422 lines
13 KiB
C
422 lines
13 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
* Copyright (C) 1995 Software Foundation, Inc.
|
|
*
|
|
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* Functions to compute MD5 message digest of files or memory blocks
|
|
* according to the definition of MD5 in RFC 1321 from April 1992.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "BLI_hash_md5.h" /* own include */
|
|
|
|
#if defined HAVE_LIMITS_H || defined _LIBC
|
|
# include <limits.h>
|
|
#endif
|
|
|
|
/* The following contortions are an attempt to use the C preprocessor to determine an unsigned
|
|
* integral type that is 32 bits wide.
|
|
* An alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but doing that would require
|
|
* that the configure script compile and *run* the resulting executable.
|
|
* Locally running cross-compiled executables is usually not possible.
|
|
*/
|
|
|
|
#if defined __STDC__ && __STDC__
|
|
# define UINT_MAX_32_BITS 4294967295U
|
|
#else
|
|
# define UINT_MAX_32_BITS 0xFFFFFFFF
|
|
#endif
|
|
|
|
/* If UINT_MAX isn't defined, assume it's a 32-bit type.
|
|
* This should be valid for all systems GNU cares about
|
|
* because that doesn't include 16-bit systems, and only modern systems
|
|
* (that certainly have <limits.h>) have 64+-bit integral types.
|
|
*/
|
|
|
|
#ifndef UINT_MAX
|
|
# define UINT_MAX UINT_MAX_32_BITS
|
|
#endif
|
|
|
|
#if UINT_MAX == UINT_MAX_32_BITS
|
|
typedef unsigned int md5_uint32;
|
|
#else
|
|
# if USHRT_MAX == UINT_MAX_32_BITS
|
|
typedef unsigned short md5_uint32;
|
|
# else
|
|
# if ULONG_MAX == UINT_MAX_32_BITS
|
|
typedef unsigned long md5_uint32;
|
|
# else
|
|
/* The following line is intended to evoke an error. Using #error is not portable enough. */
|
|
"Cannot determine unsigned 32-bit data type."
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
/* Following code is low level, upon which are built up the functions
|
|
* 'BLI_hash_md5_stream' and 'BLI_hash_md5_buffer'. */
|
|
|
|
/* Structure to save state of computation between the single steps. */
|
|
struct md5_ctx {
|
|
md5_uint32 A;
|
|
md5_uint32 B;
|
|
md5_uint32 C;
|
|
md5_uint32 D;
|
|
};
|
|
|
|
#ifdef __BIG_ENDIAN__
|
|
# define SWAP(n) (((n) << 24) | (((n)&0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
#else
|
|
# define SWAP(n) (n)
|
|
#endif
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next 64-byte boundary.
|
|
* (RFC 1321, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */};
|
|
|
|
/**
|
|
* Initialize structure containing state of computation.
|
|
* (RFC 1321, 3.3: Step 3)
|
|
*/
|
|
static void md5_init_ctx(struct md5_ctx *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
}
|
|
|
|
/**
|
|
* Starting with the result of former calls of this function (or the initialization),
|
|
* this function updates the 'ctx' context for the next 'len' bytes starting at 'buffer'.
|
|
* It is necessary that 'len' is a multiple of 64!!!
|
|
*/
|
|
static void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)
|
|
{
|
|
/* These are the four functions used in the four steps of the MD5 algorithm and defined in the
|
|
* RFC 1321. The first function is a little bit optimized
|
|
* (as found in Colin Plumbs public domain implementation).
|
|
*/
|
|
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
|
|
#define FF(b, c, d) (d ^ (b & (c ^ d)))
|
|
#define FG(b, c, d) FF(d, b, c)
|
|
#define FH(b, c, d) (b ^ c ^ d)
|
|
#define FI(b, c, d) (c ^ (b | ~d))
|
|
|
|
/* It is unfortunate that C does not provide an operator for cyclic rotation.
|
|
* Hope the C compiler is smart enough. */
|
|
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
|
|
|
|
md5_uint32 correct_words[16];
|
|
const md5_uint32 *words = buffer;
|
|
size_t nwords = len / sizeof(md5_uint32);
|
|
const md5_uint32 *endp = words + nwords;
|
|
md5_uint32 A = ctx->A;
|
|
md5_uint32 B = ctx->B;
|
|
md5_uint32 C = ctx->C;
|
|
md5_uint32 D = ctx->D;
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of the loop. */
|
|
while (words < endp) {
|
|
md5_uint32 *cwp = correct_words;
|
|
md5_uint32 A_save = A;
|
|
md5_uint32 B_save = B;
|
|
md5_uint32 C_save = C;
|
|
md5_uint32 D_save = D;
|
|
|
|
/* First round: using the given function, the context and a constant the next context is
|
|
* computed. Because the algorithms processing unit is a 32-bit word and it is determined
|
|
* to work on words in little endian byte order we perhaps have to change the byte order
|
|
* before the computation. To reduce the work for the next steps we store the swapped words
|
|
* in the array CORRECT_WORDS.
|
|
*/
|
|
#define OP(a, b, c, d, s, T) \
|
|
a += FF(b, c, d) + (*cwp++ = SWAP(*words)) + T; \
|
|
words++; \
|
|
CYCLIC(a, s); \
|
|
a += b; \
|
|
(void)0
|
|
|
|
/* Before we start, one word to the strange constants. They are defined in RFC 1321 as:
|
|
* T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
|
|
*/
|
|
|
|
/* Round 1. */
|
|
OP(A, B, C, D, 7, 0xd76aa478);
|
|
OP(D, A, B, C, 12, 0xe8c7b756);
|
|
OP(C, D, A, B, 17, 0x242070db);
|
|
OP(B, C, D, A, 22, 0xc1bdceee);
|
|
OP(A, B, C, D, 7, 0xf57c0faf);
|
|
OP(D, A, B, C, 12, 0x4787c62a);
|
|
OP(C, D, A, B, 17, 0xa8304613);
|
|
OP(B, C, D, A, 22, 0xfd469501);
|
|
OP(A, B, C, D, 7, 0x698098d8);
|
|
OP(D, A, B, C, 12, 0x8b44f7af);
|
|
OP(C, D, A, B, 17, 0xffff5bb1);
|
|
OP(B, C, D, A, 22, 0x895cd7be);
|
|
OP(A, B, C, D, 7, 0x6b901122);
|
|
OP(D, A, B, C, 12, 0xfd987193);
|
|
OP(C, D, A, B, 17, 0xa679438e);
|
|
OP(B, C, D, A, 22, 0x49b40821);
|
|
|
|
#undef OP
|
|
|
|
/* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS.
|
|
* Redefine the macro to take an additional first argument specifying the function to use.
|
|
*/
|
|
#define OP(f, a, b, c, d, k, s, T) \
|
|
a += f(b, c, d) + correct_words[k] + T; \
|
|
CYCLIC(a, s); \
|
|
a += b; \
|
|
(void)0
|
|
|
|
/* Round 2. */
|
|
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
|
|
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
|
|
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
|
|
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
|
|
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
|
|
OP(FG, D, A, B, C, 10, 9, 0x02441453);
|
|
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
|
|
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
|
|
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
|
|
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
|
|
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
|
|
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
|
|
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
|
|
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
|
|
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
|
|
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
|
|
|
|
/* Round 3. */
|
|
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
|
|
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
|
|
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
|
|
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
|
|
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
|
|
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
|
|
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
|
|
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
|
|
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
|
|
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
|
|
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
|
|
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
|
|
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
|
|
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
|
|
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
|
|
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
|
|
|
|
/* Round 4. */
|
|
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
|
|
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
|
|
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
|
|
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
|
|
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
|
|
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
|
|
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
|
|
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
|
|
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
|
|
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
|
|
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
|
|
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
|
|
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
|
|
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
|
|
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
|
|
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
|
|
|
|
#undef OP
|
|
|
|
/* Add the starting values of the context. */
|
|
A += A_save;
|
|
B += B_save;
|
|
C += C_save;
|
|
D += D_save;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->A = A;
|
|
ctx->B = B;
|
|
ctx->C = C;
|
|
ctx->D = D;
|
|
|
|
#undef FF
|
|
#undef FG
|
|
#undef FH
|
|
#undef FI
|
|
#undef CYCLIC
|
|
}
|
|
|
|
/**
|
|
* Put result from 'ctx' in first 16 bytes of 'resbuf'.
|
|
* The result is always in little endian byte order,
|
|
* so that a byte-wise output yields to the wanted ASCII representation of the message digest.
|
|
*/
|
|
static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
|
|
{
|
|
md5_uint32 *digest = resbuf;
|
|
digest[0] = SWAP(ctx->A);
|
|
digest[1] = SWAP(ctx->B);
|
|
digest[2] = SWAP(ctx->C);
|
|
digest[3] = SWAP(ctx->D);
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Top level public functions. */
|
|
|
|
/**
|
|
* Compute MD5 message digest for bytes read from 'stream'.
|
|
* The resulting message digest number will be written into the 16 bytes beginning at 'resblock'.
|
|
* \return Non-zero if an error occurred.
|
|
*/
|
|
int BLI_hash_md5_stream(FILE *stream, void *resblock)
|
|
{
|
|
#define BLOCKSIZE 4096 /* Important: must be a multiple of 64. */
|
|
struct md5_ctx ctx;
|
|
md5_uint32 len[2];
|
|
char buffer[BLOCKSIZE + 72];
|
|
size_t pad, sum;
|
|
|
|
/* Initialize the computation context. */
|
|
md5_init_ctx(&ctx);
|
|
|
|
len[0] = 0;
|
|
len[1] = 0;
|
|
|
|
/* Iterate over full file contents. */
|
|
while (1) {
|
|
/* We read the file in blocks of BLOCKSIZE bytes.
|
|
* One call of the computation function processes the whole buffer
|
|
* so that with the next round of the loop another block can be read.
|
|
*/
|
|
size_t n;
|
|
sum = 0;
|
|
|
|
/* Read block. Take care for partial reads. */
|
|
do {
|
|
n = fread(buffer, 1, BLOCKSIZE - sum, stream);
|
|
sum += n;
|
|
} while (sum < BLOCKSIZE && n != 0);
|
|
|
|
if (n == 0 && ferror(stream)) {
|
|
return 1;
|
|
}
|
|
|
|
/* RFC 1321 specifies the possible length of the file up to 2^64 bits.
|
|
* Here we only compute the number of bytes. Do a double word increment.
|
|
*/
|
|
len[0] += sum;
|
|
if (len[0] < sum) {
|
|
++len[1];
|
|
}
|
|
|
|
/* If end of file is reached, end the loop. */
|
|
if (n == 0) {
|
|
break;
|
|
}
|
|
|
|
/* Process buffer with BLOCKSIZE bytes. Note that BLOCKSIZE % 64 == 0. */
|
|
md5_process_block(buffer, BLOCKSIZE, &ctx);
|
|
}
|
|
|
|
/* We can copy 64 bytes because the buffer is always big enough.
|
|
* 'fillbuf' contains the needed bits. */
|
|
memcpy(&buffer[sum], fillbuf, 64);
|
|
|
|
/* Compute amount of padding bytes needed. Alignment is done to (N + PAD) % 64 == 56.
|
|
* There is always at least one byte padded, i.e. if the alignment is correctly aligned,
|
|
* 64 padding bytes are added.
|
|
*/
|
|
pad = sum & 63;
|
|
pad = pad >= 56 ? 64 + 56 - pad : 56 - pad;
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
*(md5_uint32 *)&buffer[sum + pad] = SWAP(len[0] << 3);
|
|
*(md5_uint32 *)&buffer[sum + pad + 4] = SWAP((len[1] << 3) | (len[0] >> 29));
|
|
|
|
/* Process last bytes. */
|
|
md5_process_block(buffer, sum + pad + 8, &ctx);
|
|
|
|
/* Construct result in desired memory. */
|
|
md5_read_ctx(&ctx, resblock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Compute MD5 message digest for 'len' bytes beginning at 'buffer'.
|
|
* The result is always in little endian byte order,
|
|
* so that a byte-wise output yields to the wanted ASCII representation of the message digest.
|
|
*/
|
|
void *BLI_hash_md5_buffer(const char *buffer, size_t len, void *resblock)
|
|
{
|
|
struct md5_ctx ctx;
|
|
char restbuf[64 + 72];
|
|
size_t blocks = len & ~63;
|
|
size_t pad, rest;
|
|
|
|
/* Initialize the computation context. */
|
|
md5_init_ctx(&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
md5_process_block(buffer, blocks, &ctx);
|
|
|
|
/* REST bytes are not processed yet. */
|
|
rest = len - blocks;
|
|
/* Copy to own buffer. */
|
|
memcpy(restbuf, &buffer[blocks], rest);
|
|
/* Append needed fill bytes at end of buffer.
|
|
* We can copy 64 bytes because the buffer is always big enough. */
|
|
memcpy(&restbuf[rest], fillbuf, 64);
|
|
|
|
/* PAD bytes are used for padding to correct alignment.
|
|
* Note that always at least one byte is padded. */
|
|
pad = rest >= 56 ? 64 + 56 - rest : 56 - rest;
|
|
|
|
/* Put length of buffer in *bits* in last eight bytes. */
|
|
*(md5_uint32 *)&restbuf[rest + pad] = (md5_uint32)SWAP(len << 3);
|
|
*(md5_uint32 *)&restbuf[rest + pad + 4] = (md5_uint32)SWAP(len >> 29);
|
|
|
|
/* Process last bytes. */
|
|
md5_process_block(restbuf, rest + pad + 8, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return md5_read_ctx(&ctx, resblock);
|
|
}
|
|
|
|
char *BLI_hash_md5_to_hexdigest(void *resblock, char r_hex_digest[33])
|
|
{
|
|
static const char hex_map[17] = "0123456789abcdef";
|
|
const unsigned char *p;
|
|
char *q;
|
|
short len;
|
|
|
|
for (q = r_hex_digest, p = (const unsigned char *)resblock, len = 0; len < 16; p++, len++) {
|
|
const unsigned char c = *p;
|
|
*q++ = hex_map[c >> 4];
|
|
*q++ = hex_map[c & 15];
|
|
}
|
|
*q = '\0';
|
|
|
|
return r_hex_digest;
|
|
}
|