This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_geometry.c
Alexander Gavrilov 4f5086b6dc Mathutils: expose the utility to find the closest point of a triangle.
This computation is complex and useful enough to expose the existing
C math utility used by BVH nearest to Python. Otherwise this requires
the use of intersect_point_tri and multiple intersect_point_line calls
with some added vector math.

Differential Revision: https://developer.blender.org/D6200
2019-11-06 11:15:11 +03:00

1833 lines
62 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "mathutils_geometry.h"
/* Used for PolyFill */
#ifndef MATH_STANDALONE /* define when building outside blender */
# include "MEM_guardedalloc.h"
# include "BLI_blenlib.h"
# include "BLI_boxpack_2d.h"
# include "BLI_convexhull_2d.h"
# include "BLI_delaunay_2d.h"
# include "BKE_displist.h"
# include "BKE_curve.h"
#endif
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "../generic/py_capi_utils.h"
#include "../generic/python_utildefines.h"
/*-------------------------DOC STRINGS ---------------------------*/
PyDoc_STRVAR(M_Geometry_doc, "The Blender geometry module");
/* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
"\n"
" Returns the intersection between a ray and a triangle, if possible, returns None "
"otherwise.\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg ray: Direction of the projection\n"
" :type ray: :class:`mathutils.Vector`\n"
" :arg orig: Origin\n"
" :type orig: :class:`mathutils.Vector`\n"
" :arg clip: When False, don't restrict the intersection to the area of the "
"triangle, use the infinite plane defined by the triangle.\n"
" :type clip: boolean\n"
" :return: The point of intersection or None if no intersection is found\n"
" :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_ray_tri";
PyObject *py_ray, *py_ray_off, *py_tri[3];
float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
bool clip = true;
int i;
if (!PyArg_ParseTuple(args,
"OOOOO|O&:intersect_ray_tri",
UNPACK3_EX(&, py_tri, ),
&py_ray,
&py_ray_off,
PyC_ParseBool,
&clip)) {
return NULL;
}
if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) !=
-1) &&
(mathutils_array_parse(
orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri); i++) {
if (mathutils_array_parse(
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
return NULL;
}
}
normalize_v3(dir);
/* find vectors for two edges sharing v1 */
sub_v3_v3v3(e1, tri[1], tri[0]);
sub_v3_v3v3(e2, tri[2], tri[0]);
/* begin calculating determinant - also used to calculated U parameter */
cross_v3_v3v3(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
det = dot_v3v3(e1, pvec);
if (det > -0.000001f && det < 0.000001f) {
Py_RETURN_NONE;
}
inv_det = 1.0f / det;
/* calculate distance from v1 to ray origin */
sub_v3_v3v3(tvec, orig, tri[0]);
/* calculate U parameter and test bounds */
u = dot_v3v3(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
/* prepare to test the V parameter */
cross_v3_v3v3(qvec, tvec, e1);
/* calculate V parameter and test bounds */
v = dot_v3v3(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
t = dot_v3v3(e2, qvec) * inv_det;
/* ray hit behind */
if (t < 0.0f) {
Py_RETURN_NONE;
}
mul_v3_fl(dir, t);
add_v3_v3v3(pvec, orig, dir);
return Vector_CreatePyObject(pvec, 3, NULL);
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
".. function:: intersect_line_line(v1, v2, v3, v4)\n"
"\n"
" Returns a tuple with the points on each line respectively closest to the other.\n"
"\n"
" :arg v1: First point of the first line\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Second point of the first line\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: First point of the second line\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg v4: Second point of the second line\n"
" :type v4: :class:`mathutils.Vector`\n"
" :rtype: tuple of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_line_line";
PyObject *tuple;
PyObject *py_lines[4];
float lines[4][3], i1[3], i2[3];
int len;
int result;
if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line", UNPACK4_EX(&, py_lines, ))) {
return NULL;
}
if ((((len = mathutils_array_parse(
lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
(mathutils_array_parse(
lines[1], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[1], error_prefix) !=
-1) &&
(mathutils_array_parse(
lines[2], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[2], error_prefix) !=
-1) &&
(mathutils_array_parse(
lines[3], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[3], error_prefix) !=
-1)) == 0) {
return NULL;
}
result = isect_line_line_v3(UNPACK4(lines), i1, i2);
/* The return-code isn't exposed,
* this way we can check know how close the lines are. */
if (result == 1) {
closest_to_line_v3(i2, i1, lines[2], lines[3]);
}
if (result == 0) {
/* collinear */
Py_RETURN_NONE;
}
else {
tuple = PyTuple_New(2);
PyTuple_SET_ITEMS(
tuple, Vector_CreatePyObject(i1, len, NULL), Vector_CreatePyObject(i2, len, NULL));
return tuple;
}
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
PyDoc_STRVAR(
M_Geometry_intersect_sphere_sphere_2d_doc,
".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
"\n"
" Returns 2 points on between intersecting circles.\n"
"\n"
" :arg p_a: Center of the first circle\n"
" :type p_a: :class:`mathutils.Vector`\n"
" :arg radius_a: Radius of the first circle\n"
" :type radius_a: float\n"
" :arg p_b: Center of the second circle\n"
" :type p_b: :class:`mathutils.Vector`\n"
" :arg radius_b: Radius of the second circle\n"
" :type radius_b: float\n"
" :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n");
static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_sphere_sphere_2d";
PyObject *ret;
PyObject *py_v_a, *py_v_b;
float v_a[2], v_b[2];
float rad_a, rad_b;
float v_ab[2];
float dist;
if (!PyArg_ParseTuple(
args, "OfOf:intersect_sphere_sphere_2d", &py_v_a, &rad_a, &py_v_b, &rad_b)) {
return NULL;
}
if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
(mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0) {
return NULL;
}
ret = PyTuple_New(2);
sub_v2_v2v2(v_ab, v_b, v_a);
dist = len_v2(v_ab);
if (/* out of range */
(dist > rad_a + rad_b) ||
/* fully-contained in the other */
(dist < fabsf(rad_a - rad_b)) ||
/* co-incident */
(dist < FLT_EPSILON)) {
/* out of range */
PyTuple_SET_ITEMS(ret, Py_INCREF_RET(Py_None), Py_INCREF_RET(Py_None));
}
else {
const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
float i_cent[2];
float i1[2], i2[2];
i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
i1[0] = i_cent[0] + h * v_ab[1] / dist;
i1[1] = i_cent[1] - h * v_ab[0] / dist;
i2[0] = i_cent[0] - h * v_ab[1] / dist;
i2[1] = i_cent[1] + h * v_ab[0] / dist;
PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(i1, 2, NULL), Vector_CreatePyObject(i2, 2, NULL));
}
return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_tri_tri_2d_doc,
".. function:: intersect_tri_tri_2d(tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
"\n"
" Check if two 2D triangles intersect.\n"
"\n"
" :rtype: bool\n");
static PyObject *M_Geometry_intersect_tri_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_tri_tri_2d";
PyObject *tri_pair_py[2][3];
float tri_pair[2][3][2];
if (!PyArg_ParseTuple(args,
"OOOOOO:intersect_tri_tri_2d",
&tri_pair_py[0][0],
&tri_pair_py[0][1],
&tri_pair_py[0][2],
&tri_pair_py[1][0],
&tri_pair_py[1][1],
&tri_pair_py[1][2])) {
return NULL;
}
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
if (mathutils_array_parse(
tri_pair[i][j], 2, 2 | MU_ARRAY_SPILL, tri_pair_py[i][j], error_prefix) == -1) {
return NULL;
}
}
}
bool ret = isect_tri_tri_v2(UNPACK3(tri_pair[0]), UNPACK3(tri_pair[1]));
return PyBool_FromLong(ret);
}
PyDoc_STRVAR(M_Geometry_normal_doc,
".. function:: normal(vectors)\n"
"\n"
" Returns the normal of a 3D polygon.\n"
"\n"
" :arg vectors: Vectors to calculate normals with\n"
" :type vectors: sequence of 3 or more 3d vector\n"
" :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
{
float(*coords)[3];
int coords_len;
float n[3];
PyObject *ret = NULL;
/* use */
if (PyTuple_GET_SIZE(args) == 1) {
args = PyTuple_GET_ITEM(args, 0);
}
if ((coords_len = mathutils_array_parse_alloc_v(
(float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) {
return NULL;
}
if (coords_len < 3) {
PyErr_SetString(PyExc_ValueError, "Expected 3 or more vectors");
goto finally;
}
normal_poly_v3(n, (const float(*)[3])coords, coords_len);
ret = Vector_CreatePyObject(n, 3, NULL);
finally:
PyMem_Free(coords);
return ret;
}
/* --------------------------------- AREA FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_area_tri_doc,
".. function:: area_tri(v1, v2, v3)\n"
"\n"
" Returns the area size of the 2D or 3D triangle defined.\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :rtype: float\n");
static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "area_tri";
PyObject *py_tri[3];
float tri[3][3];
int len;
if (!PyArg_ParseTuple(args, "OOO:area_tri", UNPACK3_EX(&, py_tri, ))) {
return NULL;
}
if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
(mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
(mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0) {
return NULL;
}
return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
}
PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc,
".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
"\n"
" Return the volume formed by a tetrahedron (points can be in any order).\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg v4: Point4\n"
" :type v4: :class:`mathutils.Vector`\n"
" :rtype: float\n");
static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "volume_tetrahedron";
PyObject *py_tet[4];
float tet[4][3];
int i;
if (!PyArg_ParseTuple(args, "OOOO:volume_tetrahedron", UNPACK4_EX(&, py_tet, ))) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tet); i++) {
if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
return NULL;
}
}
return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
}
PyDoc_STRVAR(
M_Geometry_intersect_line_line_2d_doc,
".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
"\n"
" Takes 2 segments (defined by 4 vectors) and returns a vector for their point of "
"intersection or None.\n"
"\n"
" .. warning:: Despite its name, this function works on segments, and not on lines.\n"
"\n"
" :arg lineA_p1: First point of the first line\n"
" :type lineA_p1: :class:`mathutils.Vector`\n"
" :arg lineA_p2: Second point of the first line\n"
" :type lineA_p2: :class:`mathutils.Vector`\n"
" :arg lineB_p1: First point of the second line\n"
" :type lineB_p1: :class:`mathutils.Vector`\n"
" :arg lineB_p2: Second point of the second line\n"
" :type lineB_p2: :class:`mathutils.Vector`\n"
" :return: The point of intersection or None when not found\n"
" :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_line_line_2d";
PyObject *py_lines[4];
float lines[4][2];
float vi[2];
int i;
if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line_2d", UNPACK4_EX(&, py_lines, ))) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(lines); i++) {
if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
return NULL;
}
}
if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
return Vector_CreatePyObject(vi, 2, NULL);
}
else {
Py_RETURN_NONE;
}
}
PyDoc_STRVAR(
M_Geometry_intersect_line_plane_doc,
".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
"\n"
" Calculate the intersection between a line (as 2 vectors) and a plane.\n"
" Returns a vector for the intersection or None.\n"
"\n"
" :arg line_a: First point of the first line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the first line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg plane_co: A point on the plane\n"
" :type plane_co: :class:`mathutils.Vector`\n"
" :arg plane_no: The direction the plane is facing\n"
" :type plane_no: :class:`mathutils.Vector`\n"
" :return: The point of intersection or None when not found\n"
" :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_line_plane";
PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
float line_a[3], line_b[3], plane_co[3], plane_no[3];
float isect[3];
bool no_flip = false;
if (!PyArg_ParseTuple(args,
"OOOO|O&:intersect_line_plane",
&py_line_a,
&py_line_b,
&py_plane_co,
&py_plane_no,
PyC_ParseBool,
&no_flip)) {
return NULL;
}
if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
(mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
(mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
(mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
-1)) == 0) {
return NULL;
}
/* TODO: implements no_flip */
if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
return Vector_CreatePyObject(isect, 3, NULL);
}
else {
Py_RETURN_NONE;
}
}
PyDoc_STRVAR(
M_Geometry_intersect_plane_plane_doc,
".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
"\n"
" Return the intersection between two planes\n"
"\n"
" :arg plane_a_co: Point on the first plane\n"
" :type plane_a_co: :class:`mathutils.Vector`\n"
" :arg plane_a_no: Normal of the first plane\n"
" :type plane_a_no: :class:`mathutils.Vector`\n"
" :arg plane_b_co: Point on the second plane\n"
" :type plane_b_co: :class:`mathutils.Vector`\n"
" :arg plane_b_no: Normal of the second plane\n"
" :type plane_b_no: :class:`mathutils.Vector`\n"
" :return: The line of the intersection represented as a point and a vector\n"
" :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be "
"calculated\n");
static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_plane_plane";
PyObject *ret, *ret_co, *ret_no;
PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
float plane_a[4], plane_b[4];
float isect_co[3];
float isect_no[3];
if (!PyArg_ParseTuple(args,
"OOOO:intersect_plane_plane",
&py_plane_a_co,
&py_plane_a_no,
&py_plane_b_co,
&py_plane_b_no)) {
return NULL;
}
if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) !=
-1) &&
(mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) !=
-1) &&
(mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) !=
-1) &&
(mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) !=
-1)) == 0) {
return NULL;
}
plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);
if (isect_plane_plane_v3(plane_a, plane_b, isect_co, isect_no)) {
normalize_v3(isect_no);
ret_co = Vector_CreatePyObject(isect_co, 3, NULL);
ret_no = Vector_CreatePyObject(isect_no, 3, NULL);
}
else {
ret_co = Py_INCREF_RET(Py_None);
ret_no = Py_INCREF_RET(Py_None);
}
ret = PyTuple_New(2);
PyTuple_SET_ITEMS(ret, ret_co, ret_no);
return ret;
}
PyDoc_STRVAR(
M_Geometry_intersect_line_sphere_doc,
".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
"\n"
" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
" returns the intersection\n"
"\n"
" :arg line_a: First point of the line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg sphere_co: The center of the sphere\n"
" :type sphere_co: :class:`mathutils.Vector`\n"
" :arg sphere_radius: Radius of the sphere\n"
" :type sphere_radius: sphere_radius\n"
" :return: The intersection points as a pair of vectors or None when there is no "
"intersection\n"
" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_line_sphere";
PyObject *py_line_a, *py_line_b, *py_sphere_co;
float line_a[3], line_b[3], sphere_co[3];
float sphere_radius;
bool clip = true;
float isect_a[3];
float isect_b[3];
if (!PyArg_ParseTuple(args,
"OOOf|O&:intersect_line_sphere",
&py_line_a,
&py_line_b,
&py_sphere_co,
&sphere_radius,
PyC_ParseBool,
&clip)) {
return NULL;
}
if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
(mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
(mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
-1)) == 0) {
return NULL;
}
else {
bool use_a = true;
bool use_b = true;
float lambda;
PyObject *ret = PyTuple_New(2);
switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
case 1:
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_a = false;
}
use_b = false;
break;
case 2:
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_a = false;
}
if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_b = false;
}
break;
default:
use_a = false;
use_b = false;
break;
}
PyTuple_SET_ITEMS(ret,
use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None),
use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None));
return ret;
}
}
/* keep in sync with M_Geometry_intersect_line_sphere */
PyDoc_STRVAR(
M_Geometry_intersect_line_sphere_2d_doc,
".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
"\n"
" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
" returns the intersection\n"
"\n"
" :arg line_a: First point of the line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg sphere_co: The center of the sphere\n"
" :type sphere_co: :class:`mathutils.Vector`\n"
" :arg sphere_radius: Radius of the sphere\n"
" :type sphere_radius: sphere_radius\n"
" :return: The intersection points as a pair of vectors or None when there is no "
"intersection\n"
" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_line_sphere_2d";
PyObject *py_line_a, *py_line_b, *py_sphere_co;
float line_a[2], line_b[2], sphere_co[2];
float sphere_radius;
bool clip = true;
float isect_a[2];
float isect_b[2];
if (!PyArg_ParseTuple(args,
"OOOf|O&:intersect_line_sphere_2d",
&py_line_a,
&py_line_b,
&py_sphere_co,
&sphere_radius,
PyC_ParseBool,
&clip)) {
return NULL;
}
if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
(mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
(mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
-1)) == 0) {
return NULL;
}
else {
bool use_a = true;
bool use_b = true;
float lambda;
PyObject *ret = PyTuple_New(2);
switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
case 1:
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_a = false;
}
use_b = false;
break;
case 2:
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_a = false;
}
if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) &&
(lambda <= 1.0f)))) {
use_b = false;
}
break;
default:
use_a = false;
use_b = false;
break;
}
PyTuple_SET_ITEMS(ret,
use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None),
use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None));
return ret;
}
}
PyDoc_STRVAR(
M_Geometry_intersect_point_line_doc,
".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
"\n"
" Takes a point and a line and returns a tuple with the closest point on the line and its "
"distance from the first point of the line as a percentage of the length of the line.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg line_p1: First point of the line\n"
" :type line_p1: :class:`mathutils.Vector`\n"
" :arg line_p1: Second point of the line\n"
" :type line_p1: :class:`mathutils.Vector`\n"
" :rtype: (:class:`mathutils.Vector`, float)\n");
static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_point_line";
PyObject *py_pt, *py_line_a, *py_line_b;
float pt[3], pt_out[3], line_a[3], line_b[3];
float lambda;
PyObject *ret;
int size = 2;
if (!PyArg_ParseTuple(args, "OOO:intersect_point_line", &py_pt, &py_line_a, &py_line_b)) {
return NULL;
}
/* accept 2d verts */
if ((((size = mathutils_array_parse(
pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
(mathutils_array_parse(
line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
(mathutils_array_parse(
line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0) {
return NULL;
}
/* do the calculation */
lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);
ret = PyTuple_New(2);
PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(pt_out, size, NULL), PyFloat_FromDouble(lambda));
return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc,
".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors: one is the point and the next 3 define the triangle. Projects "
"the point onto the triangle plane and checks if it is within the triangle.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg tri_p1: First point of the triangle\n"
" :type tri_p1: :class:`mathutils.Vector`\n"
" :arg tri_p2: Second point of the triangle\n"
" :type tri_p2: :class:`mathutils.Vector`\n"
" :arg tri_p3: Third point of the triangle\n"
" :type tri_p3: :class:`mathutils.Vector`\n"
" :return: Point on the triangles plane or None if its outside the triangle\n"
" :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_point_tri";
PyObject *py_pt, *py_tri[3];
float pt[3], tri[3][3];
float vi[3];
int i;
if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
return NULL;
}
if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
-1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri); i++) {
if (mathutils_array_parse(
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
return NULL;
}
}
if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
return Vector_CreatePyObject(vi, 3, NULL);
}
else {
Py_RETURN_NONE;
}
}
PyDoc_STRVAR(M_Geometry_closest_point_on_tri_doc,
".. function:: closest_point_on_tri(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg tri_p1: First point of the triangle\n"
" :type tri_p1: :class:`mathutils.Vector`\n"
" :arg tri_p2: Second point of the triangle\n"
" :type tri_p2: :class:`mathutils.Vector`\n"
" :arg tri_p3: Third point of the triangle\n"
" :type tri_p3: :class:`mathutils.Vector`\n"
" :return: The closest point of the triangle.\n"
" :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_closest_point_on_tri(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "closest_point_on_tri";
PyObject *py_pt, *py_tri[3];
float pt[3], tri[3][3];
float vi[3];
int i;
if (!PyArg_ParseTuple(args, "OOOO:closest_point_on_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
return NULL;
}
if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
-1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri); i++) {
if (mathutils_array_parse(
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
return NULL;
}
}
closest_on_tri_to_point_v3(vi, pt, UNPACK3(tri));
return Vector_CreatePyObject(vi, 3, NULL);
}
PyDoc_STRVAR(
M_Geometry_intersect_point_tri_2d_doc,
".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 "
"define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg tri_p1: First point of the triangle\n"
" :type tri_p1: :class:`mathutils.Vector`\n"
" :arg tri_p2: Second point of the triangle\n"
" :type tri_p2: :class:`mathutils.Vector`\n"
" :arg tri_p3: Third point of the triangle\n"
" :type tri_p3: :class:`mathutils.Vector`\n"
" :rtype: int\n");
static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_point_tri_2d";
PyObject *py_pt, *py_tri[3];
float pt[2], tri[3][2];
int i;
if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri_2d", &py_pt, UNPACK3_EX(&, py_tri, ))) {
return NULL;
}
if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri); i++) {
if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
return NULL;
}
}
return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
}
PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
"\n"
" Takes 5 vectors (using only the x and y coordinates): one is the point and the "
"next 4 define the quad,\n"
" only the x and y are used from the vectors. Returns 1 if the point is within the "
"quad, otherwise 0.\n"
" Works only with convex quads without singular edges.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg quad_p1: First point of the quad\n"
" :type quad_p1: :class:`mathutils.Vector`\n"
" :arg quad_p2: Second point of the quad\n"
" :type quad_p2: :class:`mathutils.Vector`\n"
" :arg quad_p3: Third point of the quad\n"
" :type quad_p3: :class:`mathutils.Vector`\n"
" :arg quad_p4: Fourth point of the quad\n"
" :type quad_p4: :class:`mathutils.Vector`\n"
" :rtype: int\n");
static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "intersect_point_quad_2d";
PyObject *py_pt, *py_quad[4];
float pt[2], quad[4][2];
int i;
if (!PyArg_ParseTuple(args, "OOOOO:intersect_point_quad_2d", &py_pt, UNPACK4_EX(&, py_quad, ))) {
return NULL;
}
if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(quad); i++) {
if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
return NULL;
}
}
return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
}
PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
"\n"
" Returns the signed distance between a point and a plane "
" (negative when below the normal).\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg plane_co: A point on the plane\n"
" :type plane_co: :class:`mathutils.Vector`\n"
" :arg plane_no: The direction the plane is facing\n"
" :type plane_no: :class:`mathutils.Vector`\n"
" :rtype: float\n");
static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "distance_point_to_plane";
PyObject *py_pt, *py_plane_co, *py_plane_no;
float pt[3], plane_co[3], plane_no[3];
float plane[4];
if (!PyArg_ParseTuple(args, "OOO:distance_point_to_plane", &py_pt, &py_plane_co, &py_plane_no)) {
return NULL;
}
if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) &&
(mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
(mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
-1)) == 0) {
return NULL;
}
plane_from_point_normal_v3(plane, plane_co, plane_no);
return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
}
PyDoc_STRVAR(
M_Geometry_barycentric_transform_doc,
".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
"\n"
" Return a transformed point, the transformation is defined by 2 triangles.\n"
"\n"
" :arg point: The point to transform.\n"
" :type point: :class:`mathutils.Vector`\n"
" :arg tri_a1: source triangle vertex.\n"
" :type tri_a1: :class:`mathutils.Vector`\n"
" :arg tri_a2: source triangle vertex.\n"
" :type tri_a2: :class:`mathutils.Vector`\n"
" :arg tri_a3: source triangle vertex.\n"
" :type tri_a3: :class:`mathutils.Vector`\n"
" :arg tri_b1: target triangle vertex.\n"
" :type tri_b1: :class:`mathutils.Vector`\n"
" :arg tri_b2: target triangle vertex.\n"
" :type tri_b2: :class:`mathutils.Vector`\n"
" :arg tri_b3: target triangle vertex.\n"
" :type tri_b3: :class:`mathutils.Vector`\n"
" :return: The transformed point\n"
" :rtype: :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "barycentric_transform";
PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
int i;
if (!PyArg_ParseTuple(args,
"OOOOOOO:barycentric_transform",
&py_pt_src,
UNPACK3_EX(&, py_tri_src, ),
UNPACK3_EX(&, py_tri_dst, ))) {
return NULL;
}
if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) !=
-1) &&
(mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) !=
-1)) == 0) {
return NULL;
}
}
transform_point_by_tri_v3(pt_dst, pt_src, UNPACK3(tri_dst), UNPACK3(tri_src));
return Vector_CreatePyObject(pt_dst, 3, NULL);
}
PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
".. function:: points_in_planes(planes)\n"
"\n"
" Returns a list of points inside all planes given and a list of index values for "
"the planes used.\n"
"\n"
" :arg planes: List of planes (4D vectors).\n"
" :type planes: list of :class:`mathutils.Vector`\n"
" :return: two lists, once containing the vertices inside the planes, another "
"containing the plane indices used\n"
" :rtype: pair of lists\n");
/* note: this function could be optimized by some spatial structure */
static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
{
PyObject *py_planes;
float(*planes)[4];
unsigned int planes_len;
if (!PyArg_ParseTuple(args, "O:points_in_planes", &py_planes)) {
return NULL;
}
if ((planes_len = mathutils_array_parse_alloc_v(
(float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
return NULL;
}
else {
/* note, this could be refactored into plain C easy - py bits are noted */
const float eps = 0.0001f;
const unsigned int len = (unsigned int)planes_len;
unsigned int i, j, k, l;
float n1n2[3], n2n3[3], n3n1[3];
float potentialVertex[3];
char *planes_used = PyMem_Malloc(sizeof(char) * len);
/* python */
PyObject *py_verts = PyList_New(0);
PyObject *py_plane_index = PyList_New(0);
memset(planes_used, 0, sizeof(char) * len);
for (i = 0; i < len; i++) {
const float *N1 = planes[i];
for (j = i + 1; j < len; j++) {
const float *N2 = planes[j];
cross_v3_v3v3(n1n2, N1, N2);
if (len_squared_v3(n1n2) > eps) {
for (k = j + 1; k < len; k++) {
const float *N3 = planes[k];
cross_v3_v3v3(n2n3, N2, N3);
if (len_squared_v3(n2n3) > eps) {
cross_v3_v3v3(n3n1, N3, N1);
if (len_squared_v3(n3n1) > eps) {
const float quotient = dot_v3v3(N1, n2n3);
if (fabsf(quotient) > eps) {
/**
* <pre>
* potentialVertex = (
* (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) *
* (-1.0 / quotient));
* </pre>
*/
const float quotient_ninv = -1.0f / quotient;
potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) +
(n1n2[0] * N3[3])) *
quotient_ninv;
potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) +
(n1n2[1] * N3[3])) *
quotient_ninv;
potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) +
(n1n2[2] * N3[3])) *
quotient_ninv;
for (l = 0; l < len; l++) {
const float *NP = planes[l];
if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
break;
}
}
if (l == len) { /* ok */
/* python */
PyList_APPEND(py_verts, Vector_CreatePyObject(potentialVertex, 3, NULL));
planes_used[i] = planes_used[j] = planes_used[k] = true;
}
}
}
}
}
}
}
}
PyMem_Free(planes);
/* now make a list of used planes */
for (i = 0; i < len; i++) {
if (planes_used[i]) {
PyList_APPEND(py_plane_index, PyLong_FromLong(i));
}
}
PyMem_Free(planes_used);
{
PyObject *ret = PyTuple_New(2);
PyTuple_SET_ITEMS(ret, py_verts, py_plane_index);
return ret;
}
}
}
#ifndef MATH_STANDALONE
PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
"\n"
" Interpolate a bezier spline segment.\n"
"\n"
" :arg knot1: First bezier spline point.\n"
" :type knot1: :class:`mathutils.Vector`\n"
" :arg handle1: First bezier spline handle.\n"
" :type handle1: :class:`mathutils.Vector`\n"
" :arg handle2: Second bezier spline handle.\n"
" :type handle2: :class:`mathutils.Vector`\n"
" :arg knot2: Second bezier spline point.\n"
" :type knot2: :class:`mathutils.Vector`\n"
" :arg resolution: Number of points to return.\n"
" :type resolution: int\n"
" :return: The interpolated points\n"
" :rtype: list of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "interpolate_bezier";
PyObject *py_data[4];
float data[4][4] = {{0.0f}};
int resolu;
int dims = 0;
int i;
float *coord_array, *fp;
PyObject *list;
if (!PyArg_ParseTuple(args, "OOOOi:interpolate_bezier", UNPACK4_EX(&, py_data, ), &resolu)) {
return NULL;
}
for (i = 0; i < 4; i++) {
int dims_tmp;
if ((dims_tmp = mathutils_array_parse(
data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) {
return NULL;
}
dims = max_ii(dims, dims_tmp);
}
if (resolu <= 1) {
PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over");
return NULL;
}
coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix);
for (i = 0; i < dims; i++) {
BKE_curve_forward_diff_bezier(
UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
}
list = PyList_New(resolu);
fp = coord_array;
for (i = 0; i < resolu; i++, fp = fp + dims) {
PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL));
}
MEM_freeN(coord_array);
return list;
}
PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
".. function:: tessellate_polygon(veclist_list)\n"
"\n"
" Takes a list of polylines (each point a pair or triplet of numbers) and returns "
"the point indices for a polyline filled with triangles.\n"
"\n"
" :arg veclist_list: list of polylines\n"
" :rtype: list\n");
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
{
PyObject *tri_list; /*return this list of tri's */
PyObject *polyLine, *polyVec;
int i, len_polylines, len_polypoints;
bool list_parse_error = false;
bool is_2d = true;
/* Display #ListBase. */
ListBase dispbase = {NULL, NULL};
DispList *dl;
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
int totpoints = 0;
if (!PySequence_Check(polyLineSeq)) {
PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines");
return NULL;
}
len_polylines = PySequence_Size(polyLineSeq);
for (i = 0; i < len_polylines; i++) {
polyLine = PySequence_GetItem(polyLineSeq, i);
if (!PySequence_Check(polyLine)) {
BKE_displist_free(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
PyErr_SetString(PyExc_TypeError,
"One or more of the polylines is not a sequence of mathutils.Vector's");
return NULL;
}
len_polypoints = PySequence_Size(polyLine);
if (len_polypoints > 0) { /* don't bother adding edges as polylines */
dl = MEM_callocN(sizeof(DispList), "poly disp");
BLI_addtail(&dispbase, dl);
dl->type = DL_INDEX3;
dl->nr = len_polypoints;
dl->type = DL_POLY;
dl->parts = 1; /* no faces, 1 edge loop */
dl->col = 0; /* no material */
dl->verts = fp = MEM_mallocN(sizeof(float[3]) * len_polypoints, "dl verts");
dl->index = MEM_callocN(sizeof(int[3]) * len_polypoints, "dl index");
for (int index = 0; index < len_polypoints; index++, fp += 3) {
polyVec = PySequence_GetItem(polyLine, index);
const int polyVec_len = mathutils_array_parse(
fp, 2, 3 | MU_ARRAY_SPILL, polyVec, "tessellate_polygon: parse coord");
Py_DECREF(polyVec);
if (UNLIKELY(polyVec_len == -1)) {
list_parse_error = true;
}
else if (polyVec_len == 2) {
fp[2] = 0.0f;
}
else if (polyVec_len == 3) {
is_2d = false;
}
totpoints++;
}
}
Py_DECREF(polyLine);
}
if (list_parse_error) {
BKE_displist_free(&dispbase); /* possible some dl was allocated */
return NULL;
}
else if (totpoints) {
/* now make the list to return */
BKE_displist_fill(&dispbase, &dispbase, is_2d ? ((const float[3]){0, 0, -1}) : NULL, false);
/* The faces are stored in a new DisplayList
* that's added to the head of the #ListBase. */
dl = dispbase.first;
tri_list = PyList_New(dl->parts);
if (!tri_list) {
BKE_displist_free(&dispbase);
PyErr_SetString(PyExc_RuntimeError, "failed to make a new list");
return NULL;
}
int *dl_face = dl->index;
for (int index = 0; index < dl->parts; index++) {
PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32(dl_face[0], dl_face[1], dl_face[2]));
dl_face += 3;
}
BKE_displist_free(&dispbase);
}
else {
/* no points, do this so scripts don't barf */
BKE_displist_free(&dispbase); /* possible some dl was allocated */
tri_list = PyList_New(0);
}
return tri_list;
}
static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray)
{
Py_ssize_t len, i;
PyObject *list_item, *item_1, *item_2;
BoxPack *box;
/* Error checking must already be done */
if (!PyList_Check(value)) {
PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]");
return -1;
}
len = PyList_GET_SIZE(value);
*boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
for (i = 0; i < len; i++) {
list_item = PyList_GET_ITEM(value, i);
if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
MEM_freeN(*boxarray);
PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]");
return -1;
}
box = (*boxarray) + i;
item_1 = PyList_GET_ITEM(list_item, 2);
item_2 = PyList_GET_ITEM(list_item, 3);
box->w = (float)PyFloat_AsDouble(item_1);
box->h = (float)PyFloat_AsDouble(item_2);
box->index = i;
/* accounts for error case too and overwrites with own error */
if (box->w < 0.0f || box->h < 0.0f) {
MEM_freeN(*boxarray);
PyErr_SetString(PyExc_TypeError,
"error parsing width and height values from list: "
"[x, y, w, h], not numbers or below zero");
return -1;
}
/* verts will be added later */
}
return 0;
}
static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray)
{
Py_ssize_t len, i;
PyObject *list_item;
BoxPack *box;
len = PyList_GET_SIZE(value);
for (i = 0; i < len; i++) {
box = (*boxarray) + i;
list_item = PyList_GET_ITEM(value, box->index);
PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
}
MEM_freeN(*boxarray);
}
PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
".. function:: box_pack_2d(boxes)\n"
"\n"
" Returns the normal of the 3D tri or quad.\n"
"\n"
" :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, "
"width, height, ...] other items are ignored.\n"
" :type boxes: list\n"
" :return: the width and height of the packed bounding box\n"
" :rtype: tuple, pair of floats\n");
static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
{
float tot_width = 0.0f, tot_height = 0.0f;
Py_ssize_t len;
PyObject *ret;
if (!PyList_Check(boxlist)) {
PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]");
return NULL;
}
len = PyList_GET_SIZE(boxlist);
if (len) {
BoxPack *boxarray = NULL;
if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
return NULL; /* exception set */
}
/* Non Python function */
BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height);
boxPack_ToPyObject(boxlist, &boxarray);
}
ret = PyTuple_New(2);
PyTuple_SET_ITEMS(ret, PyFloat_FromDouble(tot_width), PyFloat_FromDouble(tot_height));
return ret;
}
PyDoc_STRVAR(M_Geometry_box_fit_2d_doc,
".. function:: box_fit_2d(points)\n"
"\n"
" Returns an angle that best fits the points to an axis aligned rectangle\n"
"\n"
" :arg points: list of 2d points.\n"
" :type points: list\n"
" :return: angle\n"
" :rtype: float\n");
static PyObject *M_Geometry_box_fit_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
float(*points)[2];
Py_ssize_t len;
float angle = 0.0f;
len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
if (len == -1) {
return NULL;
}
if (len) {
/* Non Python function */
angle = BLI_convexhull_aabb_fit_points_2d(points, len);
PyMem_Free(points);
}
return PyFloat_FromDouble(angle);
}
PyDoc_STRVAR(M_Geometry_convex_hull_2d_doc,
".. function:: convex_hull_2d(points)\n"
"\n"
" Returns a list of indices into the list given\n"
"\n"
" :arg points: list of 2d points.\n"
" :type points: list\n"
" :return: a list of indices\n"
" :rtype: list of ints\n");
static PyObject *M_Geometry_convex_hull_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
float(*points)[2];
Py_ssize_t len;
PyObject *ret;
len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
if (len == -1) {
return NULL;
}
if (len) {
int *index_map;
Py_ssize_t len_ret, i;
index_map = MEM_mallocN(sizeof(*index_map) * len * 2, __func__);
/* Non Python function */
len_ret = BLI_convexhull_2d(points, len, index_map);
ret = PyList_New(len_ret);
for (i = 0; i < len_ret; i++) {
PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
}
MEM_freeN(index_map);
PyMem_Free(points);
}
else {
ret = PyList_New(0);
}
return ret;
}
/* Return a PyObject that is a list of lists, using the flattened list array
* to fill values, with start_table and len_table giving the start index
* and length of the toplevel_len sub-lists.
*/
static PyObject *list_of_lists_from_arrays(int *array,
int *start_table,
int *len_table,
int toplevel_len)
{
PyObject *ret, *sublist;
int i, j, sublist_len, sublist_start, val;
ret = PyList_New(toplevel_len);
for (i = 0; i < toplevel_len; i++) {
sublist_len = len_table[i];
sublist = PyList_New(sublist_len);
sublist_start = start_table[i];
for (j = 0; j < sublist_len; j++) {
val = array[sublist_start + j];
PyList_SET_ITEM(sublist, j, PyLong_FromLong(val));
}
PyList_SET_ITEM(ret, i, sublist);
}
return ret;
}
PyDoc_STRVAR(
M_Geometry_delaunay_2d_cdt_doc,
".. function:: delaunay_2d_cdt(vert_coords, edges, faces, output_type, epsilon)\n"
"\n"
"Computes the Constrained Delaunay Triangulation of a set of vertices, "
"with edges and faces that must appear in the triangulation. "
"Some triangles may be eaten away, or combined with other triangles, "
"according to output type. "
"The returned verts may be in a different order from input verts, may be moved "
"slightly, and may be merged with other nearby verts. "
"The three returned orig lists give, for each of verts, edges, and faces, the list of "
"input element indices corresponding to the positionally same output element. "
"For edges, the orig indices start with the input edges and then continue "
"with the edges implied by each of the faces (n of them for an n-gon).\n"
"\n"
" :arg vert_coords: Vertex coordinates (2d)\n"
" :type vert_coords: list of :class:`mathutils.Vector`\n"
" :arg edges: Edges, as pairs of indices in `vert_coords`\n"
" :type edges: list of (int, int)\n"
" :arg faces: Faces, each sublist is a face, as indices in `vert_coords` (CCW oriented)\n"
" :type faces: list of list of int\n"
" :arg output_type: What output looks like. 0 => triangles with convex hull. "
"1 => triangles inside constraints. "
"2 => the input constraints, intersected. "
"3 => like 2 but with extra edges to make valid BMesh faces.\n"
" :type output_type: int\\n"
" :arg epsilon: For nearness tests; should not be zero\n"
" :type epsilon: float\n"
" :return: Output tuple, (vert_coords, edges, faces, orig_verts, orig_edges, orig_faces)\n"
" :rtype: (list of `mathutils.Vector`, "
"list of (int, int), "
"list of list of int, "
"list of list of int, "
"list of list of int, "
"list of list of int)\n"
"\n");
static PyObject *M_Geometry_delaunay_2d_cdt(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "delaunay_2d_cdt";
PyObject *vert_coords, *edges, *faces, *item;
int output_type;
float epsilon;
float(*in_coords)[2] = NULL;
int(*in_edges)[2] = NULL;
int *in_faces = NULL;
int *in_faces_start_table = NULL;
int *in_faces_len_table = NULL;
Py_ssize_t vert_coords_len, edges_len, faces_len;
CDT_input in;
CDT_result *res = NULL;
PyObject *out_vert_coords = NULL;
PyObject *out_edges = NULL;
PyObject *out_faces = NULL;
PyObject *out_orig_verts = NULL;
PyObject *out_orig_edges = NULL;
PyObject *out_orig_faces = NULL;
PyObject *ret_value = NULL;
int i;
if (!PyArg_ParseTuple(
args, "OOOif:delaunay_2d_cdt", &vert_coords, &edges, &faces, &output_type, &epsilon)) {
return NULL;
}
vert_coords_len = mathutils_array_parse_alloc_v(
(float **)&in_coords, 2, vert_coords, error_prefix);
if (vert_coords_len == -1) {
return NULL;
}
edges_len = mathutils_array_parse_alloc_vi((int **)&in_edges, 2, edges, error_prefix);
if (edges_len == -1) {
goto exit_cdt;
}
faces_len = mathutils_array_parse_alloc_viseq(
&in_faces, &in_faces_start_table, &in_faces_len_table, faces, error_prefix);
if (faces_len == -1) {
goto exit_cdt;
}
in.verts_len = (int)vert_coords_len;
in.vert_coords = in_coords;
in.edges_len = edges_len;
in.faces_len = faces_len;
in.edges = in_edges;
in.faces = in_faces;
in.faces_start_table = in_faces_start_table;
in.faces_len_table = in_faces_len_table;
in.epsilon = epsilon;
res = BLI_delaunay_2d_cdt_calc(&in, output_type);
ret_value = PyTuple_New(6);
out_vert_coords = PyList_New(res->verts_len);
for (i = 0; i < res->verts_len; i++) {
item = Vector_CreatePyObject(res->vert_coords[i], 2, NULL);
if (item == NULL) {
Py_DECREF(ret_value);
Py_DECREF(out_vert_coords);
goto exit_cdt;
}
PyList_SET_ITEM(out_vert_coords, i, item);
}
PyTuple_SET_ITEM(ret_value, 0, out_vert_coords);
out_edges = PyList_New(res->edges_len);
for (i = 0; i < res->edges_len; i++) {
item = PyTuple_New(2);
PyTuple_SET_ITEM(item, 0, PyLong_FromLong((long)res->edges[i][0]));
PyTuple_SET_ITEM(item, 1, PyLong_FromLong((long)res->edges[i][1]));
PyList_SET_ITEM(out_edges, i, item);
}
PyTuple_SET_ITEM(ret_value, 1, out_edges);
out_faces = list_of_lists_from_arrays(
res->faces, res->faces_start_table, res->faces_len_table, res->faces_len);
PyTuple_SET_ITEM(ret_value, 2, out_faces);
out_orig_verts = list_of_lists_from_arrays(
res->verts_orig, res->verts_orig_start_table, res->verts_orig_len_table, res->verts_len);
PyTuple_SET_ITEM(ret_value, 3, out_orig_verts);
out_orig_edges = list_of_lists_from_arrays(
res->edges_orig, res->edges_orig_start_table, res->edges_orig_len_table, res->edges_len);
PyTuple_SET_ITEM(ret_value, 4, out_orig_edges);
out_orig_faces = list_of_lists_from_arrays(
res->faces_orig, res->faces_orig_start_table, res->faces_orig_len_table, res->faces_len);
PyTuple_SET_ITEM(ret_value, 5, out_orig_faces);
exit_cdt:
if (in_coords != NULL) {
PyMem_Free(in_coords);
}
if (in_edges != NULL) {
PyMem_Free(in_edges);
}
if (in_faces != NULL) {
PyMem_Free(in_faces);
}
if (in_faces_start_table != NULL) {
PyMem_Free(in_faces_start_table);
}
if (in_faces_len_table != NULL) {
PyMem_Free(in_faces_len_table);
}
if (res) {
BLI_delaunay_2d_cdt_free(res);
}
return ret_value;
}
#endif /* MATH_STANDALONE */
static PyMethodDef M_Geometry_methods[] = {
{"intersect_ray_tri",
(PyCFunction)M_Geometry_intersect_ray_tri,
METH_VARARGS,
M_Geometry_intersect_ray_tri_doc},
{"intersect_point_line",
(PyCFunction)M_Geometry_intersect_point_line,
METH_VARARGS,
M_Geometry_intersect_point_line_doc},
{"intersect_point_tri",
(PyCFunction)M_Geometry_intersect_point_tri,
METH_VARARGS,
M_Geometry_intersect_point_tri_doc},
{"closest_point_on_tri",
(PyCFunction)M_Geometry_closest_point_on_tri,
METH_VARARGS,
M_Geometry_closest_point_on_tri_doc},
{"intersect_point_tri_2d",
(PyCFunction)M_Geometry_intersect_point_tri_2d,
METH_VARARGS,
M_Geometry_intersect_point_tri_2d_doc},
{"intersect_point_quad_2d",
(PyCFunction)M_Geometry_intersect_point_quad_2d,
METH_VARARGS,
M_Geometry_intersect_point_quad_2d_doc},
{"intersect_line_line",
(PyCFunction)M_Geometry_intersect_line_line,
METH_VARARGS,
M_Geometry_intersect_line_line_doc},
{"intersect_line_line_2d",
(PyCFunction)M_Geometry_intersect_line_line_2d,
METH_VARARGS,
M_Geometry_intersect_line_line_2d_doc},
{"intersect_line_plane",
(PyCFunction)M_Geometry_intersect_line_plane,
METH_VARARGS,
M_Geometry_intersect_line_plane_doc},
{"intersect_plane_plane",
(PyCFunction)M_Geometry_intersect_plane_plane,
METH_VARARGS,
M_Geometry_intersect_plane_plane_doc},
{"intersect_line_sphere",
(PyCFunction)M_Geometry_intersect_line_sphere,
METH_VARARGS,
M_Geometry_intersect_line_sphere_doc},
{"intersect_line_sphere_2d",
(PyCFunction)M_Geometry_intersect_line_sphere_2d,
METH_VARARGS,
M_Geometry_intersect_line_sphere_2d_doc},
{"distance_point_to_plane",
(PyCFunction)M_Geometry_distance_point_to_plane,
METH_VARARGS,
M_Geometry_distance_point_to_plane_doc},
{"intersect_sphere_sphere_2d",
(PyCFunction)M_Geometry_intersect_sphere_sphere_2d,
METH_VARARGS,
M_Geometry_intersect_sphere_sphere_2d_doc},
{"intersect_tri_tri_2d",
(PyCFunction)M_Geometry_intersect_tri_tri_2d,
METH_VARARGS,
M_Geometry_intersect_tri_tri_2d_doc},
{"area_tri", (PyCFunction)M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
{"volume_tetrahedron",
(PyCFunction)M_Geometry_volume_tetrahedron,
METH_VARARGS,
M_Geometry_volume_tetrahedron_doc},
{"normal", (PyCFunction)M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
{"barycentric_transform",
(PyCFunction)M_Geometry_barycentric_transform,
METH_VARARGS,
M_Geometry_barycentric_transform_doc},
{"points_in_planes",
(PyCFunction)M_Geometry_points_in_planes,
METH_VARARGS,
M_Geometry_points_in_planes_doc},
#ifndef MATH_STANDALONE
{"interpolate_bezier",
(PyCFunction)M_Geometry_interpolate_bezier,
METH_VARARGS,
M_Geometry_interpolate_bezier_doc},
{"tessellate_polygon",
(PyCFunction)M_Geometry_tessellate_polygon,
METH_O,
M_Geometry_tessellate_polygon_doc},
{"convex_hull_2d",
(PyCFunction)M_Geometry_convex_hull_2d,
METH_O,
M_Geometry_convex_hull_2d_doc},
{"delaunay_2d_cdt",
(PyCFunction)M_Geometry_delaunay_2d_cdt,
METH_VARARGS,
M_Geometry_delaunay_2d_cdt_doc},
{"box_fit_2d", (PyCFunction)M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
{"box_pack_2d", (PyCFunction)M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
#endif
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_geometry(void)
{
PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
return submodule;
}