This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_field.hh
Jacques Lucke b9799dfb8a Geometry Nodes: better support for byte color attributes
Since {rBeae36be372a6b16ee3e76eff0485a47da4f3c230} the distinction
between float and byte colors is more explicit in the ui. So far, geometry
nodes couldn't really deal with byte colors in general. This patch fixes that.
There is still only one color socket, which contains float colors. Conversion
to and from byte colors is done when read from or writing to attributes.

* Support writing to byte color attributes in Store Named Attribute node.
* Support converting to/from byte color in attribute conversion operator.
* Support propagating byte color attributes.
* Add all the implicit conversions from byte colors to the other types.
* Display byte colors as integers in spreadsheet.

Differential Revision: https://developer.blender.org/D14705
2022-04-21 16:11:26 +02:00

670 lines
19 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup fn
*
* A #Field represents a function that outputs a value based on an arbitrary number of inputs. The
* inputs for a specific field evaluation are provided by a #FieldContext.
*
* A typical example is a field that computes a displacement vector for every vertex on a mesh
* based on its position.
*
* Fields can be build, composed and evaluated at run-time. They are stored in a directed tree
* graph data structure, whereby each node is a #FieldNode and edges are dependencies. A #FieldNode
* has an arbitrary number of inputs and at least one output and a #Field references a specific
* output of a #FieldNode. The inputs of a #FieldNode are other fields.
*
* There are two different types of field nodes:
* - #FieldInput: Has no input and exactly one output. It represents an input to the entire field
* when it is evaluated. During evaluation, the value of this input is based on a #FieldContext.
* - #FieldOperation: Has an arbitrary number of field inputs and at least one output. Its main
* use is to compose multiple existing fields into new fields.
*
* When fields are evaluated, they are converted into a multi-function procedure which allows
* efficient computation. In the future, we might support different field evaluation mechanisms for
* e.g. the following scenarios:
* - Latency of a single evaluation is more important than throughput.
* - Evaluation should happen on other hardware like GPUs.
*
* Whenever possible, multiple fields should be evaluated together to avoid duplicate work when
* they share common sub-fields and a common context.
*/
#include "BLI_function_ref.hh"
#include "BLI_generic_virtual_array.hh"
#include "BLI_string_ref.hh"
#include "BLI_vector.hh"
#include "BLI_vector_set.hh"
#include "FN_multi_function.hh"
namespace blender::fn {
class FieldInput;
struct FieldInputs;
/**
* Have a fixed set of base node types, because all code that works with field nodes has to
* understand those.
*/
enum class FieldNodeType {
Input,
Operation,
Constant,
};
/**
* A node in a field-tree. It has at least one output that can be referenced by fields.
*/
class FieldNode {
private:
FieldNodeType node_type_;
protected:
/**
* Keeps track of the inputs that this node depends on. This avoids recomputing it every time the
* data is required. It is a shared pointer, because very often multiple nodes depend on the same
* inputs.
* Might contain null.
*/
std::shared_ptr<const FieldInputs> field_inputs_;
public:
FieldNode(FieldNodeType node_type);
virtual ~FieldNode();
virtual const CPPType &output_cpp_type(int output_index) const = 0;
FieldNodeType node_type() const;
bool depends_on_input() const;
const std::shared_ptr<const FieldInputs> &field_inputs() const;
virtual uint64_t hash() const;
virtual bool is_equal_to(const FieldNode &other) const;
};
/**
* Common base class for fields to avoid declaring the same methods for #GField and #GFieldRef.
*/
template<typename NodePtr> class GFieldBase {
protected:
NodePtr node_ = nullptr;
int node_output_index_ = 0;
GFieldBase(NodePtr node, const int node_output_index)
: node_(std::move(node)), node_output_index_(node_output_index)
{
}
public:
GFieldBase() = default;
operator bool() const
{
return node_ != nullptr;
}
friend bool operator==(const GFieldBase &a, const GFieldBase &b)
{
/* Two nodes can compare equal even when their pointer is not the same. For example, two
* "Position" nodes are the same. */
return *a.node_ == *b.node_ && a.node_output_index_ == b.node_output_index_;
}
uint64_t hash() const
{
return get_default_hash_2(*node_, node_output_index_);
}
const CPPType &cpp_type() const
{
return node_->output_cpp_type(node_output_index_);
}
const FieldNode &node() const
{
return *node_;
}
int node_output_index() const
{
return node_output_index_;
}
};
/**
* A field whose output type is only known at run-time.
*/
class GField : public GFieldBase<std::shared_ptr<FieldNode>> {
public:
GField() = default;
GField(std::shared_ptr<FieldNode> node, const int node_output_index = 0)
: GFieldBase<std::shared_ptr<FieldNode>>(std::move(node), node_output_index)
{
}
};
/**
* Same as #GField but is cheaper to copy/move around, because it does not contain a
* #std::shared_ptr.
*/
class GFieldRef : public GFieldBase<const FieldNode *> {
public:
GFieldRef() = default;
GFieldRef(const GField &field)
: GFieldBase<const FieldNode *>(&field.node(), field.node_output_index())
{
}
GFieldRef(const FieldNode &node, const int node_output_index = 0)
: GFieldBase<const FieldNode *>(&node, node_output_index)
{
}
};
namespace detail {
/* Utility class to make #is_field_v work. */
struct TypedFieldBase {
};
} // namespace detail
/**
* A typed version of #GField. It has the same memory layout as #GField.
*/
template<typename T> class Field : public GField, detail::TypedFieldBase {
public:
using base_type = T;
Field() = default;
Field(GField field) : GField(std::move(field))
{
BLI_assert(this->cpp_type().template is<T>());
}
Field(std::shared_ptr<FieldNode> node, const int node_output_index = 0)
: Field(GField(std::move(node), node_output_index))
{
}
};
/** True when T is any Field<...> type. */
template<typename T>
static constexpr bool is_field_v = std::is_base_of_v<detail::TypedFieldBase, T> &&
!std::is_same_v<detail::TypedFieldBase, T>;
/**
* A #FieldNode that allows composing existing fields into new fields.
*/
class FieldOperation : public FieldNode {
/**
* The multi-function used by this node. It is optionally owned.
* Multi-functions with mutable or vector parameters are not supported currently.
*/
std::shared_ptr<const MultiFunction> owned_function_;
const MultiFunction *function_;
/** Inputs to the operation. */
blender::Vector<GField> inputs_;
public:
FieldOperation(std::shared_ptr<const MultiFunction> function, Vector<GField> inputs = {});
FieldOperation(const MultiFunction &function, Vector<GField> inputs = {});
~FieldOperation();
Span<GField> inputs() const;
const MultiFunction &multi_function() const;
const CPPType &output_cpp_type(int output_index) const override;
};
class FieldContext;
/**
* A #FieldNode that represents an input to the entire field-tree.
*/
class FieldInput : public FieldNode {
public:
/* The order is also used for sorting in socket inspection. */
enum class Category {
NamedAttribute = 0,
Generated = 1,
AnonymousAttribute = 2,
Unknown,
};
protected:
const CPPType *type_;
std::string debug_name_;
Category category_ = Category::Unknown;
public:
FieldInput(const CPPType &type, std::string debug_name = "");
~FieldInput();
/**
* Get the value of this specific input based on the given context. The returned virtual array,
* should live at least as long as the passed in #scope. May return null.
*/
virtual GVArray get_varray_for_context(const FieldContext &context,
IndexMask mask,
ResourceScope &scope) const = 0;
virtual std::string socket_inspection_name() const;
blender::StringRef debug_name() const;
const CPPType &cpp_type() const;
Category category() const;
const CPPType &output_cpp_type(int output_index) const override;
};
class FieldConstant : public FieldNode {
private:
const CPPType &type_;
void *value_;
public:
FieldConstant(const CPPType &type, const void *value);
~FieldConstant();
const CPPType &output_cpp_type(int output_index) const override;
const CPPType &type() const;
GPointer value() const;
};
/**
* Keeps track of the inputs of a field.
*/
struct FieldInputs {
/** All #FieldInput nodes that a field (possibly indirectly) depends on. */
VectorSet<const FieldInput *> nodes;
/**
* Same as above but the inputs are deduplicated. For example, when there are two separate index
* input nodes, only one will show up in this list.
*/
VectorSet<std::reference_wrapper<const FieldInput>> deduplicated_nodes;
};
/**
* Provides inputs for a specific field evaluation.
*/
class FieldContext {
public:
virtual ~FieldContext() = default;
virtual GVArray get_varray_for_input(const FieldInput &field_input,
IndexMask mask,
ResourceScope &scope) const;
};
/**
* Utility class that makes it easier to evaluate fields.
*/
class FieldEvaluator : NonMovable, NonCopyable {
private:
struct OutputPointerInfo {
void *dst = nullptr;
/* When a destination virtual array is provided for an input, this is
* unnecessary, otherwise this is used to construct the required virtual array. */
void (*set)(void *dst, const GVArray &varray, ResourceScope &scope) = nullptr;
};
ResourceScope scope_;
const FieldContext &context_;
const IndexMask mask_;
Vector<GField> fields_to_evaluate_;
Vector<GVMutableArray> dst_varrays_;
Vector<GVArray> evaluated_varrays_;
Vector<OutputPointerInfo> output_pointer_infos_;
bool is_evaluated_ = false;
Field<bool> selection_field_;
IndexMask selection_mask_;
public:
/** Takes #mask by pointer because the mask has to live longer than the evaluator. */
FieldEvaluator(const FieldContext &context, const IndexMask *mask)
: context_(context), mask_(*mask)
{
}
/** Construct a field evaluator for all indices less than #size. */
FieldEvaluator(const FieldContext &context, const int64_t size) : context_(context), mask_(size)
{
}
~FieldEvaluator()
{
/* While this assert isn't strictly necessary, and could be replaced with a warning,
* it will catch cases where someone forgets to call #evaluate(). */
BLI_assert(is_evaluated_);
}
/**
* The selection field is evaluated first to determine which indices of the other fields should
* be evaluated. Calling this method multiple times will just replace the previously set
* selection field. Only the elements selected by both this selection and the selection provided
* in the constructor are calculated. If no selection field is set, it is assumed that all
* indices passed to the constructor are selected.
*/
void set_selection(Field<bool> selection)
{
selection_field_ = std::move(selection);
}
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable virtual array that the evaluated result for this field is be written into.
*/
int add_with_destination(GField field, GVMutableArray dst);
/** Same as #add_with_destination but typed. */
template<typename T> int add_with_destination(Field<T> field, VMutableArray<T> dst)
{
return this->add_with_destination(GField(std::move(field)), GVMutableArray(std::move(dst)));
}
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable span that the evaluated result for this field is be written into.
* \note: When the output may only be used as a single value, the version of this function with
* a virtual array result array should be used.
*/
int add_with_destination(GField field, GMutableSpan dst);
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable span that the evaluated result for this field is be written into.
* \note: When the output may only be used as a single value, the version of this function with
* a virtual array result array should be used.
*/
template<typename T> int add_with_destination(Field<T> field, MutableSpan<T> dst)
{
return this->add_with_destination(std::move(field), VMutableArray<T>::ForSpan(dst));
}
int add(GField field, GVArray *varray_ptr);
/**
* \param field: Field to add to the evaluator.
* \param varray_ptr: Once #evaluate is called, the resulting virtual array will be will be
* assigned to the given position.
* \return Index of the field in the evaluator which can be used in the #get_evaluated methods.
*/
template<typename T> int add(Field<T> field, VArray<T> *varray_ptr)
{
const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
dst_varrays_.append({});
output_pointer_infos_.append(OutputPointerInfo{
varray_ptr, [](void *dst, const GVArray &varray, ResourceScope &UNUSED(scope)) {
*(VArray<T> *)dst = varray.typed<T>();
}});
return field_index;
}
/**
* \return Index of the field in the evaluator which can be used in the #get_evaluated methods.
*/
int add(GField field);
/**
* Evaluate all fields on the evaluator. This can only be called once.
*/
void evaluate();
const GVArray &get_evaluated(const int field_index) const
{
BLI_assert(is_evaluated_);
return evaluated_varrays_[field_index];
}
template<typename T> VArray<T> get_evaluated(const int field_index)
{
return this->get_evaluated(field_index).typed<T>();
}
IndexMask get_evaluated_selection_as_mask();
/**
* Retrieve the output of an evaluated boolean field and convert it to a mask, which can be used
* to avoid calculations for unnecessary elements later on. The evaluator will own the indices in
* some cases, so it must live at least as long as the returned mask.
*/
IndexMask get_evaluated_as_mask(int field_index);
};
/**
* Evaluate fields in the given context. If possible, multiple fields should be evaluated together,
* because that can be more efficient when they share common sub-fields.
*
* \param scope: The resource scope that owns data that makes up the output virtual arrays. Make
* sure the scope is not destructed when the output virtual arrays are still used.
* \param fields_to_evaluate: The fields that should be evaluated together.
* \param mask: Determines which indices are computed. The mask may be referenced by the returned
* virtual arrays. So the underlying indices (if applicable) should live longer then #scope.
* \param context: The context that the field is evaluated in. Used to retrieve data from each
* #FieldInput in the field network.
* \param dst_varrays: If provided, the computed data will be written into those virtual arrays
* instead of into newly created ones. That allows making the computed data live longer than
* #scope and is more efficient when the data will be written into those virtual arrays
* later anyway.
* \return The computed virtual arrays for each provided field. If #dst_varrays is passed, the
* provided virtual arrays are returned.
*/
Vector<GVArray> evaluate_fields(ResourceScope &scope,
Span<GFieldRef> fields_to_evaluate,
IndexMask mask,
const FieldContext &context,
Span<GVMutableArray> dst_varrays = {});
/* -------------------------------------------------------------------- */
/** \name Utility functions for simple field creation and evaluation
* \{ */
void evaluate_constant_field(const GField &field, void *r_value);
template<typename T> T evaluate_constant_field(const Field<T> &field)
{
T value;
value.~T();
evaluate_constant_field(field, &value);
return value;
}
GField make_constant_field(const CPPType &type, const void *value);
template<typename T> Field<T> make_constant_field(T value)
{
return make_constant_field(CPPType::get<T>(), &value);
}
/**
* If the field depends on some input, the same field is returned.
* Otherwise the field is evaluated and a new field is created that just computes this constant.
*
* Making the field constant has two benefits:
* - The field-tree becomes a single node, which is more efficient when the field is evaluated many
* times.
* - Memory of the input fields may be freed.
*/
GField make_field_constant_if_possible(GField field);
class IndexFieldInput final : public FieldInput {
public:
IndexFieldInput();
static GVArray get_index_varray(IndexMask mask);
GVArray get_varray_for_context(const FieldContext &context,
IndexMask mask,
ResourceScope &scope) const final;
uint64_t hash() const override;
bool is_equal_to(const fn::FieldNode &other) const override;
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Value or Field Class
*
* Utility class that wraps a single value and a field, to simplify accessing both of the types.
* \{ */
template<typename T> struct ValueOrField {
/** Value that is used when the field is empty. */
T value{};
Field<T> field;
ValueOrField() = default;
ValueOrField(T value) : value(std::move(value))
{
}
ValueOrField(Field<T> field) : field(std::move(field))
{
}
bool is_field() const
{
return (bool)this->field;
}
Field<T> as_field() const
{
if (this->field) {
return this->field;
}
return make_constant_field(this->value);
}
T as_value() const
{
if (this->field) {
/* This returns a default value when the field is not constant. */
return evaluate_constant_field(this->field);
}
return this->value;
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldNode Inline Methods
* \{ */
inline FieldNode::FieldNode(const FieldNodeType node_type) : node_type_(node_type)
{
}
inline FieldNodeType FieldNode::node_type() const
{
return node_type_;
}
inline bool FieldNode::depends_on_input() const
{
return field_inputs_ && !field_inputs_->nodes.is_empty();
}
inline const std::shared_ptr<const FieldInputs> &FieldNode::field_inputs() const
{
return field_inputs_;
}
inline uint64_t FieldNode::hash() const
{
return get_default_hash(this);
}
inline bool FieldNode::is_equal_to(const FieldNode &other) const
{
return this == &other;
}
inline bool operator==(const FieldNode &a, const FieldNode &b)
{
return a.is_equal_to(b);
}
inline bool operator!=(const FieldNode &a, const FieldNode &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldOperation Inline Methods
* \{ */
inline Span<GField> FieldOperation::inputs() const
{
return inputs_;
}
inline const MultiFunction &FieldOperation::multi_function() const
{
return *function_;
}
inline const CPPType &FieldOperation::output_cpp_type(int output_index) const
{
int output_counter = 0;
for (const int param_index : function_->param_indices()) {
MFParamType param_type = function_->param_type(param_index);
if (param_type.is_output()) {
if (output_counter == output_index) {
return param_type.data_type().single_type();
}
output_counter++;
}
}
BLI_assert_unreachable();
return CPPType::get<float>();
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldInput Inline Methods
* \{ */
inline std::string FieldInput::socket_inspection_name() const
{
return debug_name_;
}
inline StringRef FieldInput::debug_name() const
{
return debug_name_;
}
inline const CPPType &FieldInput::cpp_type() const
{
return *type_;
}
inline FieldInput::Category FieldInput::category() const
{
return category_;
}
inline const CPPType &FieldInput::output_cpp_type(int output_index) const
{
BLI_assert(output_index == 0);
UNUSED_VARS_NDEBUG(output_index);
return *type_;
}
/** \} */
} // namespace blender::fn