psys, (ID **)&pa->boid->ground, userdata, IDWALK_CB_NOP);
}
}
}
void BKE_particlesystem_reset_all(struct Object *object)
{
for (ModifierData *md = object->modifiers.first; md != NULL; md = md->next) {
if (md->type != eModifierType_ParticleSystem) {
continue;
}
ParticleSystemModifierData *psmd = (ParticleSystemModifierData *)md;
ParticleSystem *psys = psmd->psys;
psys->recalc |= ID_RECALC_PSYS_RESET;
}
}
/* **** Depsgraph evaluation **** */
void BKE_particle_settings_eval_reset(struct Depsgraph *depsgraph,
ParticleSettings *particle_settings)
{
DEG_debug_print_eval(depsgraph, __func__, particle_settings->id.name, particle_settings);
particle_settings->id.recalc |= ID_RECALC_PSYS_RESET;
}
void BKE_particle_system_eval_init(struct Depsgraph *depsgraph, Object *object)
{
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
for (ParticleSystem *psys = object->particlesystem.first; psys != NULL; psys = psys->next) {
psys->recalc |= (psys->part->id.recalc & ID_RECALC_PSYS_ALL);
}
}