2272 lines
81 KiB
C
2272 lines
81 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/mesh_remap.c
|
|
* \ingroup bke
|
|
*
|
|
* Functions for mapping data between meshes.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_meshdata_types.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_alloca.h"
|
|
#include "BLI_astar.h"
|
|
#include "BLI_bitmap.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_polyfill2d.h"
|
|
#include "BLI_rand.h"
|
|
|
|
#include "BKE_bvhutils.h"
|
|
#include "BKE_customdata.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_mesh_mapping.h"
|
|
#include "BKE_mesh_remap.h" /* own include */
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
/** \name Some generic helpers.
|
|
* \{ */
|
|
|
|
static bool mesh_remap_bvhtree_query_nearest(
|
|
BVHTreeFromMesh *treedata, BVHTreeNearest *nearest,
|
|
const float co[3], const float max_dist_sq, float *r_hit_dist)
|
|
{
|
|
/* Use local proximity heuristics (to reduce the nearest search). */
|
|
if (nearest->index != -1) {
|
|
nearest->dist_sq = min_ff(len_squared_v3v3(co, nearest->co), max_dist_sq);
|
|
}
|
|
else {
|
|
nearest->dist_sq = max_dist_sq;
|
|
}
|
|
/* Compute and store result. If invalid (-1 index), keep FLT_MAX dist. */
|
|
BLI_bvhtree_find_nearest(treedata->tree, co, nearest, treedata->nearest_callback, treedata);
|
|
|
|
if ((nearest->index != -1) && (nearest->dist_sq <= max_dist_sq)) {
|
|
*r_hit_dist = sqrtf(nearest->dist_sq);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool mesh_remap_bvhtree_query_raycast(
|
|
BVHTreeFromMesh *treedata, BVHTreeRayHit *rayhit,
|
|
const float co[3], const float no[3], const float radius, const float max_dist, float *r_hit_dist)
|
|
{
|
|
BVHTreeRayHit rayhit_tmp;
|
|
float inv_no[3];
|
|
|
|
rayhit->index = -1;
|
|
rayhit->dist = max_dist;
|
|
BLI_bvhtree_ray_cast(treedata->tree, co, no, radius, rayhit, treedata->raycast_callback, treedata);
|
|
|
|
/* Also cast in the other direction! */
|
|
rayhit_tmp = *rayhit;
|
|
negate_v3_v3(inv_no, no);
|
|
BLI_bvhtree_ray_cast(treedata->tree, co, inv_no, radius, &rayhit_tmp, treedata->raycast_callback, treedata);
|
|
if (rayhit_tmp.dist < rayhit->dist) {
|
|
*rayhit = rayhit_tmp;
|
|
}
|
|
|
|
if ((rayhit->index != -1) && (rayhit->dist <= max_dist)) {
|
|
*r_hit_dist = rayhit->dist;
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/**
|
|
* \name Auto-match.
|
|
*
|
|
* Find transform of a mesh to get best match with another.
|
|
* \{ */
|
|
|
|
/**
|
|
* Compute a value of the difference between both given meshes.
|
|
* The smaller the result, the better the match.
|
|
*
|
|
* We return the inverse of the average of the inversed shortest distance from each dst vertex to src ones.
|
|
* In other words, beyond a certain (relatively small) distance, all differences have more or less the same weight
|
|
* in final result, which allows to reduce influence of a few high differences, in favor of a global good matching.
|
|
*/
|
|
float BKE_mesh_remap_calc_difference_from_dm(
|
|
const SpaceTransform *space_transform, const MVert *verts_dst, const int numverts_dst, DerivedMesh *dm_src)
|
|
{
|
|
BVHTreeFromMesh treedata = {NULL};
|
|
BVHTreeNearest nearest = {0};
|
|
float hit_dist;
|
|
|
|
float result = 0.0f;
|
|
int i;
|
|
|
|
bvhtree_from_mesh_verts(&treedata, dm_src, 0.0f, 2, 6);
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[i].co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, FLT_MAX, &hit_dist)) {
|
|
result += 1.0f / (hit_dist + 1.0f);
|
|
}
|
|
else {
|
|
/* No source for this dest vertex! */
|
|
result += 1e-18f;
|
|
}
|
|
}
|
|
|
|
result = ((float)numverts_dst / result) - 1.0f;
|
|
|
|
// printf("%s: Computed difference between meshes (the lower the better): %f\n", __func__, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* This helper computes the eigen values & vectors for covariance matrix of all given vertices coordinates.
|
|
*
|
|
* Those vectors define the 'average ellipsoid' of the mesh (i.e. the 'best fitting' ellipsoid
|
|
* containing 50% of the vertices).
|
|
*
|
|
* Note that it will not perform fantastic in case two or more eigen values are equal (e.g. a cylinder or
|
|
* parallelepiped with a square section give two identical eigenvalues, a sphere or tetrahedron give
|
|
* three identical ones, etc.), since you cannot really define all axes in those cases. We default to dummy
|
|
* generated orthogonal vectors in this case, instead of using eigen vectors.
|
|
*/
|
|
static void mesh_calc_eigen_matrix(
|
|
const MVert *verts, const float (*vcos)[3], const int numverts, float r_mat[4][4])
|
|
{
|
|
float center[3], covmat[3][3];
|
|
float eigen_val[3], eigen_vec[3][3];
|
|
float (*cos)[3] = NULL;
|
|
|
|
bool eigen_success;
|
|
int i;
|
|
|
|
if (verts) {
|
|
const MVert *mv;
|
|
float (*co)[3];
|
|
|
|
cos = MEM_mallocN(sizeof(*cos) * (size_t)numverts, __func__);
|
|
for (i = 0, co = cos, mv = verts; i < numverts; i++, co++, mv++) {
|
|
copy_v3_v3(*co, mv->co);
|
|
}
|
|
/* TODO(sergey): For until we officially drop all compilers which
|
|
* doesn't handle casting correct we use workaround to avoid explicit
|
|
* cast here.
|
|
*/
|
|
vcos = (void *)cos;
|
|
}
|
|
unit_m4(r_mat);
|
|
|
|
/* Note: here we apply sample correction to covariance matrix, since we consider the vertices as a sample
|
|
* of the whole 'surface' population of our mesh... */
|
|
BLI_covariance_m3_v3n(vcos, numverts, true, covmat, center);
|
|
|
|
if (cos) {
|
|
MEM_freeN(cos);
|
|
}
|
|
|
|
eigen_success = BLI_eigen_solve_selfadjoint_m3((const float (*)[3])covmat, eigen_val, eigen_vec);
|
|
BLI_assert(eigen_success);
|
|
UNUSED_VARS_NDEBUG(eigen_success);
|
|
|
|
/* Special handling of cases where some eigen values are (nearly) identical. */
|
|
if (compare_ff_relative(eigen_val[0], eigen_val[1], FLT_EPSILON, 64)) {
|
|
if (compare_ff_relative(eigen_val[0], eigen_val[2], FLT_EPSILON, 64)) {
|
|
/* No preferred direction, that set of vertices has a spherical average,
|
|
* so we simply returned scaled/translated identity matrix (with no rotation). */
|
|
unit_m3(eigen_vec);
|
|
}
|
|
else {
|
|
/* Ellipsoid defined by eigen values/vectors has a spherical section,
|
|
* we can only define one axis from eigen_vec[2] (two others computed eigen vecs
|
|
* are not so nice for us here, they tend to 'randomly' rotate around valid one).
|
|
* Note that eigen vectors as returned by BLI_eigen_solve_selfadjoint_m3() are normalized. */
|
|
ortho_basis_v3v3_v3(eigen_vec[0], eigen_vec[1], eigen_vec[2]);
|
|
}
|
|
}
|
|
else if (compare_ff_relative(eigen_val[0], eigen_val[2], FLT_EPSILON, 64)) {
|
|
/* Same as above, but with eigen_vec[1] as valid axis. */
|
|
ortho_basis_v3v3_v3(eigen_vec[2], eigen_vec[0], eigen_vec[1]);
|
|
}
|
|
else if (compare_ff_relative(eigen_val[1], eigen_val[2], FLT_EPSILON, 64)) {
|
|
/* Same as above, but with eigen_vec[0] as valid axis. */
|
|
ortho_basis_v3v3_v3(eigen_vec[1], eigen_vec[2], eigen_vec[0]);
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
float evi = eigen_val[i];
|
|
|
|
/* Protect against 1D/2D degenerated cases! */
|
|
/* Note: not sure why we need square root of eigen values here (which are equivalent to singular values,
|
|
* as far as I have understood), but it seems to heavily reduce (if not completly nullify)
|
|
* the error due to non-uniform scalings... */
|
|
evi = (evi < 1e-6f && evi > -1e-6f) ? ((evi < 0.0f) ? -1e-3f : 1e-3f) : sqrtf_signed(evi);
|
|
mul_v3_fl(eigen_vec[i], evi);
|
|
}
|
|
|
|
copy_m4_m3(r_mat, eigen_vec);
|
|
copy_v3_v3(r_mat[3], center);
|
|
}
|
|
|
|
/**
|
|
* Set r_space_transform so that best bbox of dst matches best bbox of src.
|
|
*/
|
|
void BKE_mesh_remap_find_best_match_from_dm(
|
|
const MVert *verts_dst, const int numverts_dst, DerivedMesh *dm_src, SpaceTransform *r_space_transform)
|
|
{
|
|
/* Note that those are done so that we successively get actual mirror matrix (by multiplication of columns)... */
|
|
const float mirrors[][3] = {
|
|
{-1.0f, 1.0f, 1.0f}, /* -> -1, 1, 1 */
|
|
{ 1.0f, -1.0f, 1.0f}, /* -> -1, -1, 1 */
|
|
{ 1.0f, 1.0f, -1.0f}, /* -> -1, -1, -1 */
|
|
{ 1.0f, -1.0f, 1.0f}, /* -> -1, 1, -1 */
|
|
{-1.0f, 1.0f, 1.0f}, /* -> 1, 1, -1 */
|
|
{ 1.0f, -1.0f, 1.0f}, /* -> 1, -1, -1 */
|
|
{ 1.0f, 1.0f, -1.0f}, /* -> 1, -1, 1 */
|
|
{0.0f, 0.0f, 0.0f},
|
|
};
|
|
const float (*mirr)[3];
|
|
|
|
float mat_src[4][4], mat_dst[4][4], best_mat_dst[4][4];
|
|
float best_match = FLT_MAX, match;
|
|
|
|
const int numverts_src = dm_src->getNumVerts(dm_src);
|
|
float (*vcos_src)[3] = MEM_mallocN(sizeof(*vcos_src) * (size_t)numverts_src, __func__);
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
|
|
mesh_calc_eigen_matrix(NULL, (const float (*)[3])vcos_src, numverts_src, mat_src);
|
|
mesh_calc_eigen_matrix(verts_dst, NULL, numverts_dst, mat_dst);
|
|
|
|
BLI_space_transform_global_from_matrices(r_space_transform, mat_dst, mat_src);
|
|
match = BKE_mesh_remap_calc_difference_from_dm(r_space_transform, verts_dst, numverts_dst, dm_src);
|
|
best_match = match;
|
|
copy_m4_m4(best_mat_dst, mat_dst);
|
|
|
|
/* And now, we have to check the otehr sixth possible mirrored versions... */
|
|
for (mirr = mirrors; (*mirr)[0]; mirr++) {
|
|
mul_v3_fl(mat_dst[0], (*mirr)[0]);
|
|
mul_v3_fl(mat_dst[1], (*mirr)[1]);
|
|
mul_v3_fl(mat_dst[2], (*mirr)[2]);
|
|
|
|
BLI_space_transform_global_from_matrices(r_space_transform, mat_dst, mat_src);
|
|
match = BKE_mesh_remap_calc_difference_from_dm(r_space_transform, verts_dst, numverts_dst, dm_src);
|
|
if (match < best_match) {
|
|
best_match = match;
|
|
copy_m4_m4(best_mat_dst, mat_dst);
|
|
}
|
|
}
|
|
|
|
BLI_space_transform_global_from_matrices(r_space_transform, best_mat_dst, mat_src);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/** \name Mesh to mesh mapping
|
|
* \{ */
|
|
|
|
void BKE_mesh_remap_init(MeshPairRemap *map, const int items_num)
|
|
{
|
|
MemArena *mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
|
|
|
|
BKE_mesh_remap_free(map);
|
|
|
|
map->items = BLI_memarena_alloc(mem, sizeof(*map->items) * (size_t)items_num);
|
|
map->items_num = items_num;
|
|
|
|
map->mem = mem;
|
|
}
|
|
|
|
void BKE_mesh_remap_free(MeshPairRemap *map)
|
|
{
|
|
if (map->mem) {
|
|
BLI_memarena_free((MemArena *)map->mem);
|
|
}
|
|
|
|
map->items_num = 0;
|
|
map->items = NULL;
|
|
map->mem = NULL;
|
|
}
|
|
|
|
static void mesh_remap_item_define(
|
|
MeshPairRemap *map, const int index, const float UNUSED(hit_dist), const int island,
|
|
const int sources_num, const int *indices_src, const float *weights_src)
|
|
{
|
|
MeshPairRemapItem *mapit = &map->items[index];
|
|
MemArena *mem = map->mem;
|
|
|
|
if (sources_num) {
|
|
mapit->sources_num = sources_num;
|
|
mapit->indices_src = BLI_memarena_alloc(mem, sizeof(*mapit->indices_src) * (size_t)sources_num);
|
|
memcpy(mapit->indices_src, indices_src, sizeof(*mapit->indices_src) * (size_t)sources_num);
|
|
mapit->weights_src = BLI_memarena_alloc(mem, sizeof(*mapit->weights_src) * (size_t)sources_num);
|
|
memcpy(mapit->weights_src, weights_src, sizeof(*mapit->weights_src) * (size_t)sources_num);
|
|
}
|
|
else {
|
|
mapit->sources_num = 0;
|
|
mapit->indices_src = NULL;
|
|
mapit->weights_src = NULL;
|
|
}
|
|
/* UNUSED */
|
|
// mapit->hit_dist = hit_dist;
|
|
mapit->island = island;
|
|
}
|
|
|
|
void BKE_mesh_remap_item_define_invalid(MeshPairRemap *map, const int index)
|
|
{
|
|
mesh_remap_item_define(map, index, FLT_MAX, 0, 0, NULL, NULL);
|
|
}
|
|
|
|
static int mesh_remap_interp_poly_data_get(
|
|
const MPoly *mp, MLoop *mloops, const float (*vcos_src)[3], const float point[3],
|
|
size_t *buff_size, float (**vcos)[3], const bool use_loops, int **indices, float **weights,
|
|
const bool do_weights, int *r_closest_index)
|
|
{
|
|
MLoop *ml;
|
|
float (*vco)[3];
|
|
float ref_dist_sq = FLT_MAX;
|
|
int *index;
|
|
const int sources_num = mp->totloop;
|
|
int i;
|
|
|
|
if ((size_t)sources_num > *buff_size) {
|
|
*buff_size = (size_t)sources_num;
|
|
*vcos = MEM_reallocN(*vcos, sizeof(**vcos) * *buff_size);
|
|
*indices = MEM_reallocN(*indices, sizeof(**indices) * *buff_size);
|
|
if (do_weights) {
|
|
*weights = MEM_reallocN(*weights, sizeof(**weights) * *buff_size);
|
|
}
|
|
}
|
|
|
|
for (i = 0, ml = &mloops[mp->loopstart], vco = *vcos, index = *indices; i < sources_num; i++, ml++, vco++, index++) {
|
|
*index = use_loops ? (int)mp->loopstart + i : (int)ml->v;
|
|
copy_v3_v3(*vco, vcos_src[ml->v]);
|
|
if (r_closest_index) {
|
|
/* Find closest vert/loop in this case. */
|
|
const float dist_sq = len_squared_v3v3(point, *vco);
|
|
if (dist_sq < ref_dist_sq) {
|
|
ref_dist_sq = dist_sq;
|
|
*r_closest_index = *index;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_weights) {
|
|
interp_weights_poly_v3(*weights, *vcos, sources_num, point);
|
|
}
|
|
|
|
return sources_num;
|
|
}
|
|
|
|
/* Little helper when dealing with source islands */
|
|
typedef struct IslandResult {
|
|
float factor; /* A factor, based on which best island for a given set of elements will be selected. */
|
|
int index_src; /* Index of the source. */
|
|
float hit_dist; /* The actual hit distance. */
|
|
float hit_point[3]; /* The hit point, if relevant. */
|
|
} IslandResult;
|
|
|
|
/* Note about all bvh/raycasting stuff below:
|
|
* * We must use our ray radius as BVH epsilon too, else rays not hitting anything but 'passing near' an item
|
|
* would be missed (since BVH handling would not detect them, 'refining' callbacks won't be executed,
|
|
* even though they would return a valid hit).
|
|
* * However, in 'islands' case where each hit gets a weight, 'precise' hits should have a better weight than
|
|
* 'approximate' hits. To address that, we simplify things with:
|
|
* ** A first raycast with default, given rayradius;
|
|
* ** If first one fails, we do more raycasting with bigger radius, but if hit is found
|
|
* it will get smaller weight.
|
|
* This only concerns loops, currently (because of islands), and 'sampled' edges/polys norproj.
|
|
*/
|
|
|
|
/* At most n raycasts per 'real' ray. */
|
|
#define MREMAP_RAYCAST_APPROXIMATE_NR 3
|
|
/* Each approximated raycasts will have n times bigger radius than previous one. */
|
|
#define MREMAP_RAYCAST_APPROXIMATE_FAC 5.0f
|
|
/* BVH epsilon value we have to give to bvh 'constructor' when doing approximated raycasting. */
|
|
#define MREMAP_RAYCAST_APPROXIMATE_BVHEPSILON(_ray_radius) \
|
|
((float)MREMAP_RAYCAST_APPROXIMATE_NR * MREMAP_RAYCAST_APPROXIMATE_FAC * (_ray_radius))
|
|
|
|
/* min 16 rays/face, max 400. */
|
|
#define MREMAP_RAYCAST_TRI_SAMPLES_MIN 4
|
|
#define MREMAP_RAYCAST_TRI_SAMPLES_MAX 20
|
|
|
|
/* Will be enough in 99% of cases. */
|
|
#define MREMAP_DEFAULT_BUFSIZE 32
|
|
|
|
void BKE_mesh_remap_calc_verts_from_dm(
|
|
const int mode, const SpaceTransform *space_transform, const float max_dist, const float ray_radius,
|
|
const MVert *verts_dst, const int numverts_dst, const bool UNUSED(dirty_nors_dst), DerivedMesh *dm_src,
|
|
MeshPairRemap *r_map)
|
|
{
|
|
const float full_weight = 1.0f;
|
|
const float max_dist_sq = max_dist * max_dist;
|
|
int i;
|
|
|
|
BLI_assert(mode & MREMAP_MODE_VERT);
|
|
|
|
BKE_mesh_remap_init(r_map, numverts_dst);
|
|
|
|
if (mode == MREMAP_MODE_TOPOLOGY) {
|
|
BLI_assert(numverts_dst == dm_src->getNumVerts(dm_src));
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
mesh_remap_item_define(r_map, i, FLT_MAX, 0, 1, &i, &full_weight);
|
|
}
|
|
}
|
|
else {
|
|
BVHTreeFromMesh treedata = {NULL};
|
|
BVHTreeNearest nearest = {0};
|
|
BVHTreeRayHit rayhit = {0};
|
|
float hit_dist;
|
|
|
|
if (mode == MREMAP_MODE_VERT_NEAREST) {
|
|
bvhtree_from_mesh_verts(&treedata, dm_src, 0.0f, 2, 6);
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[i].co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &nearest.index, &full_weight);
|
|
}
|
|
else {
|
|
/* No source for this dest vertex! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
else if (ELEM(mode, MREMAP_MODE_VERT_EDGE_NEAREST, MREMAP_MODE_VERT_EDGEINTERP_NEAREST)) {
|
|
MEdge *edges_src = dm_src->getEdgeArray(dm_src);
|
|
float (*vcos_src)[3] = MEM_mallocN(sizeof(*vcos_src) * (size_t)dm_src->getNumVerts(dm_src), __func__);
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
|
|
bvhtree_from_mesh_edges(&treedata, dm_src, 0.0f, 2, 6);
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[i].co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
MEdge *me = &edges_src[nearest.index];
|
|
const float *v1cos = vcos_src[me->v1];
|
|
const float *v2cos = vcos_src[me->v2];
|
|
|
|
if (mode == MREMAP_MODE_VERT_EDGE_NEAREST) {
|
|
const float dist_v1 = len_squared_v3v3(tmp_co, v1cos);
|
|
const float dist_v2 = len_squared_v3v3(tmp_co, v2cos);
|
|
const int index = (int)((dist_v1 > dist_v2) ? me->v2 : me->v1);
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &index, &full_weight);
|
|
}
|
|
else if (mode == MREMAP_MODE_VERT_EDGEINTERP_NEAREST) {
|
|
int indices[2];
|
|
float weights[2];
|
|
|
|
indices[0] = (int)me->v1;
|
|
indices[1] = (int)me->v2;
|
|
|
|
/* Weight is inverse of point factor here... */
|
|
weights[0] = line_point_factor_v3(tmp_co, v2cos, v1cos);
|
|
CLAMP(weights[0], 0.0f, 1.0f);
|
|
weights[1] = 1.0f - weights[0];
|
|
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 2, indices, weights);
|
|
}
|
|
}
|
|
else {
|
|
/* No source for this dest vertex! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(vcos_src);
|
|
}
|
|
else if (ELEM(mode, MREMAP_MODE_VERT_POLY_NEAREST, MREMAP_MODE_VERT_POLYINTERP_NEAREST,
|
|
MREMAP_MODE_VERT_POLYINTERP_VNORPROJ))
|
|
{
|
|
MPoly *polys_src = dm_src->getPolyArray(dm_src);
|
|
MLoop *loops_src = dm_src->getLoopArray(dm_src);
|
|
float (*vcos_src)[3] = MEM_mallocN(sizeof(*vcos_src) * (size_t)dm_src->getNumVerts(dm_src), __func__);
|
|
|
|
size_t tmp_buff_size = MREMAP_DEFAULT_BUFSIZE;
|
|
float (*vcos)[3] = MEM_mallocN(sizeof(*vcos) * tmp_buff_size, __func__);
|
|
int *indices = MEM_mallocN(sizeof(*indices) * tmp_buff_size, __func__);
|
|
float *weights = MEM_mallocN(sizeof(*weights) * tmp_buff_size, __func__);
|
|
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
bvhtree_from_mesh_looptri(&treedata, dm_src, (mode & MREMAP_USE_NORPROJ) ? ray_radius : 0.0f, 2, 6);
|
|
|
|
if (mode == MREMAP_MODE_VERT_POLYINTERP_VNORPROJ) {
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
float tmp_co[3], tmp_no[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[i].co);
|
|
normal_short_to_float_v3(tmp_no, verts_dst[i].no);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
BLI_space_transform_apply_normal(space_transform, tmp_no);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_raycast(
|
|
&treedata, &rayhit, tmp_co, tmp_no, ray_radius, max_dist, &hit_dist))
|
|
{
|
|
const MLoopTri *lt = &treedata.looptri[rayhit.index];
|
|
MPoly *mp_src = &polys_src[lt->poly];
|
|
const int sources_num = mesh_remap_interp_poly_data_get(
|
|
mp_src, loops_src, (const float (*)[3])vcos_src, rayhit.co,
|
|
&tmp_buff_size, &vcos, false, &indices, &weights, true, NULL);
|
|
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, sources_num, indices, weights);
|
|
}
|
|
else {
|
|
/* No source for this dest vertex! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[i].co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
const MLoopTri *lt = &treedata.looptri[rayhit.index];
|
|
MPoly *mp = &polys_src[lt->poly];
|
|
|
|
if (mode == MREMAP_MODE_VERT_POLY_NEAREST) {
|
|
int index;
|
|
mesh_remap_interp_poly_data_get(
|
|
mp, loops_src, (const float (*)[3])vcos_src, nearest.co,
|
|
&tmp_buff_size, &vcos, false, &indices, &weights, false,
|
|
&index);
|
|
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &index, &full_weight);
|
|
}
|
|
else if (mode == MREMAP_MODE_VERT_POLYINTERP_NEAREST) {
|
|
const int sources_num = mesh_remap_interp_poly_data_get(
|
|
mp, loops_src, (const float (*)[3])vcos_src, nearest.co,
|
|
&tmp_buff_size, &vcos, false, &indices, &weights, true,
|
|
NULL);
|
|
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, sources_num, indices, weights);
|
|
}
|
|
}
|
|
else {
|
|
/* No source for this dest vertex! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(vcos_src);
|
|
MEM_freeN(vcos);
|
|
MEM_freeN(indices);
|
|
MEM_freeN(weights);
|
|
}
|
|
else {
|
|
printf("WARNING! Unsupported mesh-to-mesh vertex mapping mode (%d)!\n", mode);
|
|
memset(r_map->items, 0, sizeof(*r_map->items) * (size_t)numverts_dst);
|
|
}
|
|
|
|
free_bvhtree_from_mesh(&treedata);
|
|
}
|
|
}
|
|
|
|
void BKE_mesh_remap_calc_edges_from_dm(
|
|
const int mode, const SpaceTransform *space_transform, const float max_dist, const float ray_radius,
|
|
const MVert *verts_dst, const int numverts_dst, const MEdge *edges_dst, const int numedges_dst,
|
|
const bool UNUSED(dirty_nors_dst), DerivedMesh *dm_src, MeshPairRemap *r_map)
|
|
{
|
|
const float full_weight = 1.0f;
|
|
const float max_dist_sq = max_dist * max_dist;
|
|
int i;
|
|
|
|
BLI_assert(mode & MREMAP_MODE_EDGE);
|
|
|
|
BKE_mesh_remap_init(r_map, numedges_dst);
|
|
|
|
if (mode == MREMAP_MODE_TOPOLOGY) {
|
|
BLI_assert(numedges_dst == dm_src->getNumEdges(dm_src));
|
|
for (i = 0; i < numedges_dst; i++) {
|
|
mesh_remap_item_define(r_map, i, FLT_MAX, 0, 1, &i, &full_weight);
|
|
}
|
|
}
|
|
else {
|
|
BVHTreeFromMesh treedata = {NULL};
|
|
BVHTreeNearest nearest = {0};
|
|
BVHTreeRayHit rayhit = {0};
|
|
float hit_dist;
|
|
|
|
if (mode == MREMAP_MODE_EDGE_VERT_NEAREST) {
|
|
const int num_verts_src = dm_src->getNumVerts(dm_src);
|
|
const int num_edges_src = dm_src->getNumEdges(dm_src);
|
|
MEdge *edges_src = dm_src->getEdgeArray(dm_src);
|
|
float (*vcos_src)[3] = MEM_mallocN(sizeof(*vcos_src) * (size_t)dm_src->getNumVerts(dm_src), __func__);
|
|
|
|
MeshElemMap *vert_to_edge_src_map;
|
|
int *vert_to_edge_src_map_mem;
|
|
|
|
struct {
|
|
float hit_dist;
|
|
int index;
|
|
} *v_dst_to_src_map = MEM_mallocN(sizeof(*v_dst_to_src_map) * (size_t)numverts_dst, __func__);
|
|
|
|
for (i = 0; i < numverts_dst; i++) {
|
|
v_dst_to_src_map[i].hit_dist = -1.0f;
|
|
}
|
|
|
|
BKE_mesh_vert_edge_map_create(&vert_to_edge_src_map, &vert_to_edge_src_map_mem,
|
|
edges_src, num_verts_src, num_edges_src);
|
|
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
|
|
bvhtree_from_mesh_verts(&treedata, dm_src, 0.0f, 2, 6);
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numedges_dst; i++) {
|
|
const MEdge *e_dst = &edges_dst[i];
|
|
float best_totdist = FLT_MAX;
|
|
int best_eidx_src = -1;
|
|
int j = 2;
|
|
|
|
while (j--) {
|
|
const unsigned int vidx_dst = j ? e_dst->v1 : e_dst->v2;
|
|
|
|
/* Compute closest verts only once! */
|
|
if (v_dst_to_src_map[vidx_dst].hit_dist == -1.0f) {
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[vidx_dst].co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
v_dst_to_src_map[vidx_dst].hit_dist = hit_dist;
|
|
v_dst_to_src_map[vidx_dst].index = nearest.index;
|
|
}
|
|
else {
|
|
/* No source for this dest vert! */
|
|
v_dst_to_src_map[vidx_dst].hit_dist = FLT_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now, check all source edges of closest sources vertices, and select the one giving the smallest
|
|
* total verts-to-verts distance. */
|
|
for (j = 2; j--;) {
|
|
const unsigned int vidx_dst = j ? e_dst->v1 : e_dst->v2;
|
|
const float first_dist = v_dst_to_src_map[vidx_dst].hit_dist;
|
|
const int vidx_src = v_dst_to_src_map[vidx_dst].index;
|
|
int *eidx_src, k;
|
|
|
|
if (vidx_src < 0) {
|
|
continue;
|
|
}
|
|
|
|
eidx_src = vert_to_edge_src_map[vidx_src].indices;
|
|
k = vert_to_edge_src_map[vidx_src].count;
|
|
|
|
for (; k--; eidx_src++) {
|
|
MEdge *e_src = &edges_src[*eidx_src];
|
|
const float *other_co_src = vcos_src[BKE_mesh_edge_other_vert(e_src, vidx_src)];
|
|
const float *other_co_dst = verts_dst[BKE_mesh_edge_other_vert(e_dst, (int)vidx_dst)].co;
|
|
const float totdist = first_dist + len_v3v3(other_co_src, other_co_dst);
|
|
|
|
if (totdist < best_totdist) {
|
|
best_totdist = totdist;
|
|
best_eidx_src = *eidx_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_eidx_src >= 0) {
|
|
const float *co1_src = vcos_src[edges_src[best_eidx_src].v1];
|
|
const float *co2_src = vcos_src[edges_src[best_eidx_src].v2];
|
|
const float *co1_dst = verts_dst[e_dst->v1].co;
|
|
const float *co2_dst = verts_dst[e_dst->v2].co;
|
|
float co_src[3], co_dst[3];
|
|
|
|
/* TODO: would need an isect_seg_seg_v3(), actually! */
|
|
const int isect_type = isect_line_line_v3(co1_src, co2_src, co1_dst, co2_dst, co_src, co_dst);
|
|
if (isect_type != 0) {
|
|
const float fac_src = line_point_factor_v3(co_src, co1_src, co2_src);
|
|
const float fac_dst = line_point_factor_v3(co_dst, co1_dst, co2_dst);
|
|
if (fac_src < 0.0f) {
|
|
copy_v3_v3(co_src, co1_src);
|
|
}
|
|
else if (fac_src > 1.0f) {
|
|
copy_v3_v3(co_src, co2_src);
|
|
}
|
|
if (fac_dst < 0.0f) {
|
|
copy_v3_v3(co_dst, co1_dst);
|
|
}
|
|
else if (fac_dst > 1.0f) {
|
|
copy_v3_v3(co_dst, co2_dst);
|
|
}
|
|
}
|
|
hit_dist = len_v3v3(co_dst, co_src);
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &best_eidx_src, &full_weight);
|
|
}
|
|
else {
|
|
/* No source for this dest edge! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(vcos_src);
|
|
MEM_freeN(v_dst_to_src_map);
|
|
MEM_freeN(vert_to_edge_src_map);
|
|
MEM_freeN(vert_to_edge_src_map_mem);
|
|
}
|
|
else if (mode == MREMAP_MODE_EDGE_NEAREST) {
|
|
bvhtree_from_mesh_edges(&treedata, dm_src, 0.0f, 2, 6);
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numedges_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
interp_v3_v3v3(tmp_co, verts_dst[edges_dst[i].v1].co, verts_dst[edges_dst[i].v2].co, 0.5f);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &nearest.index, &full_weight);
|
|
}
|
|
else {
|
|
/* No source for this dest edge! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
else if (mode == MREMAP_MODE_EDGE_POLY_NEAREST) {
|
|
MEdge *edges_src = dm_src->getEdgeArray(dm_src);
|
|
MPoly *polys_src = dm_src->getPolyArray(dm_src);
|
|
MLoop *loops_src = dm_src->getLoopArray(dm_src);
|
|
float (*vcos_src)[3] = MEM_mallocN(sizeof(*vcos_src) * (size_t)dm_src->getNumVerts(dm_src), __func__);
|
|
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
bvhtree_from_mesh_looptri(&treedata, dm_src, 0.0f, 2, 6);
|
|
|
|
for (i = 0; i < numedges_dst; i++) {
|
|
float tmp_co[3];
|
|
|
|
interp_v3_v3v3(tmp_co, verts_dst[edges_dst[i].v1].co, verts_dst[edges_dst[i].v2].co, 0.5f);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
const MLoopTri *lt = &treedata.looptri[rayhit.index];
|
|
MPoly *mp_src = &polys_src[lt->poly];
|
|
MLoop *ml_src = &loops_src[mp_src->loopstart];
|
|
int nloops = mp_src->totloop;
|
|
float best_dist_sq = FLT_MAX;
|
|
int best_eidx_src = -1;
|
|
|
|
for (; nloops--; ml_src++) {
|
|
MEdge *me_src = &edges_src[ml_src->e];
|
|
float *co1_src = vcos_src[me_src->v1];
|
|
float *co2_src = vcos_src[me_src->v2];
|
|
float co_src[3];
|
|
float dist_sq;
|
|
|
|
interp_v3_v3v3(co_src, co1_src, co2_src, 0.5f);
|
|
dist_sq = len_squared_v3v3(tmp_co, co_src);
|
|
if (dist_sq < best_dist_sq) {
|
|
best_dist_sq = dist_sq;
|
|
best_eidx_src = (int)ml_src->e;
|
|
}
|
|
}
|
|
if (best_eidx_src >= 0) {
|
|
mesh_remap_item_define(r_map, i, hit_dist, 0, 1, &best_eidx_src, &full_weight);
|
|
}
|
|
}
|
|
else {
|
|
/* No source for this dest edge! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(vcos_src);
|
|
}
|
|
else if (mode == MREMAP_MODE_EDGE_EDGEINTERP_VNORPROJ) {
|
|
const int num_rays_min = 5, num_rays_max = 100;
|
|
const int numedges_src = dm_src->getNumEdges(dm_src);
|
|
|
|
/* Subtleness - this one we can allocate only max number of cast rays per edges! */
|
|
int *indices = MEM_mallocN(sizeof(*indices) * (size_t)min_ii(numedges_src, num_rays_max), __func__);
|
|
/* Here it's simpler to just allocate for all edges :/ */
|
|
float *weights = MEM_mallocN(sizeof(*weights) * (size_t)numedges_src, __func__);
|
|
|
|
bvhtree_from_mesh_edges(&treedata, dm_src, MREMAP_RAYCAST_APPROXIMATE_BVHEPSILON(ray_radius), 2, 6);
|
|
|
|
for (i = 0; i < numedges_dst; i++) {
|
|
/* For each dst edge, we sample some rays from it (interpolated from its vertices)
|
|
* and use their hits to interpolate from source edges. */
|
|
const MEdge *me = &edges_dst[i];
|
|
float tmp_co[3], v1_co[3], v2_co[3];
|
|
float tmp_no[3], v1_no[3], v2_no[3];
|
|
|
|
int grid_size;
|
|
float edge_dst_len;
|
|
float grid_step;
|
|
|
|
float totweights = 0.0f;
|
|
float hit_dist_accum = 0.0f;
|
|
int sources_num = 0;
|
|
int j;
|
|
|
|
copy_v3_v3(v1_co, verts_dst[me->v1].co);
|
|
copy_v3_v3(v2_co, verts_dst[me->v2].co);
|
|
|
|
normal_short_to_float_v3(v1_no, verts_dst[me->v1].no);
|
|
normal_short_to_float_v3(v2_no, verts_dst[me->v2].no);
|
|
|
|
/* We do our transform here, allows to interpolate from normals already in src space. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, v1_co);
|
|
BLI_space_transform_apply(space_transform, v2_co);
|
|
BLI_space_transform_apply_normal(space_transform, v1_no);
|
|
BLI_space_transform_apply_normal(space_transform, v2_no);
|
|
}
|
|
|
|
copy_vn_fl(weights, (int)numedges_src, 0.0f);
|
|
|
|
/* We adjust our ray-casting grid to ray_radius (the smaller, the more rays are cast),
|
|
* with lower/upper bounds. */
|
|
edge_dst_len = len_v3v3(v1_co, v2_co);
|
|
|
|
grid_size = (int)((edge_dst_len / ray_radius) + 0.5f);
|
|
CLAMP(grid_size, num_rays_min, num_rays_max); /* min 5 rays/edge, max 100. */
|
|
|
|
grid_step = 1.0f / (float)grid_size; /* Not actual distance here, rather an interp fac... */
|
|
|
|
/* And now we can cast all our rays, and see what we get! */
|
|
for (j = 0; j < grid_size; j++) {
|
|
const float fac = grid_step * (float)j;
|
|
|
|
int n = (ray_radius > 0.0f) ? MREMAP_RAYCAST_APPROXIMATE_NR : 1;
|
|
float w = 1.0f;
|
|
|
|
interp_v3_v3v3(tmp_co, v1_co, v2_co, fac);
|
|
interp_v3_v3v3_slerp_safe(tmp_no, v1_no, v2_no, fac);
|
|
|
|
while (n--) {
|
|
if (mesh_remap_bvhtree_query_raycast(
|
|
&treedata, &rayhit, tmp_co, tmp_no, ray_radius / w, max_dist, &hit_dist))
|
|
{
|
|
weights[rayhit.index] += w;
|
|
totweights += w;
|
|
hit_dist_accum += hit_dist;
|
|
break;
|
|
}
|
|
/* Next iteration will get bigger radius but smaller weight! */
|
|
w /= MREMAP_RAYCAST_APPROXIMATE_FAC;
|
|
}
|
|
}
|
|
/* A sampling is valid (as in, its result can be considered as valid sources) only if at least
|
|
* half of the rays found a source! */
|
|
if (totweights > ((float)grid_size / 2.0f)) {
|
|
for (j = 0; j < (int)numedges_src; j++) {
|
|
if (!weights[j]) {
|
|
continue;
|
|
}
|
|
/* Note: sources_num is always <= j! */
|
|
weights[sources_num] = weights[j] / totweights;
|
|
indices[sources_num] = j;
|
|
sources_num++;
|
|
}
|
|
mesh_remap_item_define(r_map, i, hit_dist_accum / totweights, 0,
|
|
sources_num, indices, weights);
|
|
}
|
|
else {
|
|
/* No source for this dest edge! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(indices);
|
|
MEM_freeN(weights);
|
|
}
|
|
else {
|
|
printf("WARNING! Unsupported mesh-to-mesh edge mapping mode (%d)!\n", mode);
|
|
memset(r_map->items, 0, sizeof(*r_map->items) * (size_t)numedges_dst);
|
|
}
|
|
|
|
free_bvhtree_from_mesh(&treedata);
|
|
}
|
|
}
|
|
|
|
#define POLY_UNSET 0
|
|
#define POLY_CENTER_INIT 1
|
|
#define POLY_COMPLETE 2
|
|
|
|
static void mesh_island_to_astar_graph_edge_process(
|
|
MeshIslandStore *islands, const int island_index, BLI_AStarGraph *as_graph,
|
|
MVert *verts, MPoly *polys, MLoop *loops,
|
|
const int edge_idx, BLI_bitmap *done_edges, MeshElemMap *edge_to_poly_map, const bool is_edge_innercut,
|
|
int *poly_island_index_map, float (*poly_centers)[3], unsigned char *poly_status)
|
|
{
|
|
int *poly_island_indices = BLI_array_alloca(poly_island_indices, (size_t)edge_to_poly_map[edge_idx].count);
|
|
int i, j;
|
|
|
|
for (i = 0; i < edge_to_poly_map[edge_idx].count; i++) {
|
|
const int pidx = edge_to_poly_map[edge_idx].indices[i];
|
|
MPoly *mp = &polys[pidx];
|
|
const int pidx_isld = islands ? poly_island_index_map[pidx] : pidx;
|
|
void *custom_data = is_edge_innercut ? SET_INT_IN_POINTER(edge_idx) : SET_INT_IN_POINTER(-1);
|
|
|
|
if (UNLIKELY(islands && (islands->items_to_islands[mp->loopstart] != island_index))) {
|
|
/* poly not in current island, happens with border edges... */
|
|
poly_island_indices[i] = -1;
|
|
continue;
|
|
}
|
|
|
|
if (poly_status[pidx_isld] == POLY_COMPLETE) {
|
|
poly_island_indices[i] = pidx_isld;
|
|
continue;
|
|
}
|
|
|
|
if (poly_status[pidx_isld] == POLY_UNSET) {
|
|
BKE_mesh_calc_poly_center(mp, &loops[mp->loopstart], verts, poly_centers[pidx_isld]);
|
|
BLI_astar_node_init(as_graph, pidx_isld, poly_centers[pidx_isld]);
|
|
poly_status[pidx_isld] = POLY_CENTER_INIT;
|
|
}
|
|
|
|
for (j = i; j--;) {
|
|
float dist_cost;
|
|
const int pidx_isld_other = poly_island_indices[j];
|
|
|
|
if (pidx_isld_other == -1 || poly_status[pidx_isld_other] == POLY_COMPLETE) {
|
|
/* If the other poly is complete, that link has already been added! */
|
|
continue;
|
|
}
|
|
dist_cost = len_v3v3(poly_centers[pidx_isld_other], poly_centers[pidx_isld]);
|
|
BLI_astar_node_link_add(as_graph, pidx_isld_other, pidx_isld, dist_cost, custom_data);
|
|
}
|
|
|
|
poly_island_indices[i] = pidx_isld;
|
|
}
|
|
|
|
BLI_BITMAP_ENABLE(done_edges, edge_idx);
|
|
}
|
|
|
|
static void mesh_island_to_astar_graph(
|
|
MeshIslandStore *islands, const int island_index,
|
|
MVert *verts, MeshElemMap *edge_to_poly_map, const int numedges, MLoop *loops, MPoly *polys, const int numpolys,
|
|
BLI_AStarGraph *r_as_graph)
|
|
{
|
|
MeshElemMap *island_poly_map = islands ? islands->islands[island_index] : NULL;
|
|
MeshElemMap *island_einnercut_map = islands ? islands->innercuts[island_index] : NULL;
|
|
|
|
int *poly_island_index_map = NULL;
|
|
BLI_bitmap *done_edges = BLI_BITMAP_NEW(numedges, __func__);
|
|
|
|
const int node_num = islands ? island_poly_map->count : numpolys;
|
|
unsigned char *poly_status = MEM_callocN(sizeof(*poly_status) * (size_t)node_num, __func__);
|
|
float (*poly_centers)[3];
|
|
|
|
int pidx_isld;
|
|
int i;
|
|
|
|
BLI_astar_graph_init(r_as_graph, node_num, NULL);
|
|
/* poly_centers is owned by graph memarena. */
|
|
poly_centers = BLI_memarena_calloc(r_as_graph->mem, sizeof(*poly_centers) * (size_t)node_num);
|
|
|
|
if (islands) {
|
|
/* poly_island_index_map is owned by graph memarena. */
|
|
poly_island_index_map = BLI_memarena_calloc(r_as_graph->mem, sizeof(*poly_island_index_map) * (size_t)numpolys);
|
|
for (i = island_poly_map->count; i--;) {
|
|
poly_island_index_map[island_poly_map->indices[i]] = i;
|
|
}
|
|
|
|
r_as_graph->custom_data = poly_island_index_map;
|
|
|
|
for (i = island_einnercut_map->count; i--;) {
|
|
mesh_island_to_astar_graph_edge_process(
|
|
islands, island_index, r_as_graph, verts, polys, loops,
|
|
island_einnercut_map->indices[i], done_edges, edge_to_poly_map, true,
|
|
poly_island_index_map, poly_centers, poly_status);
|
|
}
|
|
}
|
|
|
|
for (pidx_isld = node_num; pidx_isld--;) {
|
|
const int pidx = islands ? island_poly_map->indices[pidx_isld] : pidx_isld;
|
|
MPoly *mp = &polys[pidx];
|
|
int pl_idx, l_idx;
|
|
|
|
if (poly_status[pidx_isld] == POLY_COMPLETE) {
|
|
continue;
|
|
}
|
|
|
|
for (pl_idx = 0, l_idx = mp->loopstart; pl_idx < mp->totloop; pl_idx++, l_idx++) {
|
|
MLoop *ml = &loops[l_idx];
|
|
|
|
if (BLI_BITMAP_TEST(done_edges, ml->e)) {
|
|
continue;
|
|
}
|
|
|
|
mesh_island_to_astar_graph_edge_process(
|
|
islands, island_index, r_as_graph, verts, polys, loops,
|
|
(int)ml->e, done_edges, edge_to_poly_map, false,
|
|
poly_island_index_map, poly_centers, poly_status);
|
|
}
|
|
poly_status[pidx_isld] = POLY_COMPLETE;
|
|
}
|
|
|
|
MEM_freeN(done_edges);
|
|
MEM_freeN(poly_status);
|
|
}
|
|
|
|
#undef POLY_UNSET
|
|
#undef POLY_CENTER_INIT
|
|
#undef POLY_COMPLETE
|
|
|
|
/* Our 'f_cost' callback func, to find shortest poly-path between two remapped-loops.
|
|
* Note we do not want to make innercuts 'walls' here, just detect when the shortest path goes by those. */
|
|
static float mesh_remap_calc_loops_astar_f_cost(
|
|
BLI_AStarGraph *as_graph, BLI_AStarSolution *as_solution, BLI_AStarGNLink *link,
|
|
const int node_idx_curr, const int node_idx_next, const int node_idx_dst)
|
|
{
|
|
float *co_next, *co_dest;
|
|
|
|
if (link && (GET_INT_FROM_POINTER(link->custom_data) != -1)) {
|
|
/* An innercut edge... We tag our solution as potentially crossing innercuts.
|
|
* Note it might not be the case in the end (AStar will explore around optimal path), but helps
|
|
* trimming off some processing later... */
|
|
if (!GET_INT_FROM_POINTER(as_solution->custom_data)) {
|
|
as_solution->custom_data = SET_INT_IN_POINTER(true);
|
|
}
|
|
}
|
|
|
|
/* Our heuristic part of current f_cost is distance from next node to destination one.
|
|
* It is guaranteed to be less than (or equal to) actual shortest poly-path between next node and destination one.
|
|
*/
|
|
co_next = (float *)as_graph->nodes[node_idx_next].custom_data;
|
|
co_dest = (float *)as_graph->nodes[node_idx_dst].custom_data;
|
|
return (link ? (as_solution->g_costs[node_idx_curr] + link->cost) : 0.0f) + len_v3v3(co_next, co_dest);
|
|
}
|
|
|
|
#define ASTAR_STEPS_MAX 64
|
|
|
|
|
|
void BKE_mesh_remap_calc_loops_from_dm(
|
|
const int mode, const SpaceTransform *space_transform, const float max_dist, const float ray_radius,
|
|
MVert *verts_dst, const int numverts_dst, MEdge *edges_dst, const int numedges_dst,
|
|
MLoop *loops_dst, const int numloops_dst, MPoly *polys_dst, const int numpolys_dst,
|
|
CustomData *ldata_dst, CustomData *pdata_dst,
|
|
const bool use_split_nors_dst, const float split_angle_dst, const bool dirty_nors_dst,
|
|
DerivedMesh *dm_src, const bool use_split_nors_src, const float split_angle_src,
|
|
MeshRemapIslandsCalc gen_islands_src, const float islands_precision_src, MeshPairRemap *r_map)
|
|
{
|
|
const float full_weight = 1.0f;
|
|
const float max_dist_sq = max_dist * max_dist;
|
|
|
|
int i;
|
|
|
|
BLI_assert(mode & MREMAP_MODE_LOOP);
|
|
BLI_assert((islands_precision_src >= 0.0f) && (islands_precision_src <= 1.0f));
|
|
|
|
BKE_mesh_remap_init(r_map, numloops_dst);
|
|
|
|
if (mode == MREMAP_MODE_TOPOLOGY) {
|
|
/* In topology mapping, we assume meshes are identical, islands included! */
|
|
BLI_assert(numloops_dst == dm_src->getNumLoops(dm_src));
|
|
for (i = 0; i < numloops_dst; i++) {
|
|
mesh_remap_item_define(r_map, i, FLT_MAX, 0, 1, &i, &full_weight);
|
|
}
|
|
}
|
|
else {
|
|
BVHTreeFromMesh *treedata = NULL;
|
|
BVHTreeNearest nearest = {0};
|
|
BVHTreeRayHit rayhit = {0};
|
|
int num_trees = 0;
|
|
float hit_dist;
|
|
|
|
const bool use_from_vert = (mode & MREMAP_USE_VERT);
|
|
|
|
MeshIslandStore island_store = {0};
|
|
bool use_islands = false;
|
|
|
|
BLI_AStarGraph *as_graphdata = NULL;
|
|
BLI_AStarSolution as_solution = {0};
|
|
const int isld_steps_src = islands_precision_src ?
|
|
max_ii((int)(ASTAR_STEPS_MAX * islands_precision_src + 0.499f), 1) : 0;
|
|
|
|
float (*poly_nors_src)[3] = NULL;
|
|
float (*loop_nors_src)[3] = NULL;
|
|
float (*poly_nors_dst)[3] = NULL;
|
|
float (*loop_nors_dst)[3] = NULL;
|
|
|
|
float (*poly_cents_src)[3] = NULL;
|
|
|
|
MeshElemMap *vert_to_loop_map_src = NULL;
|
|
int *vert_to_loop_map_src_buff = NULL;
|
|
MeshElemMap *vert_to_poly_map_src = NULL;
|
|
int *vert_to_poly_map_src_buff = NULL;
|
|
MeshElemMap *edge_to_poly_map_src = NULL;
|
|
int *edge_to_poly_map_src_buff = NULL;
|
|
MeshElemMap *poly_to_looptri_map_src = NULL;
|
|
int *poly_to_looptri_map_src_buff = NULL;
|
|
|
|
/* Unlike above, those are one-to-one mappings, simpler! */
|
|
int *loop_to_poly_map_src = NULL;
|
|
|
|
bool verts_allocated_src;
|
|
MVert *verts_src = DM_get_vert_array(dm_src, &verts_allocated_src);
|
|
const int num_verts_src = dm_src->getNumVerts(dm_src);
|
|
float (*vcos_src)[3] = NULL;
|
|
bool edges_allocated_src;
|
|
MEdge *edges_src = DM_get_edge_array(dm_src, &edges_allocated_src);
|
|
const int num_edges_src = dm_src->getNumEdges(dm_src);
|
|
bool loops_allocated_src;
|
|
MLoop *loops_src = DM_get_loop_array(dm_src, &loops_allocated_src);
|
|
const int num_loops_src = dm_src->getNumLoops(dm_src);
|
|
bool polys_allocated_src;
|
|
MPoly *polys_src = DM_get_poly_array(dm_src, &polys_allocated_src);
|
|
const int num_polys_src = dm_src->getNumPolys(dm_src);
|
|
bool looptri_allocated_src = false;
|
|
const MLoopTri *looptri_src = NULL;
|
|
int num_looptri_src = 0;
|
|
|
|
size_t buff_size_interp = MREMAP_DEFAULT_BUFSIZE;
|
|
float (*vcos_interp)[3] = NULL;
|
|
int *indices_interp = NULL;
|
|
float *weights_interp = NULL;
|
|
|
|
MLoop *ml_src, *ml_dst;
|
|
MPoly *mp_src, *mp_dst;
|
|
int tindex, pidx_dst, lidx_dst, plidx_dst, pidx_src, lidx_src, plidx_src;
|
|
|
|
IslandResult **islands_res;
|
|
size_t islands_res_buff_size = MREMAP_DEFAULT_BUFSIZE;
|
|
|
|
const float bvh_epsilon = (mode & MREMAP_USE_NORPROJ) ? MREMAP_RAYCAST_APPROXIMATE_BVHEPSILON(ray_radius) : 0.0f;
|
|
|
|
if (!use_from_vert) {
|
|
vcos_src = MEM_mallocN(sizeof(*vcos_src) * (size_t)num_verts_src, __func__);
|
|
dm_src->getVertCos(dm_src, vcos_src);
|
|
|
|
vcos_interp = MEM_mallocN(sizeof(*vcos_interp) * buff_size_interp, __func__);
|
|
indices_interp = MEM_mallocN(sizeof(*indices_interp) * buff_size_interp, __func__);
|
|
weights_interp = MEM_mallocN(sizeof(*weights_interp) * buff_size_interp, __func__);
|
|
}
|
|
|
|
{
|
|
const bool need_lnors_src = (mode & MREMAP_USE_LOOP) && (mode & MREMAP_USE_NORMAL);
|
|
const bool need_lnors_dst = need_lnors_src || (mode & MREMAP_USE_NORPROJ);
|
|
const bool need_pnors_src = need_lnors_src || ((mode & MREMAP_USE_POLY) && (mode & MREMAP_USE_NORMAL));
|
|
const bool need_pnors_dst = need_lnors_dst || need_pnors_src;
|
|
|
|
if (need_pnors_dst) {
|
|
/* Cache poly nors into a temp CDLayer. */
|
|
poly_nors_dst = CustomData_get_layer(pdata_dst, CD_NORMAL);
|
|
if (!poly_nors_dst) {
|
|
poly_nors_dst = CustomData_add_layer(pdata_dst, CD_NORMAL, CD_CALLOC, NULL, numpolys_dst);
|
|
CustomData_set_layer_flag(pdata_dst, CD_NORMAL, CD_FLAG_TEMPORARY);
|
|
}
|
|
if (dirty_nors_dst) {
|
|
BKE_mesh_calc_normals_poly(verts_dst, numverts_dst, loops_dst, polys_dst,
|
|
numloops_dst, numpolys_dst, poly_nors_dst, true);
|
|
}
|
|
}
|
|
if (need_lnors_dst) {
|
|
short (*custom_nors_dst)[2] = CustomData_get_layer(ldata_dst, CD_CUSTOMLOOPNORMAL);
|
|
|
|
/* Cache poly nors into a temp CDLayer. */
|
|
loop_nors_dst = CustomData_get_layer(ldata_dst, CD_NORMAL);
|
|
if (dirty_nors_dst || !loop_nors_dst) {
|
|
if (!loop_nors_dst) {
|
|
loop_nors_dst = CustomData_add_layer(ldata_dst, CD_NORMAL, CD_CALLOC, NULL, numloops_dst);
|
|
CustomData_set_layer_flag(ldata_dst, CD_NORMAL, CD_FLAG_TEMPORARY);
|
|
}
|
|
BKE_mesh_normals_loop_split(verts_dst, numverts_dst, edges_dst, numedges_dst,
|
|
loops_dst, loop_nors_dst, numloops_dst,
|
|
polys_dst, (const float (*)[3])poly_nors_dst, numpolys_dst,
|
|
use_split_nors_dst, split_angle_dst, NULL, custom_nors_dst, NULL);
|
|
}
|
|
}
|
|
if (need_pnors_src || need_lnors_src) {
|
|
/* Simpler for now, calcNormals never stores pnors :( */
|
|
dm_src->calcLoopNormals(dm_src, use_split_nors_src, split_angle_src);
|
|
|
|
if (need_pnors_src) {
|
|
poly_nors_src = dm_src->getPolyDataArray(dm_src, CD_NORMAL);
|
|
}
|
|
if (need_lnors_src) {
|
|
loop_nors_src = dm_src->getLoopDataArray(dm_src, CD_NORMAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (use_from_vert) {
|
|
BKE_mesh_vert_loop_map_create(&vert_to_loop_map_src, &vert_to_loop_map_src_buff,
|
|
polys_src, loops_src, num_verts_src, num_polys_src, num_loops_src);
|
|
if (mode & MREMAP_USE_POLY) {
|
|
BKE_mesh_vert_poly_map_create(&vert_to_poly_map_src, &vert_to_poly_map_src_buff,
|
|
polys_src, loops_src, num_verts_src, num_polys_src, num_loops_src);
|
|
}
|
|
}
|
|
|
|
/* Needed for islands (or plain mesh) to AStar graph conversion. */
|
|
BKE_mesh_edge_poly_map_create(&edge_to_poly_map_src, &edge_to_poly_map_src_buff,
|
|
edges_src, num_edges_src, polys_src, num_polys_src, loops_src, num_loops_src);
|
|
if (use_from_vert) {
|
|
loop_to_poly_map_src = MEM_mallocN(sizeof(*loop_to_poly_map_src) * (size_t)num_loops_src, __func__);
|
|
poly_cents_src = MEM_mallocN(sizeof(*poly_cents_src) * (size_t)num_polys_src, __func__);
|
|
for (pidx_src = 0, mp_src = polys_src; pidx_src < num_polys_src; pidx_src++, mp_src++) {
|
|
ml_src = &loops_src[mp_src->loopstart];
|
|
for (plidx_src = 0, lidx_src = mp_src->loopstart; plidx_src < mp_src->totloop; plidx_src++, lidx_src++) {
|
|
loop_to_poly_map_src[lidx_src] = pidx_src;
|
|
}
|
|
BKE_mesh_calc_poly_center(mp_src, ml_src, verts_src, poly_cents_src[pidx_src]);
|
|
}
|
|
}
|
|
|
|
/* Island makes things slightly more complex here.
|
|
* Basically, we:
|
|
* * Make one treedata for each island's elements.
|
|
* * Check all loops of a same dest poly against all treedata.
|
|
* * Choose the island's elements giving the best results.
|
|
*/
|
|
|
|
/* First, generate the islands, if possible. */
|
|
if (gen_islands_src) {
|
|
use_islands = gen_islands_src(
|
|
verts_src, num_verts_src,
|
|
edges_src, num_edges_src,
|
|
polys_src, num_polys_src,
|
|
loops_src, num_loops_src,
|
|
&island_store);
|
|
|
|
num_trees = use_islands ? island_store.islands_num : 1;
|
|
treedata = MEM_callocN(sizeof(*treedata) * (size_t)num_trees, __func__);
|
|
if (isld_steps_src) {
|
|
as_graphdata = MEM_callocN(sizeof(*as_graphdata) * (size_t)num_trees, __func__);
|
|
}
|
|
|
|
if (use_islands) {
|
|
/* We expect our islands to contain poly indices, with edge indices of 'inner cuts',
|
|
* and a mapping loops -> islands indices.
|
|
* This implies all loops of a same poly are in the same island. */
|
|
BLI_assert((island_store.item_type == MISLAND_TYPE_LOOP) &&
|
|
(island_store.island_type == MISLAND_TYPE_POLY) &&
|
|
(island_store.innercut_type == MISLAND_TYPE_EDGE));
|
|
}
|
|
}
|
|
else {
|
|
num_trees = 1;
|
|
treedata = MEM_callocN(sizeof(*treedata), __func__);
|
|
if (isld_steps_src) {
|
|
as_graphdata = MEM_callocN(sizeof(*as_graphdata), __func__);
|
|
}
|
|
}
|
|
|
|
/* Build our AStar graphs. */
|
|
if (isld_steps_src) {
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
mesh_island_to_astar_graph(
|
|
use_islands ? &island_store : NULL, tindex, verts_src, edge_to_poly_map_src, num_edges_src,
|
|
loops_src, polys_src, num_polys_src, &as_graphdata[tindex]);
|
|
}
|
|
}
|
|
|
|
/* Build our BVHtrees, either from verts or tessfaces. */
|
|
if (use_from_vert) {
|
|
if (use_islands) {
|
|
BLI_bitmap *verts_active = BLI_BITMAP_NEW((size_t)num_verts_src, __func__);
|
|
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
MeshElemMap *isld = island_store.islands[tindex];
|
|
int num_verts_active = 0;
|
|
BLI_BITMAP_SET_ALL(verts_active, false, (size_t)num_verts_src);
|
|
for (i = 0; i < isld->count; i++) {
|
|
mp_src = &polys_src[isld->indices[i]];
|
|
for (lidx_src = mp_src->loopstart; lidx_src < mp_src->loopstart + mp_src->totloop; lidx_src++) {
|
|
const unsigned int vidx_src = loops_src[lidx_src].v;
|
|
if (!BLI_BITMAP_TEST(verts_active, vidx_src)) {
|
|
BLI_BITMAP_ENABLE(verts_active, loops_src[lidx_src].v);
|
|
num_verts_active++;
|
|
}
|
|
}
|
|
}
|
|
/* verts 'ownership' is transfered to treedata here, which will handle its freeing. */
|
|
bvhtree_from_mesh_verts_ex(&treedata[tindex], verts_src, num_verts_src, verts_allocated_src,
|
|
verts_active, num_verts_active, bvh_epsilon, 2, 6);
|
|
if (verts_allocated_src) {
|
|
verts_allocated_src = false; /* Only 'give' our verts once, to first tree! */
|
|
}
|
|
}
|
|
|
|
MEM_freeN(verts_active);
|
|
}
|
|
else {
|
|
BLI_assert(num_trees == 1);
|
|
bvhtree_from_mesh_verts(&treedata[0], dm_src, bvh_epsilon, 2, 6);
|
|
}
|
|
}
|
|
else { /* We use polygons. */
|
|
if (use_islands) {
|
|
/* bvhtree here uses looptri faces... */
|
|
const unsigned int dirty_tess_flag = dm_src->dirty & DM_DIRTY_TESS_CDLAYERS;
|
|
BLI_bitmap *looptri_active;
|
|
|
|
/* We do not care about tessellated data here, only geometry itself is important. */
|
|
if (dirty_tess_flag) {
|
|
dm_src->dirty &= ~dirty_tess_flag;
|
|
}
|
|
DM_ensure_looptri(dm_src);
|
|
if (dirty_tess_flag) {
|
|
dm_src->dirty |= dirty_tess_flag;
|
|
}
|
|
|
|
looptri_src = DM_get_looptri_array(
|
|
dm_src,
|
|
verts_src,
|
|
polys_src, num_polys_src,
|
|
loops_src, num_loops_src,
|
|
&looptri_allocated_src);
|
|
num_looptri_src = dm_src->getNumLoopTri(dm_src);
|
|
looptri_active = BLI_BITMAP_NEW((size_t)num_looptri_src, __func__);
|
|
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
int num_looptri_active = 0;
|
|
BLI_BITMAP_SET_ALL(looptri_active, false, (size_t)num_looptri_src);
|
|
for (i = 0; i < num_looptri_src; i++) {
|
|
mp_src = &polys_src[looptri_src[i].poly];
|
|
if (island_store.items_to_islands[mp_src->loopstart] == tindex) {
|
|
BLI_BITMAP_ENABLE(looptri_active, i);
|
|
num_looptri_active++;
|
|
}
|
|
}
|
|
/* verts and faces 'ownership' is transfered to treedata here, which will handle its freeing. */
|
|
bvhtree_from_mesh_looptri_ex(
|
|
&treedata[tindex],
|
|
verts_src, verts_allocated_src,
|
|
loops_src, loops_allocated_src,
|
|
looptri_src, num_looptri_src, looptri_allocated_src,
|
|
looptri_active, num_looptri_active, bvh_epsilon, 2, 6);
|
|
if (verts_allocated_src) {
|
|
verts_allocated_src = false; /* Only 'give' our verts once, to first tree! */
|
|
}
|
|
if (looptri_allocated_src) {
|
|
looptri_allocated_src = false; /* Only 'give' our looptri once, to first tree! */
|
|
}
|
|
}
|
|
|
|
MEM_freeN(looptri_active);
|
|
}
|
|
else {
|
|
BLI_assert(num_trees == 1);
|
|
bvhtree_from_mesh_looptri(&treedata[0], dm_src, bvh_epsilon, 2, 6);
|
|
}
|
|
}
|
|
|
|
/* And check each dest poly! */
|
|
islands_res = MEM_mallocN(sizeof(*islands_res) * (size_t)num_trees, __func__);
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
islands_res[tindex] = MEM_mallocN(sizeof(**islands_res) * islands_res_buff_size, __func__);
|
|
}
|
|
|
|
for (pidx_dst = 0, mp_dst = polys_dst; pidx_dst < numpolys_dst; pidx_dst++, mp_dst++) {
|
|
float (*pnor_dst)[3] = &poly_nors_dst[pidx_dst];
|
|
|
|
/* Only in use_from_vert case, we may need polys' centers as fallback in case we cannot decide which
|
|
* corner to use from normals only. */
|
|
float pcent_dst[3];
|
|
bool pcent_dst_valid = false;
|
|
|
|
if ((size_t)mp_dst->totloop > islands_res_buff_size) {
|
|
islands_res_buff_size = (size_t)mp_dst->totloop + MREMAP_DEFAULT_BUFSIZE;
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
islands_res[tindex] = MEM_reallocN(islands_res[tindex], sizeof(**islands_res) * islands_res_buff_size);
|
|
}
|
|
}
|
|
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
BVHTreeFromMesh *tdata = &treedata[tindex];
|
|
|
|
ml_dst = &loops_dst[mp_dst->loopstart];
|
|
for (plidx_dst = 0; plidx_dst < mp_dst->totloop; plidx_dst++, ml_dst++) {
|
|
if (use_from_vert) {
|
|
float tmp_co[3];
|
|
MeshElemMap *vert_to_refelem_map_src = NULL;
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
nearest.index = -1;
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(tdata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
float (*nor_dst)[3];
|
|
float (*nors_src)[3];
|
|
float best_nor_dot = -2.0f;
|
|
float best_sqdist_fallback = FLT_MAX;
|
|
int best_index_src = -1;
|
|
|
|
if (mode == MREMAP_MODE_LOOP_NEAREST_LOOPNOR) {
|
|
nor_dst = &loop_nors_dst[plidx_dst + mp_dst->loopstart];
|
|
nors_src = loop_nors_src;
|
|
vert_to_refelem_map_src = vert_to_loop_map_src;
|
|
}
|
|
else { /* if (mode == MREMAP_MODE_LOOP_NEAREST_POLYNOR) { */
|
|
nor_dst = pnor_dst;
|
|
nors_src = poly_nors_src;
|
|
vert_to_refelem_map_src = vert_to_poly_map_src;
|
|
}
|
|
|
|
for (i = vert_to_refelem_map_src[nearest.index].count; i--;) {
|
|
const int index_src = vert_to_refelem_map_src[nearest.index].indices[i];
|
|
const float dot = dot_v3v3(nors_src[index_src], *nor_dst);
|
|
|
|
pidx_src = (mode == MREMAP_MODE_LOOP_NEAREST_LOOPNOR) ?
|
|
loop_to_poly_map_src[index_src] : index_src;
|
|
/* WARNING! This is not the *real* lidx_src in case of POLYNOR, we only use it
|
|
* to check we stay on current island (all loops from a given poly are
|
|
* on same island!). */
|
|
lidx_src = (mode == MREMAP_MODE_LOOP_NEAREST_LOOPNOR) ?
|
|
index_src : polys_src[pidx_src].loopstart;
|
|
|
|
/* A same vert may be at the boundary of several islands! Hence, we have to ensure
|
|
* poly/loop we are currently considering *belongs* to current island! */
|
|
if (use_islands && island_store.items_to_islands[lidx_src] != tindex) {
|
|
continue;
|
|
}
|
|
|
|
if (dot > best_nor_dot - 1e-6f) {
|
|
/* We need something as fallback decision in case dest normal matches several
|
|
* source normals (see T44522), using distance between polys' centers here. */
|
|
float *pcent_src;
|
|
float sqdist;
|
|
|
|
mp_src = &polys_src[pidx_src];
|
|
ml_src = &loops_src[mp_src->loopstart];
|
|
|
|
if (!pcent_dst_valid) {
|
|
BKE_mesh_calc_poly_center(
|
|
mp_dst, &loops_dst[mp_dst->loopstart], verts_dst, pcent_dst);
|
|
pcent_dst_valid = true;
|
|
}
|
|
pcent_src = poly_cents_src[pidx_src];
|
|
sqdist = len_squared_v3v3(pcent_dst, pcent_src);
|
|
|
|
if ((dot > best_nor_dot + 1e-6f) || (sqdist < best_sqdist_fallback)) {
|
|
best_nor_dot = dot;
|
|
best_sqdist_fallback = sqdist;
|
|
best_index_src = index_src;
|
|
}
|
|
}
|
|
}
|
|
if (mode == MREMAP_MODE_LOOP_NEAREST_POLYNOR) {
|
|
/* Our best_index_src is a poly one for now!
|
|
* Have to find its loop matching our closest vertex. */
|
|
mp_src = &polys_src[best_index_src];
|
|
ml_src = &loops_src[mp_src->loopstart];
|
|
for (plidx_src = 0; plidx_src < mp_src->totloop; plidx_src++, ml_src++) {
|
|
if ((int)ml_src->v == nearest.index) {
|
|
best_index_src = plidx_src + mp_src->loopstart;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
best_nor_dot = (best_nor_dot + 1.0f) * 0.5f;
|
|
islands_res[tindex][plidx_dst].factor = hit_dist ? (best_nor_dot / hit_dist) : 1e18f;
|
|
islands_res[tindex][plidx_dst].hit_dist = hit_dist;
|
|
islands_res[tindex][plidx_dst].index_src = best_index_src;
|
|
}
|
|
else {
|
|
/* No source for this dest loop! */
|
|
islands_res[tindex][plidx_dst].factor = 0.0f;
|
|
islands_res[tindex][plidx_dst].hit_dist = FLT_MAX;
|
|
islands_res[tindex][plidx_dst].index_src = -1;
|
|
}
|
|
}
|
|
else if (mode & MREMAP_USE_NORPROJ) {
|
|
float tmp_co[3], tmp_no[3];
|
|
|
|
int n = (ray_radius > 0.0f) ? MREMAP_RAYCAST_APPROXIMATE_NR : 1;
|
|
float w = 1.0f;
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
copy_v3_v3(tmp_no, loop_nors_dst[plidx_dst + mp_dst->loopstart]);
|
|
|
|
/* We do our transform here, since we may do several raycast/nearest queries. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
BLI_space_transform_apply_normal(space_transform, tmp_no);
|
|
}
|
|
|
|
while (n--) {
|
|
if (mesh_remap_bvhtree_query_raycast(
|
|
tdata, &rayhit, tmp_co, tmp_no, ray_radius / w, max_dist, &hit_dist))
|
|
{
|
|
islands_res[tindex][plidx_dst].factor = (hit_dist ? (1.0f / hit_dist) : 1e18f) * w;
|
|
islands_res[tindex][plidx_dst].hit_dist = hit_dist;
|
|
islands_res[tindex][plidx_dst].index_src = (int)tdata->looptri[rayhit.index].poly;
|
|
copy_v3_v3(islands_res[tindex][plidx_dst].hit_point, rayhit.co);
|
|
break;
|
|
}
|
|
/* Next iteration will get bigger radius but smaller weight! */
|
|
w /= MREMAP_RAYCAST_APPROXIMATE_FAC;
|
|
}
|
|
if (n == -1) {
|
|
/* Fallback to 'nearest' hit here, loops usually comes in 'face group', not good to
|
|
* have only part of one dest face's loops to map to source.
|
|
* Note that since we give this a null weight, if whole weight for a given face
|
|
* is null, it means none of its loop mapped to this source island, hence we can skip it
|
|
* later.
|
|
*/
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
nearest.index = -1;
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
/* In any case, this fallback nearest hit should have no weight at all
|
|
* in 'best island' decision! */
|
|
islands_res[tindex][plidx_dst].factor = 0.0f;
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(tdata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
islands_res[tindex][plidx_dst].hit_dist = hit_dist;
|
|
islands_res[tindex][plidx_dst].index_src = (int)tdata->looptri[nearest.index].poly;
|
|
copy_v3_v3(islands_res[tindex][plidx_dst].hit_point, nearest.co);
|
|
}
|
|
else {
|
|
/* No source for this dest loop! */
|
|
islands_res[tindex][plidx_dst].hit_dist = FLT_MAX;
|
|
islands_res[tindex][plidx_dst].index_src = -1;
|
|
}
|
|
}
|
|
}
|
|
else { /* Nearest poly either to use all its loops/verts or just closest one. */
|
|
float tmp_co[3];
|
|
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
nearest.index = -1;
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(tdata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
islands_res[tindex][plidx_dst].factor = hit_dist ? (1.0f / hit_dist) : 1e18f;
|
|
islands_res[tindex][plidx_dst].hit_dist = hit_dist;
|
|
islands_res[tindex][plidx_dst].index_src = (int)tdata->looptri[nearest.index].poly;
|
|
copy_v3_v3(islands_res[tindex][plidx_dst].hit_point, nearest.co);
|
|
}
|
|
else {
|
|
/* No source for this dest loop! */
|
|
islands_res[tindex][plidx_dst].factor = 0.0f;
|
|
islands_res[tindex][plidx_dst].hit_dist = FLT_MAX;
|
|
islands_res[tindex][plidx_dst].index_src = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* And now, find best island to use! */
|
|
/* We have to first select the 'best source island' for given dst poly and its loops.
|
|
* Then, we have to check that poly does not 'spread' across some island's limits
|
|
* (like inner seams for UVs, etc.).
|
|
* Note we only still partially support that kind of situation here, i.e. polys spreading over actual cracks
|
|
* (like a narrow space without faces on src, splitting a 'tube-like' geometry). That kind of situation
|
|
* should be relatively rare, though.
|
|
*/
|
|
/* XXX This block in itself is big and complex enough to be a separate function but... it uses a bunch
|
|
* of locale vars. Not worth sending all that through parameters (for now at least). */
|
|
{
|
|
BLI_AStarGraph *as_graph = NULL;
|
|
int *poly_island_index_map = NULL;
|
|
int pidx_src_prev = -1;
|
|
|
|
MeshElemMap *best_island = NULL;
|
|
float best_island_fac = 0.0f;
|
|
int best_island_index = -1;
|
|
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
float island_fac = 0.0f;
|
|
|
|
for (plidx_dst = 0; plidx_dst < mp_dst->totloop; plidx_dst++) {
|
|
island_fac += islands_res[tindex][plidx_dst].factor;
|
|
}
|
|
island_fac /= (float)mp_dst->totloop;
|
|
|
|
if (island_fac > best_island_fac) {
|
|
best_island_fac = island_fac;
|
|
best_island_index = tindex;
|
|
}
|
|
}
|
|
|
|
if (best_island_index != -1 && isld_steps_src) {
|
|
best_island = use_islands ? island_store.islands[best_island_index] : NULL;
|
|
as_graph = &as_graphdata[best_island_index];
|
|
poly_island_index_map = (int *)as_graph->custom_data;
|
|
BLI_astar_solution_init(as_graph, &as_solution, NULL);
|
|
}
|
|
|
|
for (plidx_dst = 0; plidx_dst < mp_dst->totloop; plidx_dst++) {
|
|
IslandResult *isld_res;
|
|
lidx_dst = plidx_dst + mp_dst->loopstart;
|
|
|
|
if (best_island_index == -1) {
|
|
/* No source for any loops of our dest poly in any source islands. */
|
|
BKE_mesh_remap_item_define_invalid(r_map, lidx_dst);
|
|
continue;
|
|
}
|
|
|
|
as_solution.custom_data = SET_INT_IN_POINTER(false);
|
|
|
|
isld_res = &islands_res[best_island_index][plidx_dst];
|
|
if (use_from_vert) {
|
|
/* Indices stored in islands_res are those of loops, one per dest loop. */
|
|
lidx_src = isld_res->index_src;
|
|
if (lidx_src >= 0) {
|
|
pidx_src = loop_to_poly_map_src[lidx_src];
|
|
/* If prev and curr poly are the same, no need to do anything more!!! */
|
|
if (!ELEM(pidx_src_prev, -1, pidx_src) && isld_steps_src) {
|
|
int pidx_isld_src, pidx_isld_src_prev;
|
|
if (poly_island_index_map) {
|
|
pidx_isld_src = poly_island_index_map[pidx_src];
|
|
pidx_isld_src_prev = poly_island_index_map[pidx_src_prev];
|
|
}
|
|
else {
|
|
pidx_isld_src = pidx_src;
|
|
pidx_isld_src_prev = pidx_src_prev;
|
|
}
|
|
|
|
BLI_astar_graph_solve(
|
|
as_graph, pidx_isld_src_prev, pidx_isld_src,
|
|
mesh_remap_calc_loops_astar_f_cost, &as_solution, isld_steps_src);
|
|
if (GET_INT_FROM_POINTER(as_solution.custom_data) && (as_solution.steps > 0)) {
|
|
/* Find first 'cutting edge' on path, and bring back lidx_src on poly just
|
|
* before that edge.
|
|
* Note we could try to be much smarter (like e.g. storing a whole poly's indices,
|
|
* and making decision (on which side of cutting edge(s!) to be) on the end,
|
|
* but this is one more level of complexity, better to first see if
|
|
* simple solution works!
|
|
*/
|
|
int last_valid_pidx_isld_src = -1;
|
|
/* Note we go backward here, from dest to src poly. */
|
|
for (i = as_solution.steps - 1; i--;) {
|
|
BLI_AStarGNLink *as_link = as_solution.prev_links[pidx_isld_src];
|
|
const int eidx = GET_INT_FROM_POINTER(as_link->custom_data);
|
|
pidx_isld_src = as_solution.prev_nodes[pidx_isld_src];
|
|
BLI_assert(pidx_isld_src != -1);
|
|
if (eidx != -1) {
|
|
/* we are 'crossing' a cutting edge. */
|
|
last_valid_pidx_isld_src = pidx_isld_src;
|
|
}
|
|
}
|
|
if (last_valid_pidx_isld_src != -1) {
|
|
/* Find a new valid loop in that new poly (nearest one for now).
|
|
* Note we could be much more subtle here, again that's for later... */
|
|
int j;
|
|
float best_dist_sq = FLT_MAX;
|
|
float tmp_co[3];
|
|
|
|
ml_dst = &loops_dst[lidx_dst];
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
|
|
/* We do our transform here, since we may do several raycast/nearest queries. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
pidx_src = use_islands ? best_island->indices[last_valid_pidx_isld_src] :
|
|
last_valid_pidx_isld_src;
|
|
mp_src = &polys_src[pidx_src];
|
|
ml_src = &loops_src[mp_src->loopstart];
|
|
for (j = 0; j < mp_src->totloop; j++, ml_src++) {
|
|
const float dist_sq = len_squared_v3v3(verts_src[ml_src->v].co, tmp_co);
|
|
if (dist_sq < best_dist_sq) {
|
|
best_dist_sq = dist_sq;
|
|
lidx_src = mp_src->loopstart + j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mesh_remap_item_define(
|
|
r_map, lidx_dst, isld_res->hit_dist,
|
|
best_island_index, 1, &lidx_src, &full_weight);
|
|
pidx_src_prev = pidx_src;
|
|
}
|
|
else {
|
|
/* No source for this loop in this island. */
|
|
/* TODO: would probably be better to get a source at all cost in best island anyway? */
|
|
mesh_remap_item_define(
|
|
r_map, lidx_dst, FLT_MAX,
|
|
best_island_index, 0, NULL, NULL);
|
|
}
|
|
}
|
|
else {
|
|
/* Else, we use source poly, indices stored in islands_res are those of polygons. */
|
|
pidx_src = isld_res->index_src;
|
|
if (pidx_src >= 0) {
|
|
float *hit_co = isld_res->hit_point;
|
|
int best_loop_index_src;
|
|
|
|
mp_src = &polys_src[pidx_src];
|
|
/* If prev and curr poly are the same, no need to do anything more!!! */
|
|
if (!ELEM(pidx_src_prev, -1, pidx_src) && isld_steps_src) {
|
|
int pidx_isld_src, pidx_isld_src_prev;
|
|
if (poly_island_index_map) {
|
|
pidx_isld_src = poly_island_index_map[pidx_src];
|
|
pidx_isld_src_prev = poly_island_index_map[pidx_src_prev];
|
|
}
|
|
else {
|
|
pidx_isld_src = pidx_src;
|
|
pidx_isld_src_prev = pidx_src_prev;
|
|
}
|
|
|
|
BLI_astar_graph_solve(
|
|
as_graph, pidx_isld_src_prev, pidx_isld_src,
|
|
mesh_remap_calc_loops_astar_f_cost, &as_solution, isld_steps_src);
|
|
if (GET_INT_FROM_POINTER(as_solution.custom_data) && (as_solution.steps > 0)) {
|
|
/* Find first 'cutting edge' on path, and bring back lidx_src on poly just
|
|
* before that edge.
|
|
* Note we could try to be much smarter (like e.g. storing a whole poly's indices,
|
|
* and making decision (one which side of cutting edge(s!) to be on the end,
|
|
* but this is one more level of complexity, better to first see if
|
|
* simple solution works!
|
|
*/
|
|
int last_valid_pidx_isld_src = -1;
|
|
/* Note we go backward here, from dest to src poly. */
|
|
for (i = as_solution.steps - 1; i--;) {
|
|
BLI_AStarGNLink *as_link = as_solution.prev_links[pidx_isld_src];
|
|
int eidx = GET_INT_FROM_POINTER(as_link->custom_data);
|
|
|
|
pidx_isld_src = as_solution.prev_nodes[pidx_isld_src];
|
|
BLI_assert(pidx_isld_src != -1);
|
|
if (eidx != -1) {
|
|
/* we are 'crossing' a cutting edge. */
|
|
last_valid_pidx_isld_src = pidx_isld_src;
|
|
}
|
|
}
|
|
if (last_valid_pidx_isld_src != -1) {
|
|
/* Find a new valid loop in that new poly (nearest point on poly for now).
|
|
* Note we could be much more subtle here, again that's for later... */
|
|
float best_dist_sq = FLT_MAX;
|
|
float tmp_co[3];
|
|
int j;
|
|
|
|
ml_dst = &loops_dst[lidx_dst];
|
|
copy_v3_v3(tmp_co, verts_dst[ml_dst->v].co);
|
|
|
|
/* We do our transform here, since we may do several raycast/nearest queries. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
pidx_src = use_islands ? best_island->indices[last_valid_pidx_isld_src] :
|
|
last_valid_pidx_isld_src;
|
|
mp_src = &polys_src[pidx_src];
|
|
|
|
/* Create that one on demand. */
|
|
if (poly_to_looptri_map_src == NULL) {
|
|
BKE_mesh_origindex_map_create_looptri(
|
|
&poly_to_looptri_map_src, &poly_to_looptri_map_src_buff,
|
|
polys_src, num_polys_src,
|
|
looptri_src, num_looptri_src);
|
|
}
|
|
|
|
for (j = poly_to_looptri_map_src[pidx_src].count; j--;) {
|
|
float h[3];
|
|
const MLoopTri *lt = &looptri_src[poly_to_looptri_map_src[pidx_src].indices[j]];
|
|
float dist_sq;
|
|
|
|
closest_on_tri_to_point_v3(
|
|
h, tmp_co,
|
|
vcos_src[loops_src[lt->tri[0]].v],
|
|
vcos_src[loops_src[lt->tri[1]].v],
|
|
vcos_src[loops_src[lt->tri[2]].v]);
|
|
dist_sq = len_squared_v3v3(tmp_co, h);
|
|
if (dist_sq < best_dist_sq) {
|
|
copy_v3_v3(hit_co, h);
|
|
best_dist_sq = dist_sq;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mode == MREMAP_MODE_LOOP_POLY_NEAREST) {
|
|
mesh_remap_interp_poly_data_get(
|
|
mp_src, loops_src, (const float (*)[3])vcos_src, hit_co,
|
|
&buff_size_interp, &vcos_interp, true, &indices_interp,
|
|
&weights_interp, false, &best_loop_index_src);
|
|
|
|
mesh_remap_item_define(
|
|
r_map, lidx_dst, isld_res->hit_dist,
|
|
best_island_index, 1, &best_loop_index_src, &full_weight);
|
|
}
|
|
else {
|
|
const int sources_num = mesh_remap_interp_poly_data_get(
|
|
mp_src, loops_src, (const float (*)[3])vcos_src, hit_co,
|
|
&buff_size_interp, &vcos_interp, true, &indices_interp,
|
|
&weights_interp, true, NULL);
|
|
|
|
mesh_remap_item_define(
|
|
r_map, lidx_dst,
|
|
isld_res->hit_dist, best_island_index,
|
|
sources_num, indices_interp, weights_interp);
|
|
}
|
|
|
|
pidx_src_prev = pidx_src;
|
|
}
|
|
else {
|
|
/* No source for this loop in this island. */
|
|
/* TODO: would probably be better to get a source at all cost in best island anyway? */
|
|
mesh_remap_item_define(r_map, lidx_dst, FLT_MAX, best_island_index, 0, NULL, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_astar_solution_clear(&as_solution);
|
|
}
|
|
}
|
|
|
|
for (tindex = 0; tindex < num_trees; tindex++) {
|
|
MEM_freeN(islands_res[tindex]);
|
|
free_bvhtree_from_mesh(&treedata[tindex]);
|
|
if (isld_steps_src) {
|
|
BLI_astar_graph_free(&as_graphdata[tindex]);
|
|
}
|
|
}
|
|
MEM_freeN(islands_res);
|
|
BKE_mesh_loop_islands_free(&island_store);
|
|
MEM_freeN(treedata);
|
|
if (isld_steps_src) {
|
|
MEM_freeN(as_graphdata);
|
|
BLI_astar_solution_free(&as_solution);
|
|
}
|
|
|
|
if (verts_allocated_src) {
|
|
MEM_freeN(verts_src);
|
|
}
|
|
if (vcos_src) {
|
|
MEM_freeN(vcos_src);
|
|
}
|
|
if (edges_allocated_src) {
|
|
MEM_freeN(edges_src);
|
|
}
|
|
if (loops_allocated_src) {
|
|
MEM_freeN(loops_src);
|
|
}
|
|
if (polys_allocated_src) {
|
|
MEM_freeN(polys_src);
|
|
}
|
|
if (looptri_allocated_src) {
|
|
MEM_freeN((void *)looptri_src);
|
|
}
|
|
if (vert_to_loop_map_src) {
|
|
MEM_freeN(vert_to_loop_map_src);
|
|
}
|
|
if (vert_to_loop_map_src_buff) {
|
|
MEM_freeN(vert_to_loop_map_src_buff);
|
|
}
|
|
if (vert_to_poly_map_src) {
|
|
MEM_freeN(vert_to_poly_map_src);
|
|
}
|
|
if (vert_to_poly_map_src_buff) {
|
|
MEM_freeN(vert_to_poly_map_src_buff);
|
|
}
|
|
if (edge_to_poly_map_src) {
|
|
MEM_freeN(edge_to_poly_map_src);
|
|
}
|
|
if (edge_to_poly_map_src_buff) {
|
|
MEM_freeN(edge_to_poly_map_src_buff);
|
|
}
|
|
if (poly_to_looptri_map_src) {
|
|
MEM_freeN(poly_to_looptri_map_src);
|
|
}
|
|
if (poly_to_looptri_map_src_buff) {
|
|
MEM_freeN(poly_to_looptri_map_src_buff);
|
|
}
|
|
if (loop_to_poly_map_src) {
|
|
MEM_freeN(loop_to_poly_map_src);
|
|
}
|
|
if (poly_cents_src) {
|
|
MEM_freeN(poly_cents_src);
|
|
}
|
|
if (vcos_interp) {
|
|
MEM_freeN(vcos_interp);
|
|
}
|
|
if (indices_interp) {
|
|
MEM_freeN(indices_interp);
|
|
}
|
|
if (weights_interp) {
|
|
MEM_freeN(weights_interp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_mesh_remap_calc_polys_from_dm(
|
|
const int mode, const SpaceTransform *space_transform, const float max_dist, const float ray_radius,
|
|
MVert *verts_dst, const int numverts_dst, MLoop *loops_dst, const int numloops_dst,
|
|
MPoly *polys_dst, const int numpolys_dst, CustomData *pdata_dst, const bool dirty_nors_dst,
|
|
DerivedMesh *dm_src, MeshPairRemap *r_map)
|
|
{
|
|
const float full_weight = 1.0f;
|
|
const float max_dist_sq = max_dist * max_dist;
|
|
float (*poly_nors_dst)[3] = NULL;
|
|
int i;
|
|
|
|
BLI_assert(mode & MREMAP_MODE_POLY);
|
|
|
|
if (mode & (MREMAP_USE_NORMAL | MREMAP_USE_NORPROJ)) {
|
|
/* Cache poly nors into a temp CDLayer. */
|
|
poly_nors_dst = CustomData_get_layer(pdata_dst, CD_NORMAL);
|
|
if (!poly_nors_dst) {
|
|
poly_nors_dst = CustomData_add_layer(pdata_dst, CD_NORMAL, CD_CALLOC, NULL, numpolys_dst);
|
|
CustomData_set_layer_flag(pdata_dst, CD_NORMAL, CD_FLAG_TEMPORARY);
|
|
}
|
|
if (dirty_nors_dst) {
|
|
BKE_mesh_calc_normals_poly(verts_dst, numverts_dst, loops_dst, polys_dst, numloops_dst, numpolys_dst,
|
|
poly_nors_dst, true);
|
|
}
|
|
}
|
|
|
|
BKE_mesh_remap_init(r_map, numpolys_dst);
|
|
|
|
if (mode == MREMAP_MODE_TOPOLOGY) {
|
|
BLI_assert(numpolys_dst == dm_src->getNumPolys(dm_src));
|
|
for (i = 0; i < numpolys_dst; i++) {
|
|
mesh_remap_item_define(r_map, i, FLT_MAX, 0, 1, &i, &full_weight);
|
|
}
|
|
}
|
|
else {
|
|
BVHTreeFromMesh treedata = {NULL};
|
|
BVHTreeNearest nearest = {0};
|
|
BVHTreeRayHit rayhit = {0};
|
|
float hit_dist;
|
|
|
|
bvhtree_from_mesh_looptri(
|
|
&treedata, dm_src,
|
|
(mode & MREMAP_USE_NORPROJ) ? MREMAP_RAYCAST_APPROXIMATE_BVHEPSILON(ray_radius) : 0.0f,
|
|
2, 6);
|
|
|
|
if (mode == MREMAP_MODE_POLY_NEAREST) {
|
|
nearest.index = -1;
|
|
|
|
for (i = 0; i < numpolys_dst; i++) {
|
|
MPoly *mp = &polys_dst[i];
|
|
float tmp_co[3];
|
|
|
|
BKE_mesh_calc_poly_center(mp, &loops_dst[mp->loopstart], verts_dst, tmp_co);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_nearest(&treedata, &nearest, tmp_co, max_dist_sq, &hit_dist)) {
|
|
const MLoopTri *lt = &treedata.looptri[nearest.index];
|
|
const int poly_index = (int)lt->poly;
|
|
mesh_remap_item_define(
|
|
r_map, i, hit_dist, 0,
|
|
1, &poly_index, &full_weight);
|
|
}
|
|
else {
|
|
/* No source for this dest poly! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
else if (mode == MREMAP_MODE_POLY_NOR) {
|
|
BLI_assert(poly_nors_dst);
|
|
|
|
for (i = 0; i < numpolys_dst; i++) {
|
|
MPoly *mp = &polys_dst[i];
|
|
float tmp_co[3], tmp_no[3];
|
|
|
|
BKE_mesh_calc_poly_center(mp, &loops_dst[mp->loopstart], verts_dst, tmp_co);
|
|
copy_v3_v3(tmp_no, poly_nors_dst[i]);
|
|
|
|
/* Convert the vertex to tree coordinates, if needed. */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
BLI_space_transform_apply_normal(space_transform, tmp_no);
|
|
}
|
|
|
|
if (mesh_remap_bvhtree_query_raycast(
|
|
&treedata, &rayhit, tmp_co, tmp_no, ray_radius, max_dist, &hit_dist))
|
|
{
|
|
const MLoopTri *lt = &treedata.looptri[rayhit.index];
|
|
const int poly_index = (int)lt->poly;
|
|
|
|
mesh_remap_item_define(
|
|
r_map, i, hit_dist, 0,
|
|
1, &poly_index, &full_weight);
|
|
}
|
|
else {
|
|
/* No source for this dest poly! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
}
|
|
else if (mode == MREMAP_MODE_POLY_POLYINTERP_PNORPROJ) {
|
|
/* We cast our rays randomly, with a pseudo-even distribution (since we spread across tessellated tris,
|
|
* with additional weighting based on each tri's relative area).
|
|
*/
|
|
RNG *rng = BLI_rng_new(0);
|
|
|
|
const size_t numpolys_src = (size_t)dm_src->getNumPolys(dm_src);
|
|
|
|
/* Here it's simpler to just allocate for all polys :/ */
|
|
int *indices = MEM_mallocN(sizeof(*indices) * numpolys_src, __func__);
|
|
float *weights = MEM_mallocN(sizeof(*weights) * numpolys_src, __func__);
|
|
|
|
size_t tmp_poly_size = MREMAP_DEFAULT_BUFSIZE;
|
|
float (*poly_vcos_2d)[2] = MEM_mallocN(sizeof(*poly_vcos_2d) * tmp_poly_size, __func__);
|
|
/* Tessellated 2D poly, always (num_loops - 2) triangles. */
|
|
int (*tri_vidx_2d)[3] = MEM_mallocN(sizeof(*tri_vidx_2d) * (tmp_poly_size - 2), __func__);
|
|
|
|
for (i = 0; i < numpolys_dst; i++) {
|
|
/* For each dst poly, we sample some rays from it (2D grid in pnor space)
|
|
* and use their hits to interpolate from source polys. */
|
|
/* Note: dst poly is early-converted into src space! */
|
|
MPoly *mp = &polys_dst[i];
|
|
float tmp_co[3], tmp_no[3];
|
|
|
|
int tot_rays, done_rays = 0;
|
|
float poly_area_2d_inv, done_area = 0.0f;
|
|
|
|
const float zvec[3] = {0.0f, 0.0f, 1.0f};
|
|
float pcent_dst[3];
|
|
float to_pnor_2d_mat[3][3], from_pnor_2d_mat[3][3];
|
|
float poly_dst_2d_min[2], poly_dst_2d_max[2], poly_dst_2d_z;
|
|
float poly_dst_2d_size[2];
|
|
|
|
float totweights = 0.0f;
|
|
float hit_dist_accum = 0.0f;
|
|
int sources_num = 0;
|
|
const int tris_num = mp->totloop - 2;
|
|
int j;
|
|
|
|
BKE_mesh_calc_poly_center(mp, &loops_dst[mp->loopstart], verts_dst, pcent_dst);
|
|
copy_v3_v3(tmp_no, poly_nors_dst[i]);
|
|
|
|
/* We do our transform here, else it'd be redone by raycast helper for each ray, ugh! */
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, pcent_dst);
|
|
BLI_space_transform_apply_normal(space_transform, tmp_no);
|
|
}
|
|
|
|
copy_vn_fl(weights, (int)numpolys_src, 0.0f);
|
|
|
|
if (UNLIKELY((size_t)mp->totloop > tmp_poly_size)) {
|
|
tmp_poly_size = (size_t)mp->totloop;
|
|
poly_vcos_2d = MEM_reallocN(poly_vcos_2d, sizeof(*poly_vcos_2d) * tmp_poly_size);
|
|
tri_vidx_2d = MEM_reallocN(tri_vidx_2d, sizeof(*tri_vidx_2d) * (tmp_poly_size - 2));
|
|
}
|
|
|
|
rotation_between_vecs_to_mat3(to_pnor_2d_mat, tmp_no, zvec);
|
|
invert_m3_m3(from_pnor_2d_mat, to_pnor_2d_mat);
|
|
|
|
mul_m3_v3(to_pnor_2d_mat, pcent_dst);
|
|
poly_dst_2d_z = pcent_dst[2];
|
|
|
|
/* Get (2D) bounding square of our poly. */
|
|
INIT_MINMAX2(poly_dst_2d_min, poly_dst_2d_max);
|
|
|
|
for (j = 0; j < mp->totloop; j++) {
|
|
MLoop *ml = &loops_dst[j + mp->loopstart];
|
|
copy_v3_v3(tmp_co, verts_dst[ml->v].co);
|
|
if (space_transform) {
|
|
BLI_space_transform_apply(space_transform, tmp_co);
|
|
}
|
|
mul_v2_m3v3(poly_vcos_2d[j], to_pnor_2d_mat, tmp_co);
|
|
minmax_v2v2_v2(poly_dst_2d_min, poly_dst_2d_max, poly_vcos_2d[j]);
|
|
}
|
|
|
|
/* We adjust our ray-casting grid to ray_radius (the smaller, the more rays are cast),
|
|
* with lower/upper bounds. */
|
|
sub_v2_v2v2(poly_dst_2d_size, poly_dst_2d_max, poly_dst_2d_min);
|
|
|
|
if (ray_radius) {
|
|
tot_rays = (int)((max_ff(poly_dst_2d_size[0], poly_dst_2d_size[1]) / ray_radius) + 0.5f);
|
|
CLAMP(tot_rays, MREMAP_RAYCAST_TRI_SAMPLES_MIN, MREMAP_RAYCAST_TRI_SAMPLES_MAX);
|
|
}
|
|
else {
|
|
/* If no radius (pure rays), give max number of rays! */
|
|
tot_rays = MREMAP_RAYCAST_TRI_SAMPLES_MIN;
|
|
}
|
|
tot_rays *= tot_rays;
|
|
|
|
poly_area_2d_inv = 1.0f / area_poly_v2((const float(*)[2])poly_vcos_2d, (unsigned int)mp->totloop);
|
|
|
|
/* Tessellate our poly. */
|
|
if (mp->totloop == 3) {
|
|
tri_vidx_2d[0][0] = 0;
|
|
tri_vidx_2d[0][1] = 1;
|
|
tri_vidx_2d[0][2] = 2;
|
|
}
|
|
if (mp->totloop == 4) {
|
|
tri_vidx_2d[0][0] = 0;
|
|
tri_vidx_2d[0][1] = 1;
|
|
tri_vidx_2d[0][2] = 2;
|
|
tri_vidx_2d[1][0] = 0;
|
|
tri_vidx_2d[1][1] = 2;
|
|
tri_vidx_2d[1][2] = 3;
|
|
}
|
|
else {
|
|
BLI_polyfill_calc((const float(*)[2])poly_vcos_2d, (unsigned int)mp->totloop, -1,
|
|
(unsigned int (*)[3])tri_vidx_2d);
|
|
}
|
|
|
|
for (j = 0; j < tris_num; j++) {
|
|
float *v1 = poly_vcos_2d[tri_vidx_2d[j][0]];
|
|
float *v2 = poly_vcos_2d[tri_vidx_2d[j][1]];
|
|
float *v3 = poly_vcos_2d[tri_vidx_2d[j][2]];
|
|
int rays_num;
|
|
|
|
/* All this allows us to get 'absolute' number of rays for each tri, avoiding accumulating
|
|
* errors over iterations, and helping better even distribution. */
|
|
done_area += area_tri_v2(v1, v2, v3);
|
|
rays_num = (int)((float)tot_rays * done_area * poly_area_2d_inv + 0.5f) - done_rays;
|
|
done_rays += rays_num;
|
|
|
|
while (rays_num--) {
|
|
int n = (ray_radius > 0.0f) ? MREMAP_RAYCAST_APPROXIMATE_NR : 1;
|
|
float w = 1.0f;
|
|
|
|
BLI_rng_get_tri_sample_float_v2(rng, v1, v2, v3, tmp_co);
|
|
|
|
tmp_co[2] = poly_dst_2d_z;
|
|
mul_m3_v3(from_pnor_2d_mat, tmp_co);
|
|
|
|
/* At this point, tmp_co is a point on our poly surface, in mesh_src space! */
|
|
while (n--) {
|
|
if (mesh_remap_bvhtree_query_raycast(
|
|
&treedata, &rayhit, tmp_co, tmp_no, ray_radius / w, max_dist, &hit_dist))
|
|
{
|
|
const MLoopTri *lt = &treedata.looptri[rayhit.index];
|
|
|
|
weights[lt->poly] += w;
|
|
totweights += w;
|
|
hit_dist_accum += hit_dist;
|
|
break;
|
|
}
|
|
/* Next iteration will get bigger radius but smaller weight! */
|
|
w /= MREMAP_RAYCAST_APPROXIMATE_FAC;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (totweights > 0.0f) {
|
|
for (j = 0; j < (int)numpolys_src; j++) {
|
|
if (!weights[j]) {
|
|
continue;
|
|
}
|
|
/* Note: sources_num is always <= j! */
|
|
weights[sources_num] = weights[j] / totweights;
|
|
indices[sources_num] = j;
|
|
sources_num++;
|
|
}
|
|
mesh_remap_item_define(r_map, i, hit_dist_accum / totweights, 0, sources_num, indices, weights);
|
|
}
|
|
else {
|
|
/* No source for this dest poly! */
|
|
BKE_mesh_remap_item_define_invalid(r_map, i);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(tri_vidx_2d);
|
|
MEM_freeN(poly_vcos_2d);
|
|
MEM_freeN(indices);
|
|
MEM_freeN(weights);
|
|
BLI_rng_free(rng);
|
|
}
|
|
else {
|
|
printf("WARNING! Unsupported mesh-to-mesh poly mapping mode (%d)!\n", mode);
|
|
memset(r_map->items, 0, sizeof(*r_map->items) * (size_t)numpolys_dst);
|
|
}
|
|
|
|
free_bvhtree_from_mesh(&treedata);
|
|
}
|
|
}
|
|
|
|
#undef MREMAP_RAYCAST_APPROXIMATE_NR
|
|
#undef MREMAP_RAYCAST_APPROXIMATE_FAC
|
|
#undef MREMAP_RAYCAST_APPROXIMATE_BVHEPSILON
|
|
#undef MREMAP_RAYCAST_TRI_SAMPLES_MIN
|
|
#undef MREMAP_RAYCAST_TRI_SAMPLES_MAX
|
|
#undef MREMAP_DEFAULT_BUFSIZE
|
|
|
|
/** \} */
|