This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_builder.hh
Jacques Lucke ae94e36cfb Geometry Nodes: refactor array devirtualization
Goals:
* Better high level control over where devirtualization occurs. There is always
  a trade-off between performance and compile-time/binary-size.
* Simplify using array devirtualization.
* Better performance for cases where devirtualization wasn't used before.

Many geometry nodes accept fields as inputs. Internally, that means that the
execution functions have to accept so called "virtual arrays" as inputs. Those
 can be e.g. actual arrays, just single values, or lazily computed arrays.
Due to these different possible virtual arrays implementations, access to
individual elements is slower than it would be if everything was just a normal
array (access does through a virtual function call). For more complex execution
functions, this overhead does not matter, but for small functions (like a simple
addition) it very much does. The virtual function call also prevents the compiler
from doing some optimizations (e.g. loop unrolling and inserting simd instructions).

The solution is to "devirtualize" the virtual arrays for small functions where the
overhead is measurable. Essentially, the function is generated many times with
different array types as input. Then there is a run-time dispatch that calls the
best implementation. We have been doing devirtualization in e.g. math nodes
for a long time already. This patch just generalizes the concept and makes it
easier to control. It also makes it easier to investigate the different trade-offs
when it comes to devirtualization.

Nodes that we've optimized using devirtualization before didn't get a speedup.
However, a couple of nodes are using devirtualization now, that didn't before.
Those got a 2-4x speedup in common cases.
* Map Range
* Random Value
* Switch
* Combine XYZ

Differential Revision: https://developer.blender.org/D14628
2022-04-26 17:12:34 +02:00

682 lines
26 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup fn
*
* This file contains several utilities to create multi-functions with less redundant code.
*/
#include <functional>
#include "BLI_devirtualize_parameters.hh"
#include "FN_multi_function.hh"
namespace blender::fn {
namespace devi = devirtualize_parameters;
/**
* These presets determine what code is generated for a #CustomMF. Different presets make different
* trade-offs between run-time performance and compile-time/binary size.
*/
namespace CustomMF_presets {
/** Method to execute a function in case devirtualization was not possible. */
enum class FallbackMode {
/** Access all elements in virtual arrays through virtual function calls. */
Simple,
/** Process elements in chunks to reduce virtual function call overhead. */
Materialized,
};
/**
* The "naive" method for executing a #CustomMF. Every element is processed separately and input
* values are retrieved from the virtual arrays one by one. This generates the least amount of
* code, but is also the slowest method.
*/
struct Simple {
static constexpr bool use_devirtualization = false;
static constexpr FallbackMode fallback_mode = FallbackMode::Simple;
};
/**
* This is an improvement over the #Simple method. It still generates a relatively small amount of
* code, because the function is only instantiated once. It's generally faster than #Simple,
* because inputs are retrieved from the virtual arrays in chunks, reducing virtual method call
* overhead.
*/
struct Materialized {
static constexpr bool use_devirtualization = false;
static constexpr FallbackMode fallback_mode = FallbackMode::Materialized;
};
/**
* The most efficient preset, but also potentially generates a lot of code (exponential in the
* number of inputs of the function). It generates separate optimized loops for all combinations of
* inputs. This should be used for small functions of which all inputs are likely to be single
* values or spans, and the number of inputs is relatively small.
*/
struct AllSpanOrSingle {
static constexpr bool use_devirtualization = true;
static constexpr FallbackMode fallback_mode = FallbackMode::Materialized;
template<typename Fn, typename... ParamTypes>
void try_devirtualize(devi::Devirtualizer<Fn, ParamTypes...> &devirtualizer)
{
using devi::DeviMode;
devirtualizer.try_execute_devirtualized(
make_value_sequence<DeviMode,
DeviMode::Span | DeviMode::Single | DeviMode::Range,
sizeof...(ParamTypes)>());
}
};
/**
* A slighly weaker variant of #AllSpanOrSingle. It generates less code, because it assumes that
* some of the inputs are most likely single values. It should be used for small functions which
* have too many inputs to make #AllSingleOrSpan a reasonable choice.
*/
template<size_t... Indices> struct SomeSpanOrSingle {
static constexpr bool use_devirtualization = true;
static constexpr FallbackMode fallback_mode = FallbackMode::Materialized;
template<typename Fn, typename... ParamTypes>
void try_devirtualize(devi::Devirtualizer<Fn, ParamTypes...> &devirtualizer)
{
using devi::DeviMode;
devirtualizer.try_execute_devirtualized(
make_two_value_sequence<DeviMode,
DeviMode::Span | DeviMode::Single | DeviMode::Range,
DeviMode::Single,
sizeof...(ParamTypes),
0,
(Indices + 1)...>());
}
};
} // namespace CustomMF_presets
namespace detail {
/**
* Executes #element_fn for all indices in the mask. The passed in #args contain the input as well
* as output parameters. Usually types in #args are devirtualized (e.g. a `Span<int>` is passed in
* instead of a `VArray<int>`).
*/
template<typename MaskT, typename... Args, typename... ParamTags, size_t... I, typename ElementFn>
void execute_array(TypeSequence<ParamTags...> /* param_tags */,
std::index_sequence<I...> /* indices */,
ElementFn element_fn,
MaskT mask,
/* Use restrict to tell the compiler that pointer inputs do not alias each
* other. This is important for some compiler optimizations. */
Args &&__restrict... args)
{
for (const int64_t i : mask) {
element_fn([&]() -> decltype(auto) {
using ParamTag = typename TypeSequence<ParamTags...>::template at_index<I>;
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
/* For inputs, pass the value (or a reference to it) to the function. */
return args[i];
}
else if constexpr (ParamTag::category == MFParamCategory::SingleOutput) {
/* For outputs, pass a pointer to the function. This is done instead of passing a
* reference, because the pointer points to uninitialized memory. */
return &args[i];
}
}()...);
}
}
} // namespace detail
namespace materialize_detail {
enum class ArgMode {
Unknown,
Single,
Span,
Materialized,
};
template<typename ParamTag> struct ArgInfo {
ArgMode mode = ArgMode::Unknown;
Span<typename ParamTag::base_type> internal_span;
};
/**
* Similar to #execute_array but accepts two mask inputs, one for inputs and one for outputs.
*/
template<typename... ParamTags, typename ElementFn, typename... Chunks>
void execute_materialized_impl(TypeSequence<ParamTags...> /* param_tags */,
const ElementFn element_fn,
const IndexRange in_mask,
const IndexMask out_mask,
Chunks &&__restrict... chunks)
{
BLI_assert(in_mask.size() == out_mask.size());
for (const int64_t i : IndexRange(in_mask.size())) {
const int64_t in_i = in_mask[i];
const int64_t out_i = out_mask[i];
element_fn([&]() -> decltype(auto) {
using ParamTag = ParamTags;
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
return chunks[in_i];
}
else if constexpr (ParamTag::category == MFParamCategory::SingleOutput) {
/* For outputs, a pointer is passed, because the memory is uninitialized. */
return &chunks[out_i];
}
}()...);
}
}
/**
* Executes #element_fn for all indices in #mask. However, instead of processing every element
* separately, processing happens in chunks. This allows retrieving from input virtual arrays in
* chunks, which reduces virtual function call overhead.
*/
template<typename... ParamTags, size_t... I, typename ElementFn, typename... Args>
void execute_materialized(TypeSequence<ParamTags...> /* param_tags */,
std::index_sequence<I...> /* indices */,
const ElementFn element_fn,
const IndexMask mask,
Args &&...args)
{
/* In theory, all elements could be processed in one chunk. However, that has the disadvantage
* that large temporary arrays are needed. Using small chunks allows using small arrays, which
* are reused multiple times, which improves cache efficiency. The chunk size also shouldn't be
* too small, because then overhead of the outer loop over chunks becomes significant again. */
static constexpr int64_t MaxChunkSize = 32;
const int64_t mask_size = mask.size();
const int64_t buffer_size = std::min(mask_size, MaxChunkSize);
/* Local buffers that are used to temporarily store values retrieved from virtual arrays. */
std::tuple<TypedBuffer<typename ParamTags::base_type, MaxChunkSize>...> buffers_owner;
/* A span for each parameter which is either empty or points to memory in #buffers_owner. */
std::tuple<MutableSpan<typename ParamTags::base_type>...> buffers;
/* Information about every parameter. */
std::tuple<ArgInfo<ParamTags>...> args_info;
(
/* Setup information for all parameters. */
[&] {
using ParamTag = ParamTags;
using T = typename ParamTag::base_type;
ArgInfo<ParamTags> &arg_info = std::get<I>(args_info);
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
VArray<T> &varray = *args;
if (varray.is_single()) {
/* If an input #VArray is a single value, we have to fill the buffer with that value
* only once. The same unchanged buffer can then be reused in every chunk. */
MutableSpan<T> in_chunk{std::get<I>(buffers_owner).ptr(), buffer_size};
const T in_single = varray.get_internal_single();
uninitialized_fill_n(in_chunk.data(), in_chunk.size(), in_single);
std::get<I>(buffers) = in_chunk;
arg_info.mode = ArgMode::Single;
}
else if (varray.is_span()) {
/* Remember the span so that it doesn't have to be retrieved in every iteration. */
arg_info.internal_span = varray.get_internal_span();
}
}
}(),
...);
/* Outer loop over all chunks. */
for (int64_t chunk_start = 0; chunk_start < mask_size; chunk_start += MaxChunkSize) {
const IndexMask sliced_mask = mask.slice(chunk_start, MaxChunkSize);
const int64_t chunk_size = sliced_mask.size();
const bool sliced_mask_is_range = sliced_mask.is_range();
execute_materialized_impl(
TypeSequence<ParamTags...>(),
element_fn,
/* Inputs are "compressed" into contiguous arrays without gaps. */
IndexRange(chunk_size),
/* Outputs are written directly into the correct place in the output arrays. */
sliced_mask,
/* Prepare every parameter for this chunk. */
[&] {
using ParamTag = ParamTags;
using T = typename ParamTag::base_type;
ArgInfo<ParamTags> &arg_info = std::get<I>(args_info);
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
if (arg_info.mode == ArgMode::Single) {
/* The single value has been filled into a buffer already reused for every chunk. */
return Span<T>(std::get<I>(buffers));
}
else {
const VArray<T> &varray = *args;
if (sliced_mask_is_range) {
if (!arg_info.internal_span.is_empty()) {
/* In this case we can just use an existing span instead of "compressing" it into
* a new temporary buffer. */
const IndexRange sliced_mask_range = sliced_mask.as_range();
arg_info.mode = ArgMode::Span;
return arg_info.internal_span.slice(sliced_mask_range);
}
}
/* As a fallback, do a virtual function call to retrieve all elements in the current
* chunk. The elements are stored in a temporary buffer reused for every chunk. */
MutableSpan<T> in_chunk{std::get<I>(buffers_owner).ptr(), chunk_size};
varray.materialize_compressed_to_uninitialized(sliced_mask, in_chunk);
/* Remember that this parameter has been materialized, so that the values are
* destructed properly when the chunk is done. */
arg_info.mode = ArgMode::Materialized;
return Span<T>(in_chunk);
}
}
else if constexpr (ParamTag::category == MFParamCategory::SingleOutput) {
/* For outputs, just pass a pointer. This is important so that `__restrict` works. */
return args->data();
}
}()...);
(
/* Destruct values that have been materialized before. */
[&] {
using ParamTag = ParamTags;
using T = typename ParamTag::base_type;
ArgInfo<ParamTags> &arg_info = std::get<I>(args_info);
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
if (arg_info.mode == ArgMode::Materialized) {
T *in_chunk = std::get<I>(buffers_owner).ptr();
destruct_n(in_chunk, chunk_size);
}
}
}(),
...);
}
(
/* Destruct buffers for single value inputs. */
[&] {
using ParamTag = ParamTags;
using T = typename ParamTag::base_type;
ArgInfo<ParamTags> &arg_info = std::get<I>(args_info);
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
if (arg_info.mode == ArgMode::Single) {
MutableSpan<T> in_chunk = std::get<I>(buffers);
destruct_n(in_chunk.data(), in_chunk.size());
}
}
}(),
...);
}
} // namespace materialize_detail
template<typename... ParamTags> class CustomMF : public MultiFunction {
private:
std::function<void(IndexMask mask, MFParams params)> fn_;
MFSignature signature_;
using TagsSequence = TypeSequence<ParamTags...>;
public:
template<typename ElementFn, typename ExecPreset = CustomMF_presets::Materialized>
CustomMF(const char *name,
ElementFn element_fn,
ExecPreset exec_preset = CustomMF_presets::Materialized())
{
MFSignatureBuilder signature{name};
add_signature_parameters(signature, std::make_index_sequence<TagsSequence::size()>());
signature_ = signature.build();
this->set_signature(&signature_);
fn_ = [element_fn, exec_preset](IndexMask mask, MFParams params) {
execute(
element_fn, exec_preset, mask, params, std::make_index_sequence<TagsSequence::size()>());
};
}
template<typename ElementFn, typename ExecPreset, size_t... I>
static void execute(ElementFn element_fn,
ExecPreset exec_preset,
IndexMask mask,
MFParams params,
std::index_sequence<I...> /* indices */)
{
std::tuple<typename ParamTags::array_type...> retrieved_params;
(
/* Get all parameters from #params and store them in #retrieved_params. */
[&]() {
using ParamTag = typename TagsSequence::template at_index<I>;
using T = typename ParamTag::base_type;
if constexpr (ParamTag::category == MFParamCategory::SingleInput) {
std::get<I>(retrieved_params) = params.readonly_single_input<T>(I);
}
if constexpr (ParamTag::category == MFParamCategory::SingleOutput) {
std::get<I>(retrieved_params) = params.uninitialized_single_output<T>(I);
}
}(),
...);
auto array_executor = [&](auto &&...args) {
detail::execute_array(TagsSequence(),
std::make_index_sequence<TagsSequence::size()>(),
element_fn,
std::forward<decltype(args)>(args)...);
};
/* First try devirtualized execution, since this is the most efficient. */
bool executed_devirtualized = false;
if constexpr (ExecPreset::use_devirtualization) {
devi::Devirtualizer<decltype(array_executor), IndexMask, typename ParamTags::array_type...>
devirtualizer{
array_executor, &mask, [&] { return &std::get<I>(retrieved_params); }()...};
exec_preset.try_devirtualize(devirtualizer);
executed_devirtualized = devirtualizer.executed();
}
/* If devirtualized execution was disabled or not possible, use a fallback method which is
* slower but always works. */
if (!executed_devirtualized) {
if constexpr (ExecPreset::fallback_mode == CustomMF_presets::FallbackMode::Materialized) {
materialize_detail::execute_materialized(
TypeSequence<ParamTags...>(), std::index_sequence<I...>(), element_fn, mask, [&] {
return &std::get<I>(retrieved_params);
}()...);
}
else {
detail::execute_array(TagsSequence(),
std::make_index_sequence<TagsSequence::size()>(),
element_fn,
mask,
std::get<I>(retrieved_params)...);
}
}
}
template<size_t... I>
static void add_signature_parameters(MFSignatureBuilder &signature,
std::index_sequence<I...> /* indices */)
{
(
/* Loop over all parameter types and add an entry for each in the signature. */
[&] {
using ParamTag = typename TagsSequence::template at_index<I>;
signature.add(ParamTag(), "");
}(),
...);
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
fn_(mask, params);
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single output (SO) of type Out1
*
* This example creates a function that adds 10 to the incoming values:
* `CustomMF_SI_SO<int, int> fn("add 10", [](int value) { return value + 10; });`
*/
template<typename In1, typename Out1>
class CustomMF_SI_SO : public CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleOutput, Out1>> {
public:
template<typename ElementFn, typename ExecPreset = CustomMF_presets::Materialized>
CustomMF_SI_SO(const char *name,
ElementFn element_fn,
ExecPreset exec_preset = CustomMF_presets::Materialized())
: CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleOutput, Out1>>(
name,
[element_fn](const In1 &in1, Out1 *out1) { new (out1) Out1(element_fn(in1)); },
exec_preset)
{
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename Out1>
class CustomMF_SI_SI_SO : public CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleOutput, Out1>> {
public:
template<typename ElementFn, typename ExecPreset = CustomMF_presets::Materialized>
CustomMF_SI_SI_SO(const char *name,
ElementFn element_fn,
ExecPreset exec_preset = CustomMF_presets::Materialized())
: CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleOutput, Out1>>(
name,
[element_fn](const In1 &in1, const In2 &in2, Out1 *out1) {
new (out1) Out1(element_fn(in1, in2));
},
exec_preset)
{
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single input (SI) of type In3
* 4. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename In3, typename Out1>
class CustomMF_SI_SI_SI_SO : public CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleInput, In3>,
MFParamTag<MFParamCategory::SingleOutput, Out1>> {
public:
template<typename ElementFn, typename ExecPreset = CustomMF_presets::Materialized>
CustomMF_SI_SI_SI_SO(const char *name,
ElementFn element_fn,
ExecPreset exec_preset = CustomMF_presets::Materialized())
: CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleInput, In3>,
MFParamTag<MFParamCategory::SingleOutput, Out1>>(
name,
[element_fn](const In1 &in1, const In2 &in2, const In3 &in3, Out1 *out1) {
new (out1) Out1(element_fn(in1, in2, in3));
},
exec_preset)
{
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single input (SI) of type In3
* 4. single input (SI) of type In4
* 5. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename In3, typename In4, typename Out1>
class CustomMF_SI_SI_SI_SI_SO : public CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleInput, In3>,
MFParamTag<MFParamCategory::SingleInput, In4>,
MFParamTag<MFParamCategory::SingleOutput, Out1>> {
public:
template<typename ElementFn, typename ExecPreset = CustomMF_presets::Materialized>
CustomMF_SI_SI_SI_SI_SO(const char *name,
ElementFn element_fn,
ExecPreset exec_preset = CustomMF_presets::Materialized())
: CustomMF<MFParamTag<MFParamCategory::SingleInput, In1>,
MFParamTag<MFParamCategory::SingleInput, In2>,
MFParamTag<MFParamCategory::SingleInput, In3>,
MFParamTag<MFParamCategory::SingleInput, In4>,
MFParamTag<MFParamCategory::SingleOutput, Out1>>(
name,
[element_fn](
const In1 &in1, const In2 &in2, const In3 &in3, const In4 &in4, Out1 *out1) {
new (out1) Out1(element_fn(in1, in2, in3, in4));
},
exec_preset)
{
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single mutable (SM) of type Mut1
*/
template<typename Mut1> class CustomMF_SM : public MultiFunction {
private:
using FunctionT = std::function<void(IndexMask, MutableSpan<Mut1>)>;
FunctionT function_;
MFSignature signature_;
public:
CustomMF_SM(const char *name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature{name};
signature.single_mutable<Mut1>("Mut1");
signature_ = signature.build();
this->set_signature(&signature_);
}
template<typename ElementFuncT>
CustomMF_SM(const char *name, ElementFuncT element_fn)
: CustomMF_SM(name, CustomMF_SM::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask, MutableSpan<Mut1> mut1) {
mask.to_best_mask_type([&](const auto &mask) {
for (const int64_t i : mask) {
element_fn(mut1[i]);
}
});
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
MutableSpan<Mut1> mut1 = params.single_mutable<Mut1>(0);
function_(mask, mut1);
}
};
/**
* A multi-function that outputs the same value every time. The value is not owned by an instance
* of this function. If #make_value_copy is false, the caller is responsible for destructing and
* freeing the value.
*/
class CustomMF_GenericConstant : public MultiFunction {
private:
const CPPType &type_;
const void *value_;
MFSignature signature_;
bool owns_value_;
template<typename T> friend class CustomMF_Constant;
public:
CustomMF_GenericConstant(const CPPType &type, const void *value, bool make_value_copy);
~CustomMF_GenericConstant();
void call(IndexMask mask, MFParams params, MFContext context) const override;
uint64_t hash() const override;
bool equals(const MultiFunction &other) const override;
};
/**
* A multi-function that outputs the same array every time. The array is not owned by in instance
* of this function. The caller is responsible for destructing and freeing the values.
*/
class CustomMF_GenericConstantArray : public MultiFunction {
private:
GSpan array_;
MFSignature signature_;
public:
CustomMF_GenericConstantArray(GSpan array);
void call(IndexMask mask, MFParams params, MFContext context) const override;
};
/**
* Generates a multi-function that outputs a constant value.
*/
template<typename T> class CustomMF_Constant : public MultiFunction {
private:
T value_;
MFSignature signature_;
public:
template<typename U> CustomMF_Constant(U &&value) : value_(std::forward<U>(value))
{
MFSignatureBuilder signature{"Constant"};
signature.single_output<T>("Value");
signature_ = signature.build();
this->set_signature(&signature_);
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
MutableSpan<T> output = params.uninitialized_single_output<T>(0);
mask.to_best_mask_type([&](const auto &mask) {
for (const int64_t i : mask) {
new (&output[i]) T(value_);
}
});
}
uint64_t hash() const override
{
return get_default_hash(value_);
}
bool equals(const MultiFunction &other) const override
{
const CustomMF_Constant *other1 = dynamic_cast<const CustomMF_Constant *>(&other);
if (other1 != nullptr) {
return value_ == other1->value_;
}
const CustomMF_GenericConstant *other2 = dynamic_cast<const CustomMF_GenericConstant *>(
&other);
if (other2 != nullptr) {
const CPPType &type = CPPType::get<T>();
if (type == other2->type_) {
return type.is_equal_or_false(static_cast<const void *>(&value_), other2->value_);
}
}
return false;
}
};
class CustomMF_DefaultOutput : public MultiFunction {
private:
int output_amount_;
MFSignature signature_;
public:
CustomMF_DefaultOutput(Span<MFDataType> input_types, Span<MFDataType> output_types);
void call(IndexMask mask, MFParams params, MFContext context) const override;
};
class CustomMF_GenericCopy : public MultiFunction {
private:
MFSignature signature_;
public:
CustomMF_GenericCopy(MFDataType data_type);
void call(IndexMask mask, MFParams params, MFContext context) const override;
};
} // namespace blender::fn