This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/key.c
Joshua Leung 24d1cf7d54 Animato - Bugfixes for ShapeKeys + ShapeKey Drivers
* Animated ShapeKey F-Curves/Drivers are now visible in the Animation Editors. 

* As a result of this, the old 'ShapeKeys' mode (which would display all the shapekey channels, even if they had no keyframes yet) in the DopeSheet, no longer works for now. However, it would have been of no use as no sliders were shown anyway.

* Drivers which depended on the rotation of bones now work again. These now point to the right RNA properties, and get some extra 'time' corrections (for degrees -> radians change).
2009-08-02 06:10:24 +00:00

1467 lines
31 KiB
C

/* key.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_animsys.h"
#include "BKE_action.h"
#include "BKE_blender.h"
#include "BKE_curve.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define KEY_BPOINT 1
#define KEY_BEZTRIPLE 2
// old defines from DNA_ipo_types.h for data-type
#define IPO_FLOAT 4
#define IPO_BEZTRIPLE 100
#define IPO_BPOINT 101
int slurph_opt= 1;
void free_key(Key *key)
{
KeyBlock *kb;
BKE_free_animdata((ID *)key);
while( (kb= key->block.first) ) {
if(kb->data) MEM_freeN(kb->data);
BLI_remlink(&key->block, kb);
MEM_freeN(kb);
}
}
/* GS reads the memory pointed at in a specific ordering. There are,
* however two definitions for it. I have jotted them down here, both,
* but I think the first one is actually used. The thing is that
* big-endian systems might read this the wrong way round. OTOH, we
* constructed the IDs that are read out with this macro explicitly as
* well. I expect we'll sort it out soon... */
/* from blendef: */
#define GS(a) (*((short *)(a)))
/* from misc_util: flip the bytes from x */
/* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */
Key *add_key(ID *id) /* common function */
{
Key *key;
char *el;
key= alloc_libblock(&G.main->key, ID_KE, "Key");
key->type= KEY_NORMAL;
key->from= id;
// XXX the code here uses some defines which will soon be depreceated...
if( GS(id->name)==ID_ME) {
el= key->elemstr;
el[0]= 3;
el[1]= IPO_FLOAT;
el[2]= 0;
key->elemsize= 12;
}
else if( GS(id->name)==ID_LT) {
el= key->elemstr;
el[0]= 3;
el[1]= IPO_FLOAT;
el[2]= 0;
key->elemsize= 12;
}
else if( GS(id->name)==ID_CU) {
el= key->elemstr;
el[0]= 4;
el[1]= IPO_BPOINT;
el[2]= 0;
key->elemsize= 16;
}
return key;
}
Key *copy_key(Key *key)
{
Key *keyn;
KeyBlock *kbn, *kb;
if(key==0) return 0;
keyn= copy_libblock(key);
#if 0 // XXX old animation system
keyn->ipo= copy_ipo(key->ipo);
#endif // XXX old animation system
BLI_duplicatelist(&keyn->block, &key->block);
kb= key->block.first;
kbn= keyn->block.first;
while(kbn) {
if(kbn->data) kbn->data= MEM_dupallocN(kbn->data);
if( kb==key->refkey ) keyn->refkey= kbn;
kbn= kbn->next;
kb= kb->next;
}
return keyn;
}
void make_local_key(Key *key)
{
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(key==0) return;
key->id.lib= 0;
new_id(0, (ID *)key, 0);
#if 0 // XXX old animation system
make_local_ipo(key->ipo);
#endif // XXX old animation system
}
/* Sort shape keys and Ipo curves after a change. This assumes that at most
* one key was moved, which is a valid assumption for the places it's
* currently being called.
*/
void sort_keys(Key *key)
{
KeyBlock *kb;
//short i, adrcode;
//IpoCurve *icu = NULL;
KeyBlock *kb2;
/* locate the key which is out of position */
for (kb= key->block.first; kb; kb= kb->next)
if ((kb->next) && (kb->pos > kb->next->pos))
break;
/* if we find a key, move it */
if (kb) {
kb = kb->next; /* next key is the out-of-order one */
BLI_remlink(&key->block, kb);
/* find the right location and insert before */
for (kb2=key->block.first; kb2; kb2= kb2->next) {
if (kb2->pos > kb->pos) {
BLI_insertlink(&key->block, kb2->prev, kb);
break;
}
}
/* if more than one Ipo curve, see if this key had a curve */
#if 0 // XXX old animation system
if(key->ipo && key->ipo->curve.first != key->ipo->curve.last ) {
for(icu= key->ipo->curve.first; icu; icu= icu->next) {
/* if we find the curve, remove it and reinsert in the
right place */
if(icu->adrcode==kb->adrcode) {
IpoCurve *icu2;
BLI_remlink(&key->ipo->curve, icu);
for(icu2= key->ipo->curve.first; icu2; icu2= icu2->next) {
if(icu2->adrcode >= kb2->adrcode) {
BLI_insertlink(&key->ipo->curve, icu2->prev, icu);
break;
}
}
break;
}
}
}
/* kb points at the moved key, icu at the moved ipo (if it exists).
* go back now and renumber adrcodes */
/* first new code */
adrcode = kb2->adrcode;
for (i = kb->adrcode - adrcode; i >= 0; i--, adrcode++) {
/* if the next ipo curve matches the current key, renumber it */
if(icu && icu->adrcode == kb->adrcode ) {
icu->adrcode = adrcode;
icu = icu->next;
}
/* renumber the shape key */
kb->adrcode = adrcode;
kb = kb->next;
}
#endif // XXX old animation system
}
/* new rule; first key is refkey, this to match drawing channels... */
key->refkey= key->block.first;
}
/**************** do the key ****************/
void set_four_ipo(float d, float *data, int type)
{
float d2, d3, fc;
if(type==KEY_LINEAR) {
data[0]= 0.0f;
data[1]= 1.0f-d;
data[2]= d;
data[3]= 0.0f;
}
else {
d2= d*d;
d3= d2*d;
if(type==KEY_CARDINAL) {
fc= 0.71f;
data[0]= -fc*d3 +2.0f*fc*d2 -fc*d;
data[1]= (2.0f-fc)*d3 +(fc-3.0f)*d2 +1.0f;
data[2]= (fc-2.0f)*d3 +(3.0f-2.0f*fc)*d2 +fc*d;
data[3]= fc*d3 -fc*d2;
}
else if(type==KEY_BSPLINE) {
data[0]= -0.16666666f*d3 +0.5f*d2 -0.5f*d +0.16666666f;
data[1]= 0.5f*d3 -d2 +0.6666666f;
data[2]= -0.5f*d3 +0.5f*d2 +0.5f*d +0.16666666f;
data[3]= 0.16666666f*d3 ;
}
}
}
void set_afgeleide_four_ipo(float d, float *data, int type)
{
float d2, fc;
if(type==KEY_LINEAR) {
}
else {
d2= d*d;
if(type==KEY_CARDINAL) {
fc= 0.71f;
data[0]= -3.0f*fc*d2 +4.0f*fc*d -fc;
data[1]= 3.0f*(2.0f-fc)*d2 +2.0f*(fc-3.0f)*d;
data[2]= 3.0f*(fc-2.0f)*d2 +2.0f*(3.0f-2.0f*fc)*d +fc;
data[3]= 3.0f*fc*d2 -2.0f*fc*d;
}
else if(type==KEY_BSPLINE) {
data[0]= -0.16666666f*3.0f*d2 +d -0.5f;
data[1]= 1.5f*d2 -2.0f*d;
data[2]= -1.5f*d2 +d +0.5f;
data[3]= 0.16666666f*3.0f*d2 ;
}
}
}
static int setkeys(float fac, ListBase *lb, KeyBlock *k[], float *t, int cycl)
{
/* return 1 means k[2] is the position, return 0 means interpolate */
KeyBlock *k1, *firstkey;
float d, dpos, ofs=0, lastpos, temp, fval[4];
short bsplinetype;
firstkey= lb->first;
k1= lb->last;
lastpos= k1->pos;
dpos= lastpos - firstkey->pos;
if(fac < firstkey->pos) fac= firstkey->pos;
else if(fac > k1->pos) fac= k1->pos;
k1=k[0]=k[1]=k[2]=k[3]= firstkey;
t[0]=t[1]=t[2]=t[3]= k1->pos;
/* if(fac<0.0 || fac>1.0) return 1; */
if(k1->next==0) return 1;
if(cycl) { /* pre-sort */
k[2]= k1->next;
k[3]= k[2]->next;
if(k[3]==0) k[3]=k1;
while(k1) {
if(k1->next==0) k[0]=k1;
k1=k1->next;
}
k1= k[1];
t[0]= k[0]->pos;
t[1]+= dpos;
t[2]= k[2]->pos + dpos;
t[3]= k[3]->pos + dpos;
fac+= dpos;
ofs= dpos;
if(k[3]==k[1]) {
t[3]+= dpos;
ofs= 2.0f*dpos;
}
if(fac<t[1]) fac+= dpos;
k1= k[3];
}
else { /* pre-sort */
k[2]= k1->next;
t[2]= k[2]->pos;
k[3]= k[2]->next;
if(k[3]==0) k[3]= k[2];
t[3]= k[3]->pos;
k1= k[3];
}
while( t[2]<fac ) { /* find correct location */
if(k1->next==0) {
if(cycl) {
k1= firstkey;
ofs+= dpos;
}
else if(t[2]==t[3]) break;
}
else k1= k1->next;
t[0]= t[1];
k[0]= k[1];
t[1]= t[2];
k[1]= k[2];
t[2]= t[3];
k[2]= k[3];
t[3]= k1->pos+ofs;
k[3]= k1;
if(ofs>2.1+lastpos) break;
}
bsplinetype= 0;
if(k[1]->type==KEY_BSPLINE || k[2]->type==KEY_BSPLINE) bsplinetype= 1;
if(cycl==0) {
if(bsplinetype==0) { /* B spline doesn't go through the control points */
if(fac<=t[1]) { /* fac for 1st key */
t[2]= t[1];
k[2]= k[1];
return 1;
}
if(fac>=t[2] ) { /* fac after 2nd key */
return 1;
}
}
else if(fac>t[2]) { /* last key */
fac= t[2];
k[3]= k[2];
t[3]= t[2];
}
}
d= t[2]-t[1];
if(d==0.0) {
if(bsplinetype==0) {
return 1; /* both keys equal */
}
}
else d= (fac-t[1])/d;
/* interpolation */
set_four_ipo(d, t, k[1]->type);
if(k[1]->type != k[2]->type) {
set_four_ipo(d, fval, k[2]->type);
temp= 1.0f-d;
t[0]= temp*t[0]+ d*fval[0];
t[1]= temp*t[1]+ d*fval[1];
t[2]= temp*t[2]+ d*fval[2];
t[3]= temp*t[3]+ d*fval[3];
}
return 0;
}
static void flerp(int aantal, float *in, float *f0, float *f1, float *f2, float *f3, float *t)
{
int a;
for(a=0; a<aantal; a++) {
in[a]= t[0]*f0[a]+t[1]*f1[a]+t[2]*f2[a]+t[3]*f3[a];
}
}
static void rel_flerp(int aantal, float *in, float *ref, float *out, float fac)
{
int a;
for(a=0; a<aantal; a++) {
in[a]-= fac*(ref[a]-out[a]);
}
}
static void cp_key(int start, int end, int tot, char *poin, Key *key, KeyBlock *k, float *weights, int mode)
{
float ktot = 0.0, kd = 0.0;
int elemsize, poinsize = 0, a, *ofsp, ofs[32], flagflo=0;
char *k1, *kref;
char *cp, elemstr[8];
if(key->from==NULL) return;
if( GS(key->from->name)==ID_ME ) {
ofs[0]= sizeof(MVert);
ofs[1]= 0;
poinsize= ofs[0];
}
else if( GS(key->from->name)==ID_LT ) {
ofs[0]= sizeof(BPoint);
ofs[1]= 0;
poinsize= ofs[0];
}
else if( GS(key->from->name)==ID_CU ) {
if(mode==KEY_BPOINT) ofs[0]= sizeof(BPoint);
else ofs[0]= sizeof(BezTriple);
ofs[1]= 0;
poinsize= ofs[0];
}
if(end>tot) end= tot;
k1= k->data;
kref= key->refkey->data;
if(tot != k->totelem) {
ktot= 0.0;
flagflo= 1;
if(k->totelem) {
kd= k->totelem/(float)tot;
}
else return;
}
/* this exception is needed for slurphing */
if(start!=0) {
poin+= poinsize*start;
if(flagflo) {
ktot+= start*kd;
a= (int)floor(ktot);
if(a) {
ktot-= a;
k1+= a*key->elemsize;
}
}
else k1+= start*key->elemsize;
}
if(mode==KEY_BEZTRIPLE) {
elemstr[0]= 1;
elemstr[1]= IPO_BEZTRIPLE;
elemstr[2]= 0;
}
/* just do it here, not above! */
elemsize= key->elemsize;
if(mode==KEY_BEZTRIPLE) elemsize*= 3;
for(a=start; a<end; a++) {
cp= key->elemstr;
if(mode==KEY_BEZTRIPLE) cp= elemstr;
ofsp= ofs;
while( cp[0] ) {
switch(cp[1]) {
case IPO_FLOAT:
if(weights) {
memcpy(poin, kref, sizeof(float)*cp[0]);
if(*weights!=0.0f)
rel_flerp(cp[0], (float *)poin, (float *)kref, (float *)k1, *weights);
weights++;
}
else
memcpy(poin, k1, sizeof(float)*cp[0]);
poin+= ofsp[0];
break;
case IPO_BPOINT:
memcpy(poin, k1, 3*sizeof(float));
memcpy(poin+4*sizeof(float), k1+3*sizeof(float), sizeof(float));
poin+= ofsp[0];
break;
case IPO_BEZTRIPLE:
memcpy(poin, k1, sizeof(float)*10);
poin+= ofsp[0];
break;
}
cp+= 2; ofsp++;
}
/* are we going to be nasty? */
if(flagflo) {
ktot+= kd;
while(ktot>=1.0) {
ktot-= 1.0;
k1+= elemsize;
kref+= elemsize;
}
}
else {
k1+= elemsize;
kref+= elemsize;
}
if(mode==KEY_BEZTRIPLE) a+=2;
}
}
void cp_cu_key(Curve *cu, KeyBlock *kb, int start, int end)
{
Nurb *nu;
int a, step = 0, tot, a1, a2;
char *poin;
tot= count_curveverts(&cu->nurb);
nu= cu->nurb.first;
a= 0;
while(nu) {
if(nu->bp) {
step= nu->pntsu*nu->pntsv;
/* exception because keys prefer to work with complete blocks */
poin= (char *)nu->bp->vec;
poin -= a*sizeof(BPoint);
a1= MAX2(a, start);
a2= MIN2(a+step, end);
if(a1<a2) cp_key(a1, a2, tot, poin, cu->key, kb, NULL, KEY_BPOINT);
}
else if(nu->bezt) {
step= 3*nu->pntsu;
poin= (char *)nu->bezt->vec;
poin -= a*sizeof(BezTriple);
a1= MAX2(a, start);
a2= MIN2(a+step, end);
if(a1<a2) cp_key(a1, a2, tot, poin, cu->key, kb, NULL, KEY_BEZTRIPLE);
}
a+= step;
nu=nu->next;
}
}
void do_rel_key(int start, int end, int tot, char *basispoin, Key *key, int mode)
{
KeyBlock *kb;
int *ofsp, ofs[3], elemsize, b;
char *cp, *poin, *reffrom, *from, elemstr[8];
if(key->from==NULL) return;
if (G.f & G_DEBUG) printf("do_rel_key() \n");
if( GS(key->from->name)==ID_ME ) {
ofs[0]= sizeof(MVert);
ofs[1]= 0;
}
else if( GS(key->from->name)==ID_LT ) {
ofs[0]= sizeof(BPoint);
ofs[1]= 0;
}
else if( GS(key->from->name)==ID_CU ) {
if(mode==KEY_BPOINT) ofs[0]= sizeof(BPoint);
else ofs[0]= sizeof(BezTriple);
ofs[1]= 0;
}
if(end>tot) end= tot;
/* in case of beztriple */
elemstr[0]= 1; /* nr of ipofloats */
elemstr[1]= IPO_BEZTRIPLE;
elemstr[2]= 0;
/* just here, not above! */
elemsize= key->elemsize;
if(mode==KEY_BEZTRIPLE) elemsize*= 3;
/* step 1 init */
cp_key(start, end, tot, basispoin, key, key->refkey, NULL, mode);
/* step 2: do it */
for(kb=key->block.first; kb; kb=kb->next) {
if(kb!=key->refkey) {
float icuval= kb->curval;
if (G.f & G_DEBUG) printf("\tdo rel key %s : %s = %f \n", key->id.name+2, kb->name, icuval);
/* only with value, and no difference allowed */
if(!(kb->flag & KEYBLOCK_MUTE) && icuval!=0.0f && kb->totelem==tot) {
KeyBlock *refb;
float weight, *weights= kb->weights;
if (G.f & G_DEBUG) printf("\t\tnot skipped \n");
poin= basispoin;
from= kb->data;
/* reference now can be any block */
refb= BLI_findlink(&key->block, kb->relative);
if(refb==NULL) continue;
reffrom= refb->data;
poin+= start*ofs[0];
reffrom+= key->elemsize*start; // key elemsize yes!
from+= key->elemsize*start;
for(b=start; b<end; b++) {
if(weights)
weight= *weights * icuval;
else
weight= icuval;
cp= key->elemstr;
if(mode==KEY_BEZTRIPLE) cp= elemstr;
ofsp= ofs;
while( cp[0] ) { /* cp[0]==amount */
switch(cp[1]) {
case IPO_FLOAT:
rel_flerp(cp[0], (float *)poin, (float *)reffrom, (float *)from, weight);
break;
case IPO_BPOINT:
rel_flerp(3, (float *)poin, (float *)reffrom, (float *)from, icuval);
rel_flerp(1, (float *)(poin+16), (float *)(reffrom+16), (float *)(from+16), icuval);
break;
case IPO_BEZTRIPLE:
rel_flerp(9, (float *)poin, (float *)reffrom, (float *)from, icuval);
break;
}
poin+= ofsp[0];
cp+= 2;
ofsp++;
}
reffrom+= elemsize;
from+= elemsize;
if(mode==KEY_BEZTRIPLE) b+= 2;
if(weights) weights++;
}
}
}
}
}
static void do_key(int start, int end, int tot, char *poin, Key *key, KeyBlock **k, float *t, int mode)
{
float k1tot = 0.0, k2tot = 0.0, k3tot = 0.0, k4tot = 0.0;
float k1d = 0.0, k2d = 0.0, k3d = 0.0, k4d = 0.0;
int a, ofs[32], *ofsp;
int flagdo= 15, flagflo=0, elemsize, poinsize=0;
char *k1, *k2, *k3, *k4;
char *cp, elemstr[8];;
if(key->from==0) return;
if (G.f & G_DEBUG) printf("do_key() \n");
if( GS(key->from->name)==ID_ME ) {
ofs[0]= sizeof(MVert);
ofs[1]= 0;
poinsize= ofs[0];
}
else if( GS(key->from->name)==ID_LT ) {
ofs[0]= sizeof(BPoint);
ofs[1]= 0;
poinsize= ofs[0];
}
else if( GS(key->from->name)==ID_CU ) {
if(mode==KEY_BPOINT) ofs[0]= sizeof(BPoint);
else ofs[0]= sizeof(BezTriple);
ofs[1]= 0;
poinsize= ofs[0];
}
if(end>tot) end= tot;
k1= k[0]->data;
k2= k[1]->data;
k3= k[2]->data;
k4= k[3]->data;
/* test for more or less points (per key!) */
if(tot != k[0]->totelem) {
k1tot= 0.0;
flagflo |= 1;
if(k[0]->totelem) {
k1d= k[0]->totelem/(float)tot;
}
else flagdo -= 1;
}
if(tot != k[1]->totelem) {
k2tot= 0.0;
flagflo |= 2;
if(k[0]->totelem) {
k2d= k[1]->totelem/(float)tot;
}
else flagdo -= 2;
}
if(tot != k[2]->totelem) {
k3tot= 0.0;
flagflo |= 4;
if(k[0]->totelem) {
k3d= k[2]->totelem/(float)tot;
}
else flagdo -= 4;
}
if(tot != k[3]->totelem) {
k4tot= 0.0;
flagflo |= 8;
if(k[0]->totelem) {
k4d= k[3]->totelem/(float)tot;
}
else flagdo -= 8;
}
/* this exception needed for slurphing */
if(start!=0) {
poin+= poinsize*start;
if(flagdo & 1) {
if(flagflo & 1) {
k1tot+= start*k1d;
a= (int)floor(k1tot);
if(a) {
k1tot-= a;
k1+= a*key->elemsize;
}
}
else k1+= start*key->elemsize;
}
if(flagdo & 2) {
if(flagflo & 2) {
k2tot+= start*k2d;
a= (int)floor(k2tot);
if(a) {
k2tot-= a;
k2+= a*key->elemsize;
}
}
else k2+= start*key->elemsize;
}
if(flagdo & 4) {
if(flagflo & 4) {
k3tot+= start*k3d;
a= (int)floor(k3tot);
if(a) {
k3tot-= a;
k3+= a*key->elemsize;
}
}
else k3+= start*key->elemsize;
}
if(flagdo & 8) {
if(flagflo & 8) {
k4tot+= start*k4d;
a= (int)floor(k4tot);
if(a) {
k4tot-= a;
k4+= a*key->elemsize;
}
}
else k4+= start*key->elemsize;
}
}
/* in case of beztriple */
elemstr[0]= 1; /* nr of ipofloats */
elemstr[1]= IPO_BEZTRIPLE;
elemstr[2]= 0;
/* only here, not above! */
elemsize= key->elemsize;
if(mode==KEY_BEZTRIPLE) elemsize*= 3;
for(a=start; a<end; a++) {
cp= key->elemstr;
if(mode==KEY_BEZTRIPLE) cp= elemstr;
ofsp= ofs;
while( cp[0] ) { /* cp[0]==amount */
switch(cp[1]) {
case IPO_FLOAT:
flerp(cp[0], (float *)poin, (float *)k1, (float *)k2, (float *)k3, (float *)k4, t);
poin+= ofsp[0];
break;
case IPO_BPOINT:
flerp(3, (float *)poin, (float *)k1, (float *)k2, (float *)k3, (float *)k4, t);
flerp(1, (float *)(poin+16), (float *)(k1+12), (float *)(k2+12), (float *)(k3+12), (float *)(k4+12), t);
poin+= ofsp[0];
break;
case IPO_BEZTRIPLE:
flerp(9, (void *)poin, (void *)k1, (void *)k2, (void *)k3, (void *)k4, t);
flerp(1, (float *)(poin+36), (float *)(k1+36), (float *)(k2+36), (float *)(k3+36), (float *)(k4+36), t);
poin+= ofsp[0];
break;
}
cp+= 2;
ofsp++;
}
/* lets do it the difficult way: when keys have a different size */
if(flagdo & 1) {
if(flagflo & 1) {
k1tot+= k1d;
while(k1tot>=1.0) {
k1tot-= 1.0;
k1+= elemsize;
}
}
else k1+= elemsize;
}
if(flagdo & 2) {
if(flagflo & 2) {
k2tot+= k2d;
while(k2tot>=1.0) {
k2tot-= 1.0;
k2+= elemsize;
}
}
else k2+= elemsize;
}
if(flagdo & 4) {
if(flagflo & 4) {
k3tot+= k3d;
while(k3tot>=1.0) {
k3tot-= 1.0;
k3+= elemsize;
}
}
else k3+= elemsize;
}
if(flagdo & 8) {
if(flagflo & 8) {
k4tot+= k4d;
while(k4tot>=1.0) {
k4tot-= 1.0;
k4+= elemsize;
}
}
else k4+= elemsize;
}
if(mode==KEY_BEZTRIPLE) a+= 2;
}
}
static float *get_weights_array(Object *ob, char *vgroup)
{
bDeformGroup *curdef;
MDeformVert *dvert= NULL;
int totvert= 0, index= 0;
/* no vgroup string set? */
if(vgroup[0]==0) return NULL;
/* gather dvert and totvert */
if(ob->type==OB_MESH) {
Mesh *me= ob->data;
dvert= me->dvert;
totvert= me->totvert;
}
else if(ob->type==OB_LATTICE) {
Lattice *lt= ob->data;
dvert= lt->dvert;
totvert= lt->pntsu*lt->pntsv*lt->pntsw;
}
if(dvert==NULL) return NULL;
/* find the group (weak loop-in-loop) */
for (curdef = ob->defbase.first; curdef; curdef=curdef->next, index++)
if (!strcmp(curdef->name, vgroup))
break;
if(curdef) {
float *weights;
int i, j;
weights= MEM_callocN(totvert*sizeof(float), "weights");
for (i=0; i < totvert; i++, dvert++) {
for(j=0; j<dvert->totweight; j++) {
if (dvert->dw[j].def_nr == index) {
weights[i]= dvert->dw[j].weight;
break;
}
}
}
return weights;
}
return NULL;
}
static int do_mesh_key(Scene *scene, Object *ob, Mesh *me)
{
KeyBlock *k[4];
float cfra, ctime, t[4], delta, loc[3], size[3];
int a, flag = 0, step;
if(me->totvert==0) return 0;
if(me->key==NULL) return 0;
if(me->key->block.first==NULL) return 0;
/* prevent python from screwing this up? anyhoo, the from pointer could be dropped */
me->key->from= (ID *)me;
if (G.f & G_DEBUG) printf("do mesh key ob:%s me:%s ke:%s \n", ob->id.name+2, me->id.name+2, me->key->id.name+2);
if(me->key->slurph && me->key->type!=KEY_RELATIVE ) {
if (G.f & G_DEBUG) printf("\tslurph key\n");
delta= me->key->slurph;
delta/= me->totvert;
step= 1;
if(me->totvert>100 && slurph_opt) {
step= me->totvert/50;
delta*= step;
/* in do_key and cp_key the case a>tot is handled */
}
cfra= (float)scene->r.cfra;
for(a=0; a<me->totvert; a+=step, cfra+= delta) {
ctime= bsystem_time(scene, 0, cfra, 0.0); // xxx ugly cruft!
#if 0 // XXX old animation system
if(calc_ipo_spec(me->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
// XXX for now... since speed curve cannot be directly ported yet
ctime /= 100.0f;
CLAMP(ctime, 0.0f, 1.0f); // XXX for compat, we use this, but this clamping was confusing
flag= setkeys(ctime, &me->key->block, k, t, 0);
if(flag==0) {
do_key(a, a+step, me->totvert, (char *)me->mvert->co, me->key, k, t, 0);
}
else {
cp_key(a, a+step, me->totvert, (char *)me->mvert->co, me->key, k[2], NULL, 0);
}
}
if(flag && k[2]==me->key->refkey) tex_space_mesh(me);
else boundbox_mesh(me, loc, size);
}
else {
if(me->key->type==KEY_RELATIVE) {
KeyBlock *kb;
if (G.f & G_DEBUG) printf("\tdo relative \n");
for(kb= me->key->block.first; kb; kb= kb->next)
kb->weights= get_weights_array(ob, kb->vgroup);
do_rel_key(0, me->totvert, me->totvert, (char *)me->mvert->co, me->key, 0);
for(kb= me->key->block.first; kb; kb= kb->next) {
if(kb->weights) MEM_freeN(kb->weights);
kb->weights= NULL;
}
}
else {
if (G.f & G_DEBUG) printf("\tdo absolute \n");
ctime= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0f); // xxx old cruft
#if 0 // XXX old animation system
if(calc_ipo_spec(me->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
// XXX for now... since speed curve cannot be directly ported yet
ctime /= 100.0f;
CLAMP(ctime, 0.0f, 1.0f); // XXX for compat, we use this, but this clamping was confusing
flag= setkeys(ctime, &me->key->block, k, t, 0);
if(flag==0) {
do_key(0, me->totvert, me->totvert, (char *)me->mvert->co, me->key, k, t, 0);
}
else {
cp_key(0, me->totvert, me->totvert, (char *)me->mvert->co, me->key, k[2], NULL, 0);
}
if(flag && k[2]==me->key->refkey) tex_space_mesh(me);
else boundbox_mesh(me, loc, size);
}
}
return 1;
}
static void do_cu_key(Curve *cu, KeyBlock **k, float *t)
{
Nurb *nu;
int a, step = 0, tot;
char *poin;
tot= count_curveverts(&cu->nurb);
nu= cu->nurb.first;
a= 0;
while(nu) {
if(nu->bp) {
step= nu->pntsu*nu->pntsv;
/* exception because keys prefer to work with complete blocks */
poin= (char *)nu->bp->vec;
poin -= a*sizeof(BPoint);
do_key(a, a+step, tot, poin, cu->key, k, t, KEY_BPOINT);
}
else if(nu->bezt) {
step= 3*nu->pntsu;
poin= (char *)nu->bezt->vec;
poin -= a*sizeof(BezTriple);
do_key(a, a+step, tot, poin, cu->key, k, t, KEY_BEZTRIPLE);
}
a+= step;
nu=nu->next;
}
}
static void do_rel_cu_key(Curve *cu, float ctime)
{
Nurb *nu;
int a, step = 0, tot;
char *poin;
tot= count_curveverts(&cu->nurb);
nu= cu->nurb.first;
a= 0;
while(nu) {
if(nu->bp) {
step= nu->pntsu*nu->pntsv;
/* exception because keys prefer to work with complete blocks */
poin= (char *)nu->bp->vec;
poin -= a*sizeof(BPoint);
do_rel_key(a, a+step, tot, poin, cu->key, KEY_BPOINT);
}
else if(nu->bezt) {
step= 3*nu->pntsu;
poin= (char *)nu->bezt->vec;
poin -= a*sizeof(BezTriple);
do_rel_key(a, a+step, tot, poin, cu->key, KEY_BEZTRIPLE);
}
a+= step;
nu=nu->next;
}
}
static int do_curve_key(Scene *scene, Curve *cu)
{
KeyBlock *k[4];
float cfra, ctime, t[4], delta;
int a, flag = 0, step = 0, tot;
tot= count_curveverts(&cu->nurb);
if(tot==0) return 0;
if(cu->key==NULL) return 0;
if(cu->key->block.first==NULL) return 0;
if(cu->key->slurph) {
delta= cu->key->slurph;
delta/= tot;
step= 1;
if(tot>100 && slurph_opt) {
step= tot/50;
delta*= step;
/* in do_key and cp_key the case a>tot has been handled */
}
cfra= (float)scene->r.cfra;
for(a=0; a<tot; a+=step, cfra+= delta) {
ctime= bsystem_time(scene, 0, cfra, 0.0f); // XXX old cruft
#if 0 // XXX old animation system
if(calc_ipo_spec(cu->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
flag= setkeys(ctime, &cu->key->block, k, t, 0);
if(flag==0) {
/* do_key(a, a+step, tot, (char *)cu->mvert->co, cu->key, k, t, 0); */
}
else {
/* cp_key(a, a+step, tot, (char *)cu->mvert->co, cu->key, k[2],0); */
}
}
if(flag && k[2]==cu->key->refkey) tex_space_curve(cu);
}
else {
ctime= bsystem_time(scene, NULL, (float)scene->r.cfra, 0.0);
if(cu->key->type==KEY_RELATIVE) {
do_rel_cu_key(cu, ctime);
}
else {
#if 0 // XXX old animation system
if(calc_ipo_spec(cu->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
flag= setkeys(ctime, &cu->key->block, k, t, 0);
if(flag==0) do_cu_key(cu, k, t);
else cp_cu_key(cu, k[2], 0, tot);
if(flag && k[2]==cu->key->refkey) tex_space_curve(cu);
}
}
return 1;
}
static int do_latt_key(Scene *scene, Object *ob, Lattice *lt)
{
KeyBlock *k[4];
float delta, cfra, ctime, t[4];
int a, tot, flag;
if(lt->key==NULL) return 0;
if(lt->key->block.first==NULL) return 0;
tot= lt->pntsu*lt->pntsv*lt->pntsw;
if(lt->key->slurph) {
delta= lt->key->slurph;
delta/= (float)tot;
cfra= (float)scene->r.cfra;
for(a=0; a<tot; a++, cfra+= delta) {
ctime= bsystem_time(scene, 0, cfra, 0.0); // XXX old cruft
#if 0 // XXX old animation system
if(calc_ipo_spec(lt->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
flag= setkeys(ctime, &lt->key->block, k, t, 0);
if(flag==0) {
do_key(a, a+1, tot, (char *)lt->def->vec, lt->key, k, t, 0);
}
else {
cp_key(a, a+1, tot, (char *)lt->def->vec, lt->key, k[2], NULL, 0);
}
}
}
else {
ctime= bsystem_time(scene, NULL, (float)scene->r.cfra, 0.0);
if(lt->key->type==KEY_RELATIVE) {
KeyBlock *kb;
for(kb= lt->key->block.first; kb; kb= kb->next)
kb->weights= get_weights_array(ob, kb->vgroup);
do_rel_key(0, tot, tot, (char *)lt->def->vec, lt->key, 0);
for(kb= lt->key->block.first; kb; kb= kb->next) {
if(kb->weights) MEM_freeN(kb->weights);
kb->weights= NULL;
}
}
else {
#if 0 // XXX old animation system
if(calc_ipo_spec(lt->key->ipo, KEY_SPEED, &ctime)==0) {
ctime /= 100.0;
CLAMP(ctime, 0.0, 1.0);
}
#endif // XXX old animation system
flag= setkeys(ctime, &lt->key->block, k, t, 0);
if(flag==0) {
do_key(0, tot, tot, (char *)lt->def->vec, lt->key, k, t, 0);
}
else {
cp_key(0, tot, tot, (char *)lt->def->vec, lt->key, k[2], NULL, 0);
}
}
}
if(lt->flag & LT_OUTSIDE) outside_lattice(lt);
return 1;
}
/* returns 1 when key applied */
int do_ob_key(Scene *scene, Object *ob)
{
Key *key= ob_get_key(ob);
if(key==NULL)
return 0;
if(ob->shapeflag & (OB_SHAPE_LOCK|OB_SHAPE_TEMPLOCK)) {
KeyBlock *kb= BLI_findlink(&key->block, ob->shapenr-1);
if (G.f & G_DEBUG) printf("ob %s, key %s locked \n", ob->id.name+2, key->id.name+2);
if(kb && (kb->flag & KEYBLOCK_MUTE))
kb= key->refkey;
if(kb==NULL) {
kb= key->block.first;
ob->shapenr= 1;
}
if(ob->type==OB_MESH) {
Mesh *me= ob->data;
float *weights= get_weights_array(ob, kb->vgroup);
cp_key(0, me->totvert, me->totvert, (char *)me->mvert->co, key, kb, weights, 0);
if(weights) MEM_freeN(weights);
}
else if(ob->type==OB_LATTICE) {
Lattice *lt= ob->data;
float *weights= get_weights_array(ob, kb->vgroup);
int tot= lt->pntsu*lt->pntsv*lt->pntsw;
cp_key(0, tot, tot, (char *)lt->def->vec, key, kb, weights, 0);
if(weights) MEM_freeN(weights);
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
Curve *cu= ob->data;
int tot= count_curveverts(&cu->nurb);
cp_cu_key(cu, kb, 0, tot);
}
return 1;
}
else {
/* do shapekey local drivers */
float ctime= (float)scene->r.cfra; // XXX this needs to be checked
if (G.f & G_DEBUG)
printf("ob %s - do shapekey (%s) drivers \n", ob->id.name+2, key->id.name+2);
BKE_animsys_evaluate_animdata(&key->id, key->adt, ctime, ADT_RECALC_DRIVERS);
if(ob->type==OB_MESH) return do_mesh_key(scene, ob, ob->data);
else if(ob->type==OB_CURVE) return do_curve_key(scene, ob->data);
else if(ob->type==OB_SURF) return do_curve_key(scene, ob->data);
else if(ob->type==OB_LATTICE) return do_latt_key(scene, ob, ob->data);
}
return 0;
}
Key *ob_get_key(Object *ob)
{
if(ob==NULL) return NULL;
if(ob->type==OB_MESH) {
Mesh *me= ob->data;
return me->key;
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
Curve *cu= ob->data;
return cu->key;
}
else if(ob->type==OB_LATTICE) {
Lattice *lt= ob->data;
return lt->key;
}
return NULL;
}
/* only the active keyblock */
KeyBlock *ob_get_keyblock(Object *ob)
{
Key *key= ob_get_key(ob);
if (key) {
KeyBlock *kb= BLI_findlink(&key->block, ob->shapenr-1);
return kb;
}
return NULL;
}
/* get the appropriate KeyBlock given an index */
KeyBlock *key_get_keyblock(Key *key, int index)
{
KeyBlock *kb;
int i;
if (key) {
kb= key->block.first;
for (i= 1; i < key->totkey; i++) {
kb= kb->next;
if (index==i)
return kb;
}
}
return NULL;
}
/* get the appropriate KeyBlock given a name to search for */
KeyBlock *key_get_named_keyblock(Key *key, const char name[])
{
KeyBlock *kb;
if (key && name) {
for (kb= key->block.first; kb; kb= kb->next) {
if (strcmp(name, kb->name)==0)
return kb;
}
}
return NULL;
}