This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/mathutils_euler.c
Campbell Barton 96aa1f9cd5 moved mathutils Euler.rotate(angle, axis) --> Euler.rotate_axis(axis, angle)
since it can only rotate about a single axis dont confuse with vector.rotate() which takes an axis vector.
2010-09-29 08:07:58 +00:00

744 lines
20 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "mathutils.h"
#include "BLI_math.h"
#include "BKE_utildefines.h"
#ifndef int32_t
#include "BLO_sys_types.h"
#endif
#define EULER_SIZE 3
//----------------------------------mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
{
PyObject *seq= NULL;
char *order_str= NULL;
float eul[EULER_SIZE]= {0.0f, 0.0f, 0.0f};
short order= EULER_ORDER_XYZ;
if(!PyArg_ParseTuple(args, "|Os:mathutils.Euler", &seq, &order_str))
return NULL;
switch(PyTuple_GET_SIZE(args)) {
case 0:
break;
case 2:
if((order=euler_order_from_string(order_str, "mathutils.Euler()")) == -1)
return NULL;
/* intentionally pass through */
case 1:
if (mathutils_array_parse(eul, EULER_SIZE, EULER_SIZE, seq, "mathutils.Euler()") == -1)
return NULL;
break;
}
return newEulerObject(eul, order, Py_NEW, NULL);
}
short euler_order_from_string(const char *str, const char *error_prefix)
{
if((str[0] && str[1] && str[2] && str[3]=='\0')) {
switch(*((int32_t *)str)) {
case 'X'|'Y'<<8|'Z'<<16: return EULER_ORDER_XYZ;
case 'X'|'Z'<<8|'Y'<<16: return EULER_ORDER_XZY;
case 'Y'|'X'<<8|'Z'<<16: return EULER_ORDER_YXZ;
case 'Y'|'Z'<<8|'X'<<16: return EULER_ORDER_YZX;
case 'Z'|'X'<<8|'Y'<<16: return EULER_ORDER_ZXY;
case 'Z'|'Y'<<8|'X'<<16: return EULER_ORDER_ZYX;
}
}
PyErr_Format(PyExc_TypeError, "%s: invalid euler order '%s'", error_prefix, str);
return -1;
}
/* note: BaseMath_ReadCallback must be called beforehand */
static PyObject *Euler_ToTupleExt(EulerObject *self, int ndigits)
{
PyObject *ret;
int i;
ret= PyTuple_New(EULER_SIZE);
if(ndigits >= 0) {
for(i= 0; i < EULER_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->eul[i], ndigits)));
}
}
else {
for(i= 0; i < EULER_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->eul[i]));
}
}
return ret;
}
//-----------------------------METHODS----------------------------
//return a quaternion representation of the euler
static char Euler_ToQuat_doc[] =
".. method:: to_quat()\n"
"\n"
" Return a quaternion representation of the euler.\n"
"\n"
" :return: Quaternion representation of the euler.\n"
" :rtype: :class:`Quaternion`\n";
static PyObject *Euler_ToQuat(EulerObject * self)
{
float quat[4];
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order==EULER_ORDER_XYZ) eul_to_quat(quat, self->eul);
else eulO_to_quat(quat, self->eul, self->order);
return newQuaternionObject(quat, Py_NEW, NULL);
}
//return a matrix representation of the euler
static char Euler_ToMatrix_doc[] =
".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the euler.\n"
"\n"
" :return: A 3x3 roation matrix representation of the euler.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *Euler_ToMatrix(EulerObject * self)
{
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order==EULER_ORDER_XYZ) eul_to_mat3((float (*)[3])mat, self->eul);
else eulO_to_mat3((float (*)[3])mat, self->eul, self->order);
return newMatrixObject(mat, 3, 3 , Py_NEW, NULL);
}
//sets the x,y,z values to a unique euler rotation
// TODO, check if this works with rotation order!!!
static char Euler_Unique_doc[] =
".. method:: unique()\n"
"\n"
" Calculate a unique rotation for this euler. Avoids gimble lock.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Euler`\n";
static PyObject *Euler_Unique(EulerObject * self)
{
#define PI_2 (Py_PI * 2.0)
#define PI_HALF (Py_PI / 2.0)
#define PI_INV (1.0 / Py_PI)
double heading, pitch, bank;
if(!BaseMath_ReadCallback(self))
return NULL;
heading = self->eul[0];
pitch = self->eul[1];
bank = self->eul[2];
//wrap heading in +180 / -180
pitch += Py_PI;
pitch -= floor(pitch * PI_INV) * PI_2;
pitch -= Py_PI;
if(pitch < -PI_HALF) {
pitch = -Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
} else if(pitch > PI_HALF) {
pitch = Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
}
//gimbal lock test
if(fabs(pitch) > PI_HALF - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
bank += Py_PI;
bank -= (floor(bank * PI_INV)) * PI_2;
bank -= Py_PI;
}
heading += Py_PI;
heading -= (floor(heading * PI_INV)) * PI_2;
heading -= Py_PI;
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//sets the euler to 0,0,0
static char Euler_Zero_doc[] =
".. method:: zero()\n"
"\n"
" Set all values to zero.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Euler`\n";
static PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
static char Euler_rotate_axis_doc[] =
".. method:: rotate_axis(axis, angle)\n"
"\n"
" Rotates the euler a certain amount and returning a unique euler rotation (no 720 degree pitches).\n"
"\n"
" :arg axis: single character in ['X, 'Y', 'Z'].\n"
" :type axis: string\n"
" :arg angle: angle in radians.\n"
" :type angle: float\n"
" :return: an instance of itself\n"
" :rtype: :class:`Euler`";
static PyObject *Euler_rotate_axis(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
if(!PyArg_ParseTuple(args, "sf:rotate", &axis, &angle)){
PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected angle (float) and axis (x,y,z)");
return NULL;
}
if(!(ELEM3(*axis, 'X', 'Y', 'Z') && axis[1]=='\0')){
PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'X', 'Y' or 'Z'");
return NULL;
}
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order == EULER_ORDER_XYZ) rotate_eul(self->eul, *axis, angle);
else rotate_eulO(self->eul, self->order, *axis, angle);
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
static char Euler_MakeCompatible_doc[] =
".. method:: make_compatible(other)\n"
"\n"
" Make this euler compatible with another, so interpolating between them works as intended.\n"
"\n"
" :arg other: make compatible with this rotation.\n"
" :type other: :class:`Euler`\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Euler`\n"
"\n"
" .. note:: the order of eulers must match or an exception is raised.\n";
static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value)
{
if(!EulerObject_Check(value)) {
PyErr_SetString(PyExc_TypeError, "euler.make_compatible(euler): expected a single euler argument.");
return NULL;
}
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
return NULL;
if(self->order != value->order) {
PyErr_SetString(PyExc_ValueError, "euler.make_compatible(euler): rotation orders don't match\n");
return NULL;
}
compatible_eul(self->eul, value->eul);
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
static char Euler_copy_doc[] =
".. function:: copy()\n"
"\n"
" Returns a copy of this euler.\n"
"\n"
" :return: A copy of the euler.\n"
" :rtype: :class:`Euler`\n"
"\n"
" .. note:: use this to get a copy of a wrapped euler with no reference to the original data.\n";
static PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return newEulerObject(self->eul, self->order, Py_NEW, Py_TYPE(self));
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
PyObject *ret, *tuple;
if(!BaseMath_ReadCallback(self))
return NULL;
tuple= Euler_ToTupleExt(self, -1);
ret= PyUnicode_FromFormat("Euler(%R)", tuple);
Py_DECREF(tuple);
return ret;
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
EulerObject *eulA = NULL, *eulB = NULL;
int result = 0;
if(EulerObject_Check(objectA)) {
eulA = (EulerObject*)objectA;
if(!BaseMath_ReadCallback(eulA))
return NULL;
}
if(EulerObject_Check(objectB)) {
eulB = (EulerObject*)objectB;
if(!BaseMath_ReadCallback(eulB))
return NULL;
}
if (!eulA || !eulB){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
eulA = (EulerObject*)objectA;
eulB = (EulerObject*)objectB;
switch (comparison_type){
case Py_EQ:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1);
break;
case Py_NE:
result = !EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1);
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return EULER_SIZE;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i<0) i= EULER_SIZE-i;
if(i < 0 || i >= EULER_SIZE) {
PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
return NULL;
}
if(!BaseMath_ReadIndexCallback(self, i))
return NULL;
return PyFloat_FromDouble(self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
{
float f = PyFloat_AsDouble(value);
if(f == -1 && PyErr_Occurred()) { // parsed item not a number
PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number");
return -1;
}
if(i<0) i= EULER_SIZE-i;
if(i < 0 || i >= EULER_SIZE){
PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
return -1;
}
self->eul[i] = f;
if(!BaseMath_WriteIndexCallback(self, i))
return -1;
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, EULER_SIZE);
if (end<0) end= (EULER_SIZE + 1) + end;
CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->eul[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end, PyObject * seq)
{
int i, size;
float eul[EULER_SIZE];
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, EULER_SIZE);
if (end<0) end= (EULER_SIZE + 1) + end;
CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin,end);
if((size=mathutils_array_parse(eul, 0, EULER_SIZE, seq, "mathutils.Euler[begin:end] = []")) == -1)
return -1;
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
return -1;
}
for(i= 0; i < EULER_SIZE; i++)
self->eul[begin + i] = eul[i];
BaseMath_WriteCallback(self);
return 0;
}
static PyObject *Euler_subscript(EulerObject *self, PyObject *item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += EULER_SIZE;
return Euler_item(self, i);
} else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyList_New(0);
}
else if (step == 1) {
return Euler_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with eulers");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"euler indices must be integers, not %.200s",
item->ob_type->tp_name);
return NULL;
}
}
static int Euler_ass_subscript(EulerObject *self, PyObject *item, PyObject *value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += EULER_SIZE;
return Euler_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Euler_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with euler");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"euler indices must be integers, not %.200s",
item->ob_type->tp_name);
return -1;
}
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
(lenfunc) Euler_len, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(ssizeargfunc) NULL, /* sq_repeat */
(ssizeargfunc) Euler_item, /* sq_item */
(ssizessizeargfunc) NULL, /* sq_slice, deprecated */
(ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
(objobjproc) NULL, /* sq_contains */
(binaryfunc) NULL, /* sq_inplace_concat */
(ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyMappingMethods Euler_AsMapping = {
(lenfunc)Euler_len,
(binaryfunc)Euler_subscript,
(objobjargproc)Euler_ass_subscript
};
/*
* euler axis, euler.x/y/z
*/
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
return Euler_item(self, GET_INT_FROM_POINTER(type));
}
static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
{
return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
/* rotation order */
static PyObject *Euler_getOrder(EulerObject *self, void *type)
{
const char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"};
if(!BaseMath_ReadCallback(self)) /* can read order too */
return NULL;
return PyUnicode_FromString(order[self->order-EULER_ORDER_XYZ]);
}
static int Euler_setOrder( EulerObject * self, PyObject * value, void * type )
{
char *order_str= _PyUnicode_AsString(value);
short order= euler_order_from_string(order_str, "euler.order");
if(order == -1)
return -1;
self->order= order;
BaseMath_WriteCallback(self); /* order can be written back */
return 0;
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
{"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians.\n\n:type: float", (void *)0},
{"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians.\n\n:type: float", (void *)1},
{"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians.\n\n:type: float", (void *)2},
{"order", (getter)Euler_getOrder, (setter)Euler_setOrder, "Euler rotation order.\n\n:type: string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
{"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
{"to_matrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
{"to_quat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
{"rotate_axis", (PyCFunction) Euler_rotate_axis, METH_VARARGS, Euler_rotate_axis_doc},
{"make_compatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{NULL, NULL, 0, NULL}
};
//------------------PY_OBECT DEFINITION--------------------------
static char euler_doc[] =
"This object gives access to Eulers in Blender.";
PyTypeObject euler_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"euler", //tp_name
sizeof(EulerObject), //tp_basicsize
0, //tp_itemsize
(destructor)BaseMathObject_dealloc, //tp_dealloc
0, //tp_print
0, //tp_getattr
0, //tp_setattr
0, //tp_compare
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
&Euler_AsMapping, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
0, //tp_getattro
0, //tp_setattro
0, //tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
euler_doc, //tp_doc
0, //tp_traverse
0, //tp_clear
(richcmpfunc)Euler_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
0, //tp_iter
0, //tp_iternext
Euler_methods, //tp_methods
0, //tp_members
Euler_getseters, //tp_getset
0, //tp_base
0, //tp_dict
0, //tp_descr_get
0, //tp_descr_set
0, //tp_dictoffset
0, //tp_init
0, //tp_alloc
Euler_new, //tp_new
0, //tp_free
0, //tp_is_gc
0, //tp_bases
0, //tp_mro
0, //tp_cache
0, //tp_subclasses
0, //tp_weaklist
0 //tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_type)
{
EulerObject *self;
if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(EulerObject, &euler_Type);
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP) {
self->eul = eul;
self->wrapped = Py_WRAP;
}
else if (type == Py_NEW){
self->eul = PyMem_Malloc(EULER_SIZE * sizeof(float));
if(eul)
copy_v3_v3(self->eul, eul);
else
zero_v3(self->eul);
self->wrapped = Py_NEW;
}
else{
return NULL;
}
self->order= order;
return (PyObject *)self;
}
PyObject *newEulerObject_cb(PyObject *cb_user, short order, int cb_type, int cb_subtype)
{
EulerObject *self= (EulerObject *)newEulerObject(NULL, order, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *)self;
}