This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/BLI_kdtree.c
Campbell Barton bae66459df Fix crash in BLI_kdtree_range_search
Called memcpy with a NULL pointer,
causing the following NULL check to get optimized away.
2014-09-11 12:47:52 +10:00

514 lines
12 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Janne Karhu
* Brecht Van Lommel
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/BLI_kdtree.c
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_kdtree.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
typedef struct KDTreeNode {
struct KDTreeNode *left, *right;
float co[3];
int index;
unsigned int d; /* range is only (0-2) */
} KDTreeNode;
struct KDTree {
KDTreeNode *nodes;
unsigned int totnode;
KDTreeNode *root;
#ifdef DEBUG
bool is_balanced; /* ensure we call balance first */
unsigned int maxsize; /* max size of the tree */
#endif
};
#define KD_STACK_INIT 100 /* initial size for array (on the stack) */
#define KD_NEAR_ALLOC_INC 100 /* alloc increment for collecting nearest */
#define KD_FOUND_ALLOC_INC 50 /* alloc increment for collecting nearest */
/**
* Creates or free a kdtree
*/
KDTree *BLI_kdtree_new(unsigned int maxsize)
{
KDTree *tree;
tree = MEM_mallocN(sizeof(KDTree), "KDTree");
tree->nodes = MEM_mallocN(sizeof(KDTreeNode) * maxsize, "KDTreeNode");
tree->totnode = 0;
tree->root = NULL;
#ifdef DEBUG
tree->is_balanced = false;
tree->maxsize = maxsize;
#endif
return tree;
}
void BLI_kdtree_free(KDTree *tree)
{
if (tree) {
MEM_freeN(tree->nodes);
MEM_freeN(tree);
}
}
/**
* Construction: first insert points, then call balance. Normal is optional.
*/
void BLI_kdtree_insert(KDTree *tree, int index, const float co[3])
{
KDTreeNode *node = &tree->nodes[tree->totnode++];
#ifdef DEBUG
BLI_assert(tree->totnode <= tree->maxsize);
#endif
/* note, array isn't calloc'd,
* need to initialize all struct members */
node->left = node->right = NULL;
copy_v3_v3(node->co, co);
node->index = index;
node->d = 0;
#ifdef DEBUG
tree->is_balanced = false;
#endif
}
static KDTreeNode *kdtree_balance(KDTreeNode *nodes, unsigned int totnode, unsigned int axis)
{
KDTreeNode *node;
float co;
unsigned int left, right, median, i, j;
if (totnode <= 0)
return NULL;
else if (totnode == 1)
return nodes;
/* quicksort style sorting around median */
left = 0;
right = totnode - 1;
median = totnode / 2;
while (right > left) {
co = nodes[right].co[axis];
i = left - 1;
j = right;
while (1) {
while (nodes[++i].co[axis] < co) ;
while (nodes[--j].co[axis] > co && j > left) ;
if (i >= j)
break;
SWAP(KDTreeNode, nodes[i], nodes[j]);
}
SWAP(KDTreeNode, nodes[i], nodes[right]);
if (i >= median)
right = i - 1;
if (i <= median)
left = i + 1;
}
/* set node and sort subnodes */
node = &nodes[median];
node->d = axis;
node->left = kdtree_balance(nodes, median, (axis + 1) % 3);
node->right = kdtree_balance(nodes + median + 1, (totnode - (median + 1)), (axis + 1) % 3);
return node;
}
void BLI_kdtree_balance(KDTree *tree)
{
tree->root = kdtree_balance(tree->nodes, tree->totnode, 0);
#ifdef DEBUG
tree->is_balanced = true;
#endif
}
static float squared_distance(const float v2[3], const float v1[3], const float n2[3])
{
float d[3], dist;
d[0] = v2[0] - v1[0];
d[1] = v2[1] - v1[1];
d[2] = v2[2] - v1[2];
dist = len_squared_v3(d);
/* can someone explain why this is done?*/
if (n2 && (dot_v3v3(d, n2) < 0.0f)) {
dist *= 10.0f;
}
return dist;
}
static KDTreeNode **realloc_nodes(KDTreeNode **stack, unsigned int *totstack, const bool is_alloc)
{
KDTreeNode **stack_new = MEM_mallocN((*totstack + KD_NEAR_ALLOC_INC) * sizeof(KDTreeNode *), "KDTree.treestack");
memcpy(stack_new, stack, *totstack * sizeof(KDTreeNode *));
// memset(stack_new + *totstack, 0, sizeof(KDTreeNode *) * KD_NEAR_ALLOC_INC);
if (is_alloc)
MEM_freeN(stack);
*totstack += KD_NEAR_ALLOC_INC;
return stack_new;
}
/**
* Find nearest returns index, and -1 if no node is found.
*/
int BLI_kdtree_find_nearest(
KDTree *tree, const float co[3],
KDTreeNearest *r_nearest)
{
KDTreeNode *root, *node, *min_node;
KDTreeNode **stack, *defaultstack[KD_STACK_INIT];
float min_dist, cur_dist;
unsigned int totstack, cur = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(!tree->root))
return -1;
stack = defaultstack;
totstack = KD_STACK_INIT;
root = tree->root;
min_node = root;
min_dist = len_squared_v3v3(root->co, co);
if (co[root->d] < root->co[root->d]) {
if (root->right)
stack[cur++] = root->right;
if (root->left)
stack[cur++] = root->left;
}
else {
if (root->left)
stack[cur++] = root->left;
if (root->right)
stack[cur++] = root->right;
}
while (cur--) {
node = stack[cur];
cur_dist = node->co[node->d] - co[node->d];
if (cur_dist < 0.0f) {
cur_dist = -cur_dist * cur_dist;
if (-cur_dist < min_dist) {
cur_dist = len_squared_v3v3(node->co, co);
if (cur_dist < min_dist) {
min_dist = cur_dist;
min_node = node;
}
if (node->left)
stack[cur++] = node->left;
}
if (node->right)
stack[cur++] = node->right;
}
else {
cur_dist = cur_dist * cur_dist;
if (cur_dist < min_dist) {
cur_dist = len_squared_v3v3(node->co, co);
if (cur_dist < min_dist) {
min_dist = cur_dist;
min_node = node;
}
if (node->right)
stack[cur++] = node->right;
}
if (node->left)
stack[cur++] = node->left;
}
if (UNLIKELY(cur + 3 > totstack)) {
stack = realloc_nodes(stack, &totstack, defaultstack != stack);
}
}
if (r_nearest) {
r_nearest->index = min_node->index;
r_nearest->dist = sqrtf(min_dist);
copy_v3_v3(r_nearest->co, min_node->co);
}
if (stack != defaultstack)
MEM_freeN(stack);
return min_node->index;
}
static void add_nearest(KDTreeNearest *ptn, unsigned int *found, unsigned int n, int index,
float dist, const float *co)
{
unsigned int i;
if (*found < n) (*found)++;
for (i = *found - 1; i > 0; i--) {
if (dist >= ptn[i - 1].dist)
break;
else
ptn[i] = ptn[i - 1];
}
ptn[i].index = index;
ptn[i].dist = dist;
copy_v3_v3(ptn[i].co, co);
}
/**
* Find n nearest returns number of points found, with results in nearest.
* Normal is optional, but if given will limit results to points in normal direction from co.
*
* \param r_nearest An array of nearest, sized at least \a n.
*/
int BLI_kdtree_find_nearest_n__normal(
KDTree *tree, const float co[3], const float nor[3],
KDTreeNearest r_nearest[],
unsigned int n)
{
KDTreeNode *root, *node = NULL;
KDTreeNode **stack, *defaultstack[KD_STACK_INIT];
float cur_dist;
unsigned int totstack, cur = 0;
unsigned int i, found = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(!tree->root || n == 0))
return 0;
stack = defaultstack;
totstack = KD_STACK_INIT;
root = tree->root;
cur_dist = squared_distance(root->co, co, nor);
add_nearest(r_nearest, &found, n, root->index, cur_dist, root->co);
if (co[root->d] < root->co[root->d]) {
if (root->right)
stack[cur++] = root->right;
if (root->left)
stack[cur++] = root->left;
}
else {
if (root->left)
stack[cur++] = root->left;
if (root->right)
stack[cur++] = root->right;
}
while (cur--) {
node = stack[cur];
cur_dist = node->co[node->d] - co[node->d];
if (cur_dist < 0.0f) {
cur_dist = -cur_dist * cur_dist;
if (found < n || -cur_dist < r_nearest[found - 1].dist) {
cur_dist = squared_distance(node->co, co, nor);
if (found < n || cur_dist < r_nearest[found - 1].dist)
add_nearest(r_nearest, &found, n, node->index, cur_dist, node->co);
if (node->left)
stack[cur++] = node->left;
}
if (node->right)
stack[cur++] = node->right;
}
else {
cur_dist = cur_dist * cur_dist;
if (found < n || cur_dist < r_nearest[found - 1].dist) {
cur_dist = squared_distance(node->co, co, nor);
if (found < n || cur_dist < r_nearest[found - 1].dist)
add_nearest(r_nearest, &found, n, node->index, cur_dist, node->co);
if (node->right)
stack[cur++] = node->right;
}
if (node->left)
stack[cur++] = node->left;
}
if (UNLIKELY(cur + 3 > totstack)) {
stack = realloc_nodes(stack, &totstack, defaultstack != stack);
}
}
for (i = 0; i < found; i++)
r_nearest[i].dist = sqrtf(r_nearest[i].dist);
if (stack != defaultstack)
MEM_freeN(stack);
return (int)found;
}
static int range_compare(const void *a, const void *b)
{
const KDTreeNearest *kda = a;
const KDTreeNearest *kdb = b;
if (kda->dist < kdb->dist)
return -1;
else if (kda->dist > kdb->dist)
return 1;
else
return 0;
}
static void add_in_range(
KDTreeNearest **r_foundstack,
unsigned int *r_foundstack_tot_alloc,
unsigned int found,
const int index, const float dist, const float *co)
{
KDTreeNearest *to;
if (UNLIKELY(found >= *r_foundstack_tot_alloc)) {
*r_foundstack = MEM_reallocN_id(
*r_foundstack,
(*r_foundstack_tot_alloc += KD_FOUND_ALLOC_INC) * sizeof(KDTreeNode),
__func__);
}
to = (*r_foundstack) + found;
to->index = index;
to->dist = sqrtf(dist);
copy_v3_v3(to->co, co);
}
/**
* Range search returns number of points found, with results in nearest
* Normal is optional, but if given will limit results to points in normal direction from co.
* Remember to free nearest after use!
*/
int BLI_kdtree_range_search__normal(
KDTree *tree, const float co[3], const float nor[3],
KDTreeNearest **r_nearest, float range)
{
KDTreeNode *root, *node = NULL;
KDTreeNode **stack, *defaultstack[KD_STACK_INIT];
KDTreeNearest *foundstack = NULL;
float range2 = range * range, dist2;
unsigned int totstack, cur = 0, found = 0, totfoundstack = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(!tree->root))
return 0;
stack = defaultstack;
totstack = KD_STACK_INIT;
root = tree->root;
if (co[root->d] + range < root->co[root->d]) {
if (root->left)
stack[cur++] = root->left;
}
else if (co[root->d] - range > root->co[root->d]) {
if (root->right)
stack[cur++] = root->right;
}
else {
dist2 = squared_distance(root->co, co, nor);
if (dist2 <= range2)
add_in_range(&foundstack, &totfoundstack, found++, root->index, dist2, root->co);
if (root->left)
stack[cur++] = root->left;
if (root->right)
stack[cur++] = root->right;
}
while (cur--) {
node = stack[cur];
if (co[node->d] + range < node->co[node->d]) {
if (node->left)
stack[cur++] = node->left;
}
else if (co[node->d] - range > node->co[node->d]) {
if (node->right)
stack[cur++] = node->right;
}
else {
dist2 = squared_distance(node->co, co, nor);
if (dist2 <= range2)
add_in_range(&foundstack, &totfoundstack, found++, node->index, dist2, node->co);
if (node->left)
stack[cur++] = node->left;
if (node->right)
stack[cur++] = node->right;
}
if (UNLIKELY(cur + 3 > totstack)) {
stack = realloc_nodes(stack, &totstack, defaultstack != stack);
}
}
if (stack != defaultstack)
MEM_freeN(stack);
if (found)
qsort(foundstack, found, sizeof(KDTreeNearest), range_compare);
*r_nearest = foundstack;
return (int)found;
}