Goals: * Better high level control over where devirtualization occurs. There is always a trade-off between performance and compile-time/binary-size. * Simplify using array devirtualization. * Better performance for cases where devirtualization wasn't used before. Many geometry nodes accept fields as inputs. Internally, that means that the execution functions have to accept so called "virtual arrays" as inputs. Those can be e.g. actual arrays, just single values, or lazily computed arrays. Due to these different possible virtual arrays implementations, access to individual elements is slower than it would be if everything was just a normal array (access does through a virtual function call). For more complex execution functions, this overhead does not matter, but for small functions (like a simple addition) it very much does. The virtual function call also prevents the compiler from doing some optimizations (e.g. loop unrolling and inserting simd instructions). The solution is to "devirtualize" the virtual arrays for small functions where the overhead is measurable. Essentially, the function is generated many times with different array types as input. Then there is a run-time dispatch that calls the best implementation. We have been doing devirtualization in e.g. math nodes for a long time already. This patch just generalizes the concept and makes it easier to control. It also makes it easier to investigate the different trade-offs when it comes to devirtualization. Nodes that we've optimized using devirtualization before didn't get a speedup. However, a couple of nodes are using devirtualization now, that didn't before. Those got a 2-4x speedup in common cases. * Map Range * Random Value * Switch * Combine XYZ Differential Revision: https://developer.blender.org/D14628
1247 lines
41 KiB
C++
1247 lines
41 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "FN_multi_function_procedure_executor.hh"
|
|
|
|
#include "BLI_stack.hh"
|
|
|
|
namespace blender::fn {
|
|
|
|
MFProcedureExecutor::MFProcedureExecutor(const MFProcedure &procedure) : procedure_(procedure)
|
|
{
|
|
MFSignatureBuilder signature("Procedure Executor");
|
|
|
|
for (const ConstMFParameter ¶m : procedure.params()) {
|
|
signature.add("Parameter", MFParamType(param.type, param.variable->data_type()));
|
|
}
|
|
|
|
signature_ = signature.build();
|
|
this->set_signature(&signature_);
|
|
}
|
|
|
|
using IndicesSplitVectors = std::array<Vector<int64_t>, 2>;
|
|
|
|
namespace {
|
|
enum class ValueType {
|
|
GVArray = 0,
|
|
Span = 1,
|
|
GVVectorArray = 2,
|
|
GVectorArray = 3,
|
|
OneSingle = 4,
|
|
OneVector = 5,
|
|
};
|
|
constexpr int tot_variable_value_types = 6;
|
|
} // namespace
|
|
|
|
/**
|
|
* During evaluation, a variable may be stored in various different forms, depending on what
|
|
* instructions do with the variables.
|
|
*/
|
|
struct VariableValue {
|
|
ValueType type;
|
|
|
|
VariableValue(ValueType type) : type(type)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* This variable is the unmodified virtual array from the caller. */
|
|
struct VariableValue_GVArray : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::GVArray;
|
|
const GVArray &data;
|
|
|
|
VariableValue_GVArray(const GVArray &data) : VariableValue(static_type), data(data)
|
|
{
|
|
BLI_assert(data);
|
|
}
|
|
};
|
|
|
|
/* This variable has a different value for every index. Some values may be uninitialized. The span
|
|
* may be owned by the caller. */
|
|
struct VariableValue_Span : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::Span;
|
|
void *data;
|
|
bool owned;
|
|
|
|
VariableValue_Span(void *data, bool owned) : VariableValue(static_type), data(data), owned(owned)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* This variable is the unmodified virtual vector array from the caller. */
|
|
struct VariableValue_GVVectorArray : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::GVVectorArray;
|
|
const GVVectorArray &data;
|
|
|
|
VariableValue_GVVectorArray(const GVVectorArray &data) : VariableValue(static_type), data(data)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* This variable has a different vector for every index. */
|
|
struct VariableValue_GVectorArray : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::GVectorArray;
|
|
GVectorArray &data;
|
|
bool owned;
|
|
|
|
VariableValue_GVectorArray(GVectorArray &data, bool owned)
|
|
: VariableValue(static_type), data(data), owned(owned)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* This variable has the same value for every index. */
|
|
struct VariableValue_OneSingle : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::OneSingle;
|
|
void *data;
|
|
bool is_initialized = false;
|
|
|
|
VariableValue_OneSingle(void *data) : VariableValue(static_type), data(data)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* This variable has the same vector for every index. */
|
|
struct VariableValue_OneVector : public VariableValue {
|
|
static inline constexpr ValueType static_type = ValueType::OneVector;
|
|
GVectorArray &data;
|
|
|
|
VariableValue_OneVector(GVectorArray &data) : VariableValue(static_type), data(data)
|
|
{
|
|
}
|
|
};
|
|
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_GVArray>);
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_Span>);
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_GVVectorArray>);
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_GVectorArray>);
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_OneSingle>);
|
|
static_assert(std::is_trivially_destructible_v<VariableValue_OneVector>);
|
|
|
|
class VariableState;
|
|
|
|
/**
|
|
* The #ValueAllocator is responsible for providing memory for variables and their values. It also
|
|
* manages the reuse of buffers to improve performance.
|
|
*/
|
|
class ValueAllocator : NonCopyable, NonMovable {
|
|
private:
|
|
/**
|
|
* Allocate with 64 byte alignment for better reusability of buffers and improved cache
|
|
* performance.
|
|
*/
|
|
static constexpr inline int min_alignment = 64;
|
|
|
|
/** All buffers in the free-lists below have been allocated with this allocator. */
|
|
LinearAllocator<> &linear_allocator_;
|
|
|
|
/**
|
|
* Use stacks so that the most recently used buffers are reused first. This improves cache
|
|
* efficiency.
|
|
*/
|
|
std::array<Stack<VariableValue *>, tot_variable_value_types> variable_value_free_lists_;
|
|
|
|
/**
|
|
* The integer key is the size of one element (e.g. 4 for an integer buffer). All buffers are
|
|
* aligned to #min_alignment bytes.
|
|
*/
|
|
Map<int, Stack<void *>> span_buffers_free_list_;
|
|
|
|
/** Cache buffers for single values of different types. */
|
|
Map<const CPPType *, Stack<void *>> single_value_free_lists_;
|
|
|
|
/** The cached memory buffers can hold #VariableState values. */
|
|
Stack<void *> variable_state_free_list_;
|
|
|
|
public:
|
|
ValueAllocator(LinearAllocator<> &linear_allocator) : linear_allocator_(linear_allocator)
|
|
{
|
|
}
|
|
|
|
template<typename... Args> VariableState *obtain_variable_state(Args &&...args);
|
|
|
|
void release_variable_state(VariableState *state);
|
|
|
|
VariableValue_GVArray *obtain_GVArray(const GVArray &varray)
|
|
{
|
|
return this->obtain<VariableValue_GVArray>(varray);
|
|
}
|
|
|
|
VariableValue_GVVectorArray *obtain_GVVectorArray(const GVVectorArray &varray)
|
|
{
|
|
return this->obtain<VariableValue_GVVectorArray>(varray);
|
|
}
|
|
|
|
VariableValue_Span *obtain_Span_not_owned(void *buffer)
|
|
{
|
|
return this->obtain<VariableValue_Span>(buffer, false);
|
|
}
|
|
|
|
VariableValue_Span *obtain_Span(const CPPType &type, int size)
|
|
{
|
|
void *buffer = nullptr;
|
|
|
|
const int64_t element_size = type.size();
|
|
const int64_t alignment = type.alignment();
|
|
|
|
if (alignment > min_alignment) {
|
|
/* In this rare case we fallback to not reusing existing buffers. */
|
|
buffer = linear_allocator_.allocate(element_size * size, alignment);
|
|
}
|
|
else {
|
|
Stack<void *> *stack = span_buffers_free_list_.lookup_ptr(element_size);
|
|
if (stack == nullptr || stack->is_empty()) {
|
|
buffer = linear_allocator_.allocate(element_size * size, min_alignment);
|
|
}
|
|
else {
|
|
/* Reuse existing buffer. */
|
|
buffer = stack->pop();
|
|
}
|
|
}
|
|
|
|
return this->obtain<VariableValue_Span>(buffer, true);
|
|
}
|
|
|
|
VariableValue_GVectorArray *obtain_GVectorArray_not_owned(GVectorArray &data)
|
|
{
|
|
return this->obtain<VariableValue_GVectorArray>(data, false);
|
|
}
|
|
|
|
VariableValue_GVectorArray *obtain_GVectorArray(const CPPType &type, int size)
|
|
{
|
|
GVectorArray *vector_array = new GVectorArray(type, size);
|
|
return this->obtain<VariableValue_GVectorArray>(*vector_array, true);
|
|
}
|
|
|
|
VariableValue_OneSingle *obtain_OneSingle(const CPPType &type)
|
|
{
|
|
Stack<void *> &stack = single_value_free_lists_.lookup_or_add_default(&type);
|
|
void *buffer;
|
|
if (stack.is_empty()) {
|
|
buffer = linear_allocator_.allocate(type.size(), type.alignment());
|
|
}
|
|
else {
|
|
buffer = stack.pop();
|
|
}
|
|
return this->obtain<VariableValue_OneSingle>(buffer);
|
|
}
|
|
|
|
VariableValue_OneVector *obtain_OneVector(const CPPType &type)
|
|
{
|
|
GVectorArray *vector_array = new GVectorArray(type, 1);
|
|
return this->obtain<VariableValue_OneVector>(*vector_array);
|
|
}
|
|
|
|
void release_value(VariableValue *value, const MFDataType &data_type)
|
|
{
|
|
switch (value->type) {
|
|
case ValueType::GVArray: {
|
|
break;
|
|
}
|
|
case ValueType::Span: {
|
|
auto *value_typed = static_cast<VariableValue_Span *>(value);
|
|
if (value_typed->owned) {
|
|
const CPPType &type = data_type.single_type();
|
|
/* Assumes all values in the buffer are uninitialized already. */
|
|
Stack<void *> &buffers = span_buffers_free_list_.lookup_or_add_default(type.size());
|
|
buffers.push(value_typed->data);
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::GVVectorArray: {
|
|
break;
|
|
}
|
|
case ValueType::GVectorArray: {
|
|
auto *value_typed = static_cast<VariableValue_GVectorArray *>(value);
|
|
if (value_typed->owned) {
|
|
delete &value_typed->data;
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::OneSingle: {
|
|
auto *value_typed = static_cast<VariableValue_OneSingle *>(value);
|
|
const CPPType &type = data_type.single_type();
|
|
if (value_typed->is_initialized) {
|
|
type.destruct(value_typed->data);
|
|
}
|
|
single_value_free_lists_.lookup_or_add_default(&type).push(value_typed->data);
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
auto *value_typed = static_cast<VariableValue_OneVector *>(value);
|
|
delete &value_typed->data;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Stack<VariableValue *> &stack = variable_value_free_lists_[(int)value->type];
|
|
stack.push(value);
|
|
}
|
|
|
|
private:
|
|
template<typename T, typename... Args> T *obtain(Args &&...args)
|
|
{
|
|
static_assert(std::is_base_of_v<VariableValue, T>);
|
|
Stack<VariableValue *> &stack = variable_value_free_lists_[(int)T::static_type];
|
|
if (stack.is_empty()) {
|
|
void *buffer = linear_allocator_.allocate(sizeof(T), alignof(T));
|
|
return new (buffer) T(std::forward<Args>(args)...);
|
|
}
|
|
return new (stack.pop()) T(std::forward<Args>(args)...);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This class keeps track of a single variable during evaluation.
|
|
*/
|
|
class VariableState : NonCopyable, NonMovable {
|
|
private:
|
|
/** The current value of the variable. The storage format may change over time. */
|
|
VariableValue *value_;
|
|
/** Number of indices that are currently initialized in this variable. */
|
|
int tot_initialized_;
|
|
/* This a non-owning pointer to either span buffer or #GVectorArray or null. */
|
|
void *caller_provided_storage_ = nullptr;
|
|
|
|
public:
|
|
VariableState(VariableValue &value, int tot_initialized, void *caller_provided_storage = nullptr)
|
|
: value_(&value),
|
|
tot_initialized_(tot_initialized),
|
|
caller_provided_storage_(caller_provided_storage)
|
|
{
|
|
}
|
|
|
|
void destruct_self(ValueAllocator &value_allocator, const MFDataType &data_type)
|
|
{
|
|
value_allocator.release_value(value_, data_type);
|
|
value_allocator.release_variable_state(this);
|
|
}
|
|
|
|
/* True if this contains only one value for all indices, i.e. the value for all indices is
|
|
* the same. */
|
|
bool is_one() const
|
|
{
|
|
switch (value_->type) {
|
|
case ValueType::GVArray:
|
|
return this->value_as<VariableValue_GVArray>()->data.is_single();
|
|
case ValueType::Span:
|
|
return tot_initialized_ == 0;
|
|
case ValueType::GVVectorArray:
|
|
return this->value_as<VariableValue_GVVectorArray>()->data.is_single_vector();
|
|
case ValueType::GVectorArray:
|
|
return tot_initialized_ == 0;
|
|
case ValueType::OneSingle:
|
|
return true;
|
|
case ValueType::OneVector:
|
|
return true;
|
|
}
|
|
BLI_assert_unreachable();
|
|
return false;
|
|
}
|
|
|
|
bool is_fully_initialized(const IndexMask full_mask)
|
|
{
|
|
return tot_initialized_ == full_mask.size();
|
|
}
|
|
|
|
bool is_fully_uninitialized(const IndexMask full_mask)
|
|
{
|
|
UNUSED_VARS(full_mask);
|
|
return tot_initialized_ == 0;
|
|
}
|
|
|
|
void add_as_input(MFParamsBuilder ¶ms, IndexMask mask, const MFDataType &data_type) const
|
|
{
|
|
/* Sanity check to make sure that enough values are initialized. */
|
|
BLI_assert(mask.size() <= tot_initialized_);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::GVArray: {
|
|
params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::Span: {
|
|
const void *data = this->value_as<VariableValue_Span>()->data;
|
|
const GSpan span{data_type.single_type(), data, mask.min_array_size()};
|
|
params.add_readonly_single_input(span);
|
|
break;
|
|
}
|
|
case ValueType::GVVectorArray: {
|
|
params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::GVectorArray: {
|
|
params.add_readonly_vector_input(this->value_as<VariableValue_GVectorArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::OneSingle: {
|
|
const auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(value_typed->is_initialized);
|
|
const GPointer gpointer{data_type.single_type(), value_typed->data};
|
|
params.add_readonly_single_input(gpointer);
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data[0]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ensure_is_mutable(IndexMask full_mask,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
if (ELEM(value_->type, ValueType::Span, ValueType::GVectorArray)) {
|
|
return;
|
|
}
|
|
|
|
const int array_size = full_mask.min_array_size();
|
|
|
|
switch (data_type.category()) {
|
|
case MFDataType::Single: {
|
|
const CPPType &type = data_type.single_type();
|
|
VariableValue_Span *new_value = nullptr;
|
|
if (caller_provided_storage_ == nullptr) {
|
|
new_value = value_allocator.obtain_Span(type, array_size);
|
|
}
|
|
else {
|
|
/* Reuse the storage provided caller when possible. */
|
|
new_value = value_allocator.obtain_Span_not_owned(caller_provided_storage_);
|
|
}
|
|
if (value_->type == ValueType::GVArray) {
|
|
/* Fill new buffer with data from virtual array. */
|
|
this->value_as<VariableValue_GVArray>()->data.materialize_to_uninitialized(
|
|
full_mask, new_value->data);
|
|
}
|
|
else if (value_->type == ValueType::OneSingle) {
|
|
auto *old_value_typed_ = this->value_as<VariableValue_OneSingle>();
|
|
if (old_value_typed_->is_initialized) {
|
|
/* Fill the buffer with a single value. */
|
|
type.fill_construct_indices(old_value_typed_->data, new_value->data, full_mask);
|
|
}
|
|
}
|
|
else {
|
|
BLI_assert_unreachable();
|
|
}
|
|
value_allocator.release_value(value_, data_type);
|
|
value_ = new_value;
|
|
break;
|
|
}
|
|
case MFDataType::Vector: {
|
|
const CPPType &type = data_type.vector_base_type();
|
|
VariableValue_GVectorArray *new_value = nullptr;
|
|
if (caller_provided_storage_ == nullptr) {
|
|
new_value = value_allocator.obtain_GVectorArray(type, array_size);
|
|
}
|
|
else {
|
|
new_value = value_allocator.obtain_GVectorArray_not_owned(
|
|
*(GVectorArray *)caller_provided_storage_);
|
|
}
|
|
if (value_->type == ValueType::GVVectorArray) {
|
|
/* Fill new vector array with data from virtual vector array. */
|
|
new_value->data.extend(full_mask, this->value_as<VariableValue_GVVectorArray>()->data);
|
|
}
|
|
else if (value_->type == ValueType::OneVector) {
|
|
/* Fill all indices with the same value. */
|
|
const GSpan vector = this->value_as<VariableValue_OneVector>()->data[0];
|
|
new_value->data.extend(full_mask, GVVectorArray_For_SingleGSpan{vector, array_size});
|
|
}
|
|
else {
|
|
BLI_assert_unreachable();
|
|
}
|
|
value_allocator.release_value(value_, data_type);
|
|
value_ = new_value;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_mutable(MFParamsBuilder ¶ms,
|
|
IndexMask mask,
|
|
IndexMask full_mask,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
/* Sanity check to make sure that enough values are initialized. */
|
|
BLI_assert(mask.size() <= tot_initialized_);
|
|
|
|
this->ensure_is_mutable(full_mask, data_type, value_allocator);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::Span: {
|
|
void *data = this->value_as<VariableValue_Span>()->data;
|
|
const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
|
|
params.add_single_mutable(span);
|
|
break;
|
|
}
|
|
case ValueType::GVectorArray: {
|
|
params.add_vector_mutable(this->value_as<VariableValue_GVectorArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::GVArray:
|
|
case ValueType::GVVectorArray:
|
|
case ValueType::OneSingle:
|
|
case ValueType::OneVector: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_output(MFParamsBuilder ¶ms,
|
|
IndexMask mask,
|
|
IndexMask full_mask,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
/* Sanity check to make sure that enough values are not initialized. */
|
|
BLI_assert(mask.size() <= full_mask.size() - tot_initialized_);
|
|
this->ensure_is_mutable(full_mask, data_type, value_allocator);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::Span: {
|
|
void *data = this->value_as<VariableValue_Span>()->data;
|
|
const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
|
|
params.add_uninitialized_single_output(span);
|
|
break;
|
|
}
|
|
case ValueType::GVectorArray: {
|
|
params.add_vector_output(this->value_as<VariableValue_GVectorArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::GVArray:
|
|
case ValueType::GVVectorArray:
|
|
case ValueType::OneSingle:
|
|
case ValueType::OneVector: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
|
|
tot_initialized_ += mask.size();
|
|
}
|
|
|
|
void add_as_input__one(MFParamsBuilder ¶ms, const MFDataType &data_type) const
|
|
{
|
|
BLI_assert(this->is_one());
|
|
|
|
switch (value_->type) {
|
|
case ValueType::GVArray: {
|
|
params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::GVVectorArray: {
|
|
params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
|
|
break;
|
|
}
|
|
case ValueType::OneSingle: {
|
|
const auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(value_typed->is_initialized);
|
|
GPointer ptr{data_type.single_type(), value_typed->data};
|
|
params.add_readonly_single_input(ptr);
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data);
|
|
break;
|
|
}
|
|
case ValueType::Span:
|
|
case ValueType::GVectorArray: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ensure_is_mutable__one(const MFDataType &data_type, ValueAllocator &value_allocator)
|
|
{
|
|
BLI_assert(this->is_one());
|
|
if (ELEM(value_->type, ValueType::OneSingle, ValueType::OneVector)) {
|
|
return;
|
|
}
|
|
|
|
switch (data_type.category()) {
|
|
case MFDataType::Single: {
|
|
const CPPType &type = data_type.single_type();
|
|
VariableValue_OneSingle *new_value = value_allocator.obtain_OneSingle(type);
|
|
if (value_->type == ValueType::GVArray) {
|
|
this->value_as<VariableValue_GVArray>()->data.get_internal_single_to_uninitialized(
|
|
new_value->data);
|
|
new_value->is_initialized = true;
|
|
}
|
|
else if (value_->type == ValueType::Span) {
|
|
BLI_assert(tot_initialized_ == 0);
|
|
/* Nothing to do, the single value is uninitialized already. */
|
|
}
|
|
else {
|
|
BLI_assert_unreachable();
|
|
}
|
|
value_allocator.release_value(value_, data_type);
|
|
value_ = new_value;
|
|
break;
|
|
}
|
|
case MFDataType::Vector: {
|
|
const CPPType &type = data_type.vector_base_type();
|
|
VariableValue_OneVector *new_value = value_allocator.obtain_OneVector(type);
|
|
if (value_->type == ValueType::GVVectorArray) {
|
|
const GVVectorArray &old_vector_array =
|
|
this->value_as<VariableValue_GVVectorArray>()->data;
|
|
new_value->data.extend(IndexRange(1), old_vector_array);
|
|
}
|
|
else if (value_->type == ValueType::GVectorArray) {
|
|
BLI_assert(tot_initialized_ == 0);
|
|
/* Nothing to do. */
|
|
}
|
|
else {
|
|
BLI_assert_unreachable();
|
|
}
|
|
value_allocator.release_value(value_, data_type);
|
|
value_ = new_value;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_mutable__one(MFParamsBuilder ¶ms,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
BLI_assert(this->is_one());
|
|
this->ensure_is_mutable__one(data_type, value_allocator);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::OneSingle: {
|
|
auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(value_typed->is_initialized);
|
|
params.add_single_mutable(GMutableSpan{data_type.single_type(), value_typed->data, 1});
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
params.add_vector_mutable(this->value_as<VariableValue_OneVector>()->data);
|
|
break;
|
|
}
|
|
case ValueType::GVArray:
|
|
case ValueType::Span:
|
|
case ValueType::GVVectorArray:
|
|
case ValueType::GVectorArray: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_output__one(MFParamsBuilder ¶ms,
|
|
IndexMask mask,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
BLI_assert(this->is_one());
|
|
this->ensure_is_mutable__one(data_type, value_allocator);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::OneSingle: {
|
|
auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(!value_typed->is_initialized);
|
|
params.add_uninitialized_single_output(
|
|
GMutableSpan{data_type.single_type(), value_typed->data, 1});
|
|
/* It becomes initialized when the multi-function is called. */
|
|
value_typed->is_initialized = true;
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
auto *value_typed = this->value_as<VariableValue_OneVector>();
|
|
BLI_assert(value_typed->data[0].is_empty());
|
|
params.add_vector_output(value_typed->data);
|
|
break;
|
|
}
|
|
case ValueType::GVArray:
|
|
case ValueType::Span:
|
|
case ValueType::GVVectorArray:
|
|
case ValueType::GVectorArray: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
|
|
tot_initialized_ += mask.size();
|
|
}
|
|
|
|
/**
|
|
* Destruct the masked elements in this variable.
|
|
* \return True when all elements of this variable are initialized and the variable state can be
|
|
* released.
|
|
*/
|
|
bool destruct(IndexMask mask,
|
|
IndexMask full_mask,
|
|
const MFDataType &data_type,
|
|
ValueAllocator &value_allocator)
|
|
{
|
|
int new_tot_initialized = tot_initialized_ - mask.size();
|
|
|
|
/* Sanity check to make sure that enough indices can be destructed. */
|
|
BLI_assert(new_tot_initialized >= 0);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::GVArray: {
|
|
if (mask.size() < full_mask.size()) {
|
|
/* Not all elements are destructed. Since we can't work on the original array, we have to
|
|
* create a copy first. */
|
|
this->ensure_is_mutable(full_mask, data_type, value_allocator);
|
|
BLI_assert(value_->type == ValueType::Span);
|
|
const CPPType &type = data_type.single_type();
|
|
type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::Span: {
|
|
const CPPType &type = data_type.single_type();
|
|
type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
|
|
break;
|
|
}
|
|
case ValueType::GVVectorArray: {
|
|
if (mask.size() < full_mask.size()) {
|
|
/* Not all elements are cleared. Since we can't work on the original vector array, we
|
|
* have to create a copy first. A possible future optimization is to create the partial
|
|
* copy directly. */
|
|
this->ensure_is_mutable(full_mask, data_type, value_allocator);
|
|
BLI_assert(value_->type == ValueType::GVectorArray);
|
|
this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::GVectorArray: {
|
|
this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
|
|
break;
|
|
}
|
|
case ValueType::OneSingle: {
|
|
auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(value_typed->is_initialized);
|
|
UNUSED_VARS_NDEBUG(value_typed);
|
|
if (mask.size() == tot_initialized_) {
|
|
const CPPType &type = data_type.single_type();
|
|
type.destruct(value_typed->data);
|
|
value_typed->is_initialized = false;
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::OneVector: {
|
|
auto *value_typed = this->value_as<VariableValue_OneVector>();
|
|
if (mask.size() == tot_initialized_) {
|
|
value_typed->data.clear(IndexRange(1));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
tot_initialized_ = new_tot_initialized;
|
|
|
|
const bool should_self_destruct = new_tot_initialized == 0 &&
|
|
caller_provided_storage_ == nullptr;
|
|
return should_self_destruct;
|
|
}
|
|
|
|
void indices_split(IndexMask mask, IndicesSplitVectors &r_indices)
|
|
{
|
|
BLI_assert(mask.size() <= tot_initialized_);
|
|
|
|
switch (value_->type) {
|
|
case ValueType::GVArray: {
|
|
const VArray<bool> varray = this->value_as<VariableValue_GVArray>()->data.typed<bool>();
|
|
for (const int i : mask) {
|
|
r_indices[varray[i]].append(i);
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::Span: {
|
|
const Span<bool> span((bool *)this->value_as<VariableValue_Span>()->data,
|
|
mask.min_array_size());
|
|
for (const int i : mask) {
|
|
r_indices[span[i]].append(i);
|
|
}
|
|
break;
|
|
}
|
|
case ValueType::OneSingle: {
|
|
auto *value_typed = this->value_as<VariableValue_OneSingle>();
|
|
BLI_assert(value_typed->is_initialized);
|
|
const bool condition = *(bool *)value_typed->data;
|
|
r_indices[condition].extend(mask);
|
|
break;
|
|
}
|
|
case ValueType::GVVectorArray:
|
|
case ValueType::GVectorArray:
|
|
case ValueType::OneVector: {
|
|
BLI_assert_unreachable();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> T *value_as()
|
|
{
|
|
BLI_assert(value_->type == T::static_type);
|
|
return static_cast<T *>(value_);
|
|
}
|
|
|
|
template<typename T> const T *value_as() const
|
|
{
|
|
BLI_assert(value_->type == T::static_type);
|
|
return static_cast<T *>(value_);
|
|
}
|
|
};
|
|
|
|
template<typename... Args> VariableState *ValueAllocator::obtain_variable_state(Args &&...args)
|
|
{
|
|
if (variable_state_free_list_.is_empty()) {
|
|
void *buffer = linear_allocator_.allocate(sizeof(VariableState), alignof(VariableState));
|
|
return new (buffer) VariableState(std::forward<Args>(args)...);
|
|
}
|
|
return new (variable_state_free_list_.pop()) VariableState(std::forward<Args>(args)...);
|
|
}
|
|
|
|
void ValueAllocator::release_variable_state(VariableState *state)
|
|
{
|
|
state->~VariableState();
|
|
variable_state_free_list_.push(state);
|
|
}
|
|
|
|
/** Keeps track of the states of all variables during evaluation. */
|
|
class VariableStates {
|
|
private:
|
|
ValueAllocator value_allocator_;
|
|
Map<const MFVariable *, VariableState *> variable_states_;
|
|
IndexMask full_mask_;
|
|
|
|
public:
|
|
VariableStates(LinearAllocator<> &linear_allocator, IndexMask full_mask)
|
|
: value_allocator_(linear_allocator), full_mask_(full_mask)
|
|
{
|
|
}
|
|
|
|
~VariableStates()
|
|
{
|
|
for (auto &&item : variable_states_.items()) {
|
|
const MFVariable *variable = item.key;
|
|
VariableState *state = item.value;
|
|
state->destruct_self(value_allocator_, variable->data_type());
|
|
}
|
|
}
|
|
|
|
ValueAllocator &value_allocator()
|
|
{
|
|
return value_allocator_;
|
|
}
|
|
|
|
const IndexMask &full_mask() const
|
|
{
|
|
return full_mask_;
|
|
}
|
|
|
|
void add_initial_variable_states(const MFProcedureExecutor &fn,
|
|
const MFProcedure &procedure,
|
|
MFParams ¶ms)
|
|
{
|
|
for (const int param_index : fn.param_indices()) {
|
|
MFParamType param_type = fn.param_type(param_index);
|
|
const MFVariable *variable = procedure.params()[param_index].variable;
|
|
|
|
auto add_state = [&](VariableValue *value,
|
|
bool input_is_initialized,
|
|
void *caller_provided_storage = nullptr) {
|
|
const int tot_initialized = input_is_initialized ? full_mask_.size() : 0;
|
|
variable_states_.add_new(variable,
|
|
value_allocator_.obtain_variable_state(
|
|
*value, tot_initialized, caller_provided_storage));
|
|
};
|
|
|
|
switch (param_type.category()) {
|
|
case MFParamCategory::SingleInput: {
|
|
const GVArray &data = params.readonly_single_input(param_index);
|
|
add_state(value_allocator_.obtain_GVArray(data), true);
|
|
break;
|
|
}
|
|
case MFParamCategory::VectorInput: {
|
|
const GVVectorArray &data = params.readonly_vector_input(param_index);
|
|
add_state(value_allocator_.obtain_GVVectorArray(data), true);
|
|
break;
|
|
}
|
|
case MFParamCategory::SingleOutput: {
|
|
GMutableSpan data = params.uninitialized_single_output(param_index);
|
|
add_state(value_allocator_.obtain_Span_not_owned(data.data()), false, data.data());
|
|
break;
|
|
}
|
|
case MFParamCategory::VectorOutput: {
|
|
GVectorArray &data = params.vector_output(param_index);
|
|
add_state(value_allocator_.obtain_GVectorArray_not_owned(data), false, &data);
|
|
break;
|
|
}
|
|
case MFParamCategory::SingleMutable: {
|
|
GMutableSpan data = params.single_mutable(param_index);
|
|
add_state(value_allocator_.obtain_Span_not_owned(data.data()), true, data.data());
|
|
break;
|
|
}
|
|
case MFParamCategory::VectorMutable: {
|
|
GVectorArray &data = params.vector_mutable(param_index);
|
|
add_state(value_allocator_.obtain_GVectorArray_not_owned(data), true, &data);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_param(VariableState &variable_state,
|
|
MFParamsBuilder ¶ms,
|
|
const MFParamType ¶m_type,
|
|
const IndexMask &mask)
|
|
{
|
|
const MFDataType data_type = param_type.data_type();
|
|
switch (param_type.interface_type()) {
|
|
case MFParamType::Input: {
|
|
variable_state.add_as_input(params, mask, data_type);
|
|
break;
|
|
}
|
|
case MFParamType::Mutable: {
|
|
variable_state.add_as_mutable(params, mask, full_mask_, data_type, value_allocator_);
|
|
break;
|
|
}
|
|
case MFParamType::Output: {
|
|
variable_state.add_as_output(params, mask, full_mask_, data_type, value_allocator_);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_as_param__one(VariableState &variable_state,
|
|
MFParamsBuilder ¶ms,
|
|
const MFParamType ¶m_type,
|
|
const IndexMask &mask)
|
|
{
|
|
const MFDataType data_type = param_type.data_type();
|
|
switch (param_type.interface_type()) {
|
|
case MFParamType::Input: {
|
|
variable_state.add_as_input__one(params, data_type);
|
|
break;
|
|
}
|
|
case MFParamType::Mutable: {
|
|
variable_state.add_as_mutable__one(params, data_type, value_allocator_);
|
|
break;
|
|
}
|
|
case MFParamType::Output: {
|
|
variable_state.add_as_output__one(params, mask, data_type, value_allocator_);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void destruct(const MFVariable &variable, const IndexMask &mask)
|
|
{
|
|
VariableState &variable_state = this->get_variable_state(variable);
|
|
if (variable_state.destruct(mask, full_mask_, variable.data_type(), value_allocator_)) {
|
|
variable_state.destruct_self(value_allocator_, variable.data_type());
|
|
variable_states_.remove_contained(&variable);
|
|
}
|
|
}
|
|
|
|
VariableState &get_variable_state(const MFVariable &variable)
|
|
{
|
|
return *variable_states_.lookup_or_add_cb(
|
|
&variable, [&]() { return this->create_new_state_for_variable(variable); });
|
|
}
|
|
|
|
VariableState *create_new_state_for_variable(const MFVariable &variable)
|
|
{
|
|
MFDataType data_type = variable.data_type();
|
|
switch (data_type.category()) {
|
|
case MFDataType::Single: {
|
|
const CPPType &type = data_type.single_type();
|
|
return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneSingle(type), 0);
|
|
}
|
|
case MFDataType::Vector: {
|
|
const CPPType &type = data_type.vector_base_type();
|
|
return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneVector(type), 0);
|
|
}
|
|
}
|
|
BLI_assert_unreachable();
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
static bool evaluate_as_one(const MultiFunction &fn,
|
|
Span<VariableState *> param_variable_states,
|
|
const IndexMask &mask,
|
|
const IndexMask &full_mask)
|
|
{
|
|
if (fn.depends_on_context()) {
|
|
return false;
|
|
}
|
|
if (mask.size() < full_mask.size()) {
|
|
return false;
|
|
}
|
|
for (VariableState *state : param_variable_states) {
|
|
if (state != nullptr && !state->is_one()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void execute_call_instruction(const MFCallInstruction &instruction,
|
|
IndexMask mask,
|
|
VariableStates &variable_states,
|
|
const MFContext &context)
|
|
{
|
|
const MultiFunction &fn = instruction.fn();
|
|
|
|
Vector<VariableState *> param_variable_states;
|
|
param_variable_states.resize(fn.param_amount());
|
|
|
|
for (const int param_index : fn.param_indices()) {
|
|
const MFVariable *variable = instruction.params()[param_index];
|
|
if (variable == nullptr) {
|
|
param_variable_states[param_index] = nullptr;
|
|
}
|
|
else {
|
|
VariableState &variable_state = variable_states.get_variable_state(*variable);
|
|
param_variable_states[param_index] = &variable_state;
|
|
}
|
|
}
|
|
|
|
/* If all inputs to the function are constant, it's enough to call the function only once instead
|
|
* of for every index. */
|
|
if (evaluate_as_one(fn, param_variable_states, mask, variable_states.full_mask())) {
|
|
MFParamsBuilder params(fn, 1);
|
|
|
|
for (const int param_index : fn.param_indices()) {
|
|
const MFParamType param_type = fn.param_type(param_index);
|
|
VariableState *variable_state = param_variable_states[param_index];
|
|
if (variable_state == nullptr) {
|
|
params.add_ignored_single_output();
|
|
}
|
|
else {
|
|
variable_states.add_as_param__one(*variable_state, params, param_type, mask);
|
|
}
|
|
}
|
|
|
|
try {
|
|
fn.call(IndexRange(1), params, context);
|
|
}
|
|
catch (...) {
|
|
/* Multi-functions must not throw exceptions. */
|
|
BLI_assert_unreachable();
|
|
}
|
|
}
|
|
else {
|
|
MFParamsBuilder params(fn, &mask);
|
|
|
|
for (const int param_index : fn.param_indices()) {
|
|
const MFParamType param_type = fn.param_type(param_index);
|
|
VariableState *variable_state = param_variable_states[param_index];
|
|
if (variable_state == nullptr) {
|
|
params.add_ignored_single_output();
|
|
}
|
|
else {
|
|
variable_states.add_as_param(*variable_state, params, param_type, mask);
|
|
}
|
|
}
|
|
|
|
try {
|
|
fn.call_auto(mask, params, context);
|
|
}
|
|
catch (...) {
|
|
/* Multi-functions must not throw exceptions. */
|
|
BLI_assert_unreachable();
|
|
}
|
|
}
|
|
}
|
|
|
|
/** An index mask, that might own the indices if necessary. */
|
|
struct InstructionIndices {
|
|
bool is_owned;
|
|
Vector<int64_t> owned_indices;
|
|
IndexMask referenced_indices;
|
|
|
|
IndexMask mask() const
|
|
{
|
|
if (this->is_owned) {
|
|
return this->owned_indices.as_span();
|
|
}
|
|
return this->referenced_indices;
|
|
}
|
|
};
|
|
|
|
/** Contains information about the next instruction that should be executed. */
|
|
struct NextInstructionInfo {
|
|
const MFInstruction *instruction = nullptr;
|
|
InstructionIndices indices;
|
|
|
|
IndexMask mask() const
|
|
{
|
|
return this->indices.mask();
|
|
}
|
|
|
|
operator bool() const
|
|
{
|
|
return this->instruction != nullptr;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Keeps track of the next instruction for all indices and decides in which order instructions are
|
|
* evaluated.
|
|
*/
|
|
class InstructionScheduler {
|
|
private:
|
|
Map<const MFInstruction *, Vector<InstructionIndices>> indices_by_instruction_;
|
|
|
|
public:
|
|
InstructionScheduler() = default;
|
|
|
|
void add_referenced_indices(const MFInstruction &instruction, IndexMask mask)
|
|
{
|
|
if (mask.is_empty()) {
|
|
return;
|
|
}
|
|
InstructionIndices new_indices;
|
|
new_indices.is_owned = false;
|
|
new_indices.referenced_indices = mask;
|
|
indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
|
|
}
|
|
|
|
void add_owned_indices(const MFInstruction &instruction, Vector<int64_t> indices)
|
|
{
|
|
if (indices.is_empty()) {
|
|
return;
|
|
}
|
|
BLI_assert(IndexMask::indices_are_valid_index_mask(indices));
|
|
|
|
InstructionIndices new_indices;
|
|
new_indices.is_owned = true;
|
|
new_indices.owned_indices = std::move(indices);
|
|
indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
|
|
}
|
|
|
|
void add_previous_instruction_indices(const MFInstruction &instruction,
|
|
NextInstructionInfo &instr_info)
|
|
{
|
|
indices_by_instruction_.lookup_or_add_default(&instruction)
|
|
.append(std::move(instr_info.indices));
|
|
}
|
|
|
|
NextInstructionInfo pop_next()
|
|
{
|
|
if (indices_by_instruction_.is_empty()) {
|
|
return {};
|
|
}
|
|
/* TODO: Implement better mechanism to determine next instruction. */
|
|
const MFInstruction *instruction = *indices_by_instruction_.keys().begin();
|
|
|
|
NextInstructionInfo next_instruction_info;
|
|
next_instruction_info.instruction = instruction;
|
|
next_instruction_info.indices = this->pop_indices_array(instruction);
|
|
return next_instruction_info;
|
|
}
|
|
|
|
private:
|
|
InstructionIndices pop_indices_array(const MFInstruction *instruction)
|
|
{
|
|
Vector<InstructionIndices> *indices = indices_by_instruction_.lookup_ptr(instruction);
|
|
if (indices == nullptr) {
|
|
return {};
|
|
}
|
|
InstructionIndices r_indices = (*indices).pop_last();
|
|
BLI_assert(!r_indices.mask().is_empty());
|
|
if (indices->is_empty()) {
|
|
indices_by_instruction_.remove_contained(instruction);
|
|
}
|
|
return r_indices;
|
|
}
|
|
};
|
|
|
|
void MFProcedureExecutor::call(IndexMask full_mask, MFParams params, MFContext context) const
|
|
{
|
|
BLI_assert(procedure_.validate());
|
|
|
|
LinearAllocator<> linear_allocator;
|
|
|
|
VariableStates variable_states{linear_allocator, full_mask};
|
|
variable_states.add_initial_variable_states(*this, procedure_, params);
|
|
|
|
InstructionScheduler scheduler;
|
|
scheduler.add_referenced_indices(*procedure_.entry(), full_mask);
|
|
|
|
/* Loop until all indices got to a return instruction. */
|
|
while (NextInstructionInfo instr_info = scheduler.pop_next()) {
|
|
const MFInstruction &instruction = *instr_info.instruction;
|
|
switch (instruction.type()) {
|
|
case MFInstructionType::Call: {
|
|
const MFCallInstruction &call_instruction = static_cast<const MFCallInstruction &>(
|
|
instruction);
|
|
execute_call_instruction(call_instruction, instr_info.mask(), variable_states, context);
|
|
scheduler.add_previous_instruction_indices(*call_instruction.next(), instr_info);
|
|
break;
|
|
}
|
|
case MFInstructionType::Branch: {
|
|
const MFBranchInstruction &branch_instruction = static_cast<const MFBranchInstruction &>(
|
|
instruction);
|
|
const MFVariable *condition_var = branch_instruction.condition();
|
|
VariableState &variable_state = variable_states.get_variable_state(*condition_var);
|
|
|
|
IndicesSplitVectors new_indices;
|
|
variable_state.indices_split(instr_info.mask(), new_indices);
|
|
scheduler.add_owned_indices(*branch_instruction.branch_false(), new_indices[false]);
|
|
scheduler.add_owned_indices(*branch_instruction.branch_true(), new_indices[true]);
|
|
break;
|
|
}
|
|
case MFInstructionType::Destruct: {
|
|
const MFDestructInstruction &destruct_instruction =
|
|
static_cast<const MFDestructInstruction &>(instruction);
|
|
const MFVariable *variable = destruct_instruction.variable();
|
|
variable_states.destruct(*variable, instr_info.mask());
|
|
scheduler.add_previous_instruction_indices(*destruct_instruction.next(), instr_info);
|
|
break;
|
|
}
|
|
case MFInstructionType::Dummy: {
|
|
const MFDummyInstruction &dummy_instruction = static_cast<const MFDummyInstruction &>(
|
|
instruction);
|
|
scheduler.add_previous_instruction_indices(*dummy_instruction.next(), instr_info);
|
|
break;
|
|
}
|
|
case MFInstructionType::Return: {
|
|
/* Don't insert the indices back into the scheduler. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const int param_index : this->param_indices()) {
|
|
const MFParamType param_type = this->param_type(param_index);
|
|
const MFVariable *variable = procedure_.params()[param_index].variable;
|
|
VariableState &variable_state = variable_states.get_variable_state(*variable);
|
|
switch (param_type.interface_type()) {
|
|
case MFParamType::Input: {
|
|
/* Input variables must be destructed in the end. */
|
|
BLI_assert(variable_state.is_fully_uninitialized(full_mask));
|
|
break;
|
|
}
|
|
case MFParamType::Mutable:
|
|
case MFParamType::Output: {
|
|
/* Mutable and output variables must be initialized in the end. */
|
|
BLI_assert(variable_state.is_fully_initialized(full_mask));
|
|
/* Make sure that the data is in the memory provided by the caller. */
|
|
variable_state.ensure_is_mutable(
|
|
full_mask, param_type.data_type(), variable_states.value_allocator());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MultiFunction::ExecutionHints MFProcedureExecutor::get_execution_hints() const
|
|
{
|
|
ExecutionHints hints;
|
|
hints.allocates_array = true;
|
|
hints.min_grain_size = 10000;
|
|
return hints;
|
|
}
|
|
|
|
} // namespace blender::fn
|