This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/boxpack2d.c

675 lines
17 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/boxpack2d.c
* \ingroup bli
*/
#include <stdlib.h> /* for qsort */
#include <math.h> /* for fabsf */
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_boxpack2d.h" /* own include */
#include "BLI_sort.h" /* qsort_r */
#define qsort_r BLI_qsort_r
#include "BLI_strict_flags.h"
#ifdef __GNUC__
# pragma GCC diagnostic error "-Wpadded"
#endif
/* de-duplicate as we pack */
#define USE_MERGE
/* use strip-free */
#define USE_FREE_STRIP
/* slight bias, needed when packing many boxes the _exact_ same size */
#define USE_PACK_BIAS
/* BoxPacker for backing 2D rectangles into a square
*
* The defined Below are for internal use only */
typedef struct BoxVert {
float x;
float y;
int free : 8; /* vert status */
unsigned int used : 1;
unsigned int _pad : 23;
unsigned int index;
struct BoxPack *trb; /* top right box */
struct BoxPack *blb; /* bottom left box */
struct BoxPack *brb; /* bottom right box */
struct BoxPack *tlb; /* top left box */
/* Store last intersecting boxes here
* speedup intersection testing */
struct BoxPack *isect_cache[4];
#ifdef USE_PACK_BIAS
float bias;
int _pad2;
#endif
} BoxVert;
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wpadded"
#endif
/* free vert flags */
#define EPSILON 0.0000001f
#define EPSILON_MERGE 0.00001f
#ifdef USE_PACK_BIAS
# define EPSILON_BIAS 0.000001f
#endif
#define BLF 1
#define TRF 2
#define TLF 4
#define BRF 8
#define CORNERFLAGS (BLF | TRF | TLF | BRF)
BLI_INLINE int quad_flag(unsigned int q)
{
BLI_assert(q < 4);
return (1 << q);
}
#define BL 0
#define TR 1
#define TL 2
#define BR 3
/** \name Box Accessor Functions
* \{ */
static float box_xmin_get(const BoxPack *box)
{
return box->v[BL]->x;
}
static float box_xmax_get(const BoxPack *box)
{
return box->v[TR]->x;
}
static float box_ymin_get(const BoxPack *box)
{
return box->v[BL]->y;
}
static float box_ymax_get(const BoxPack *box)
{
return box->v[TR]->y;
}
/** \} */
/** \name Box Placement
* \{ */
BLI_INLINE void box_v34x_update(BoxPack *box)
{
box->v[TL]->x = box->v[BL]->x;
box->v[BR]->x = box->v[TR]->x;
}
BLI_INLINE void box_v34y_update(BoxPack *box)
{
box->v[TL]->y = box->v[TR]->y;
box->v[BR]->y = box->v[BL]->y;
}
static void box_xmin_set(BoxPack *box, const float f)
{
box->v[TR]->x = f + box->w;
box->v[BL]->x = f;
box_v34x_update(box);
}
static void box_xmax_set(BoxPack *box, const float f)
{
box->v[BL]->x = f - box->w;
box->v[TR]->x = f;
box_v34x_update(box);
}
static void box_ymin_set(BoxPack *box, const float f)
{
box->v[TR]->y = f + box->h;
box->v[BL]->y = f;
box_v34y_update(box);
}
static void box_ymax_set(BoxPack *box, const float f)
{
box->v[BL]->y = f - box->h;
box->v[TR]->y = f;
box_v34y_update(box);
}
/** \} */
/** \name Box Utils
* \{ */
static float box_area(const BoxPack *box)
{
return box->w * box->h;
}
static bool box_isect(const BoxPack *box_a, const BoxPack *box_b)
{
return !(box_xmin_get(box_a) + EPSILON >= box_xmax_get(box_b) ||
box_ymin_get(box_a) + EPSILON >= box_ymax_get(box_b) ||
box_xmax_get(box_a) - EPSILON <= box_xmin_get(box_b) ||
box_ymax_get(box_a) - EPSILON <= box_ymin_get(box_b));
}
/** \} */
/* compiler should inline */
static float max_ff(const float a, const float b) { return b > a ? b : a; }
#ifdef USE_PACK_BIAS
/* set when used is enabled */
static void vert_bias_update(BoxVert *v)
{
BLI_assert(v->used);
v->bias = (v->x * v->y) * EPSILON_BIAS;
}
#endif
#if 0
#define BOXDEBUG(b) \
printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", \
b->index, b->w, b->h, b->x, b->y)
#endif
/** \name Box/Vert Sorting
* \{ */
/* qsort function - sort largest to smallest */
static int box_areasort(const void *p1, const void *p2)
{
const BoxPack *b1 = p1, *b2 = p2;
const float a1 = box_area(b1);
const float a2 = box_area(b2);
if (a1 < a2) return 1;
else if (a1 > a2) return -1;
return 0;
}
/* qsort vertex sorting function
* sorts from lower left to top right It uses the current box's width and height
* as offsets when sorting, this has the result of not placing boxes outside
* the bounds of the existing backed area where possible
*/
struct VertSortContext {
BoxVert *vertarray;
float box_width, box_height;
};
static int vertex_sort(const void *p1, const void *p2, void *vs_ctx_p)
{
const struct VertSortContext *vs_ctx = vs_ctx_p;
const BoxVert *v1, *v2;
float a1, a2;
v1 = &vs_ctx->vertarray[*((const unsigned int *)p1)];
v2 = &vs_ctx->vertarray[*((const unsigned int *)p2)];
#ifdef USE_FREE_STRIP
/* push free verts to the end so we can strip */
if (UNLIKELY(v1->free == 0 && v2->free == 0)) return 0;
else if (UNLIKELY(v1->free == 0)) return 1;
else if (UNLIKELY(v2->free == 0)) return -1;
#endif
a1 = max_ff(v1->x + vs_ctx->box_width, v1->y + vs_ctx->box_height);
a2 = max_ff(v2->x + vs_ctx->box_width, v2->y + vs_ctx->box_height);
#ifdef USE_PACK_BIAS
a1 += v1->bias;
a2 += v2->bias;
#endif
/* sort largest to smallest */
if (a1 > a2) return 1;
else if (a1 < a2) return -1;
return 0;
}
/** \} */
/**
* Main boxpacking function accessed from other functions
* This sets boxes x,y to positive values, sorting from 0,0 outwards.
* There is no limit to the space boxes may take, only that they will be packed
* tightly into the lower left hand corner (0,0)
*
* \param boxarray: a pre allocated array of boxes.
* only the 'box->x' and 'box->y' are set, 'box->w' and 'box->h' are used,
* 'box->index' is not used at all, the only reason its there
* is that the box array is sorted by area and programs need to be able
* to have some way of writing the boxes back to the original data.
* \param len: the number of boxes in the array.
* \param r_tot_x, r_tot_y: set so you can normalize the data.
* */
void BLI_box_pack_2d(BoxPack *boxarray, const unsigned int len, float *r_tot_x, float *r_tot_y)
{
unsigned int box_index, verts_pack_len, i, j, k;
unsigned int *vertex_pack_indices; /* an array of indices used for sorting verts */
bool isect;
float tot_x = 0.0f, tot_y = 0.0f;
BoxPack *box, *box_test; /*current box and another for intersection tests*/
BoxVert *vert; /* the current vert */
struct VertSortContext vs_ctx;
if (!len) {
*r_tot_x = tot_x;
*r_tot_y = tot_y;
return;
}
/* Sort boxes, biggest first */
qsort(boxarray, (size_t)len, sizeof(BoxPack), box_areasort);
/* add verts to the boxes, these are only used internally */
vert = MEM_mallocN((size_t)len * 4 * sizeof(BoxVert), "BoxPack Verts");
vertex_pack_indices = MEM_mallocN((size_t)len * 3 * sizeof(int), "BoxPack Indices");
vs_ctx.vertarray = vert;
for (box = boxarray, box_index = 0, i = 0; box_index < len; box_index++, box++) {
vert->blb = vert->brb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~TRF;
vert->trb = box;
vert->used = false;
vert->index = i++;
box->v[BL] = vert++;
vert->trb = vert->brb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~BLF;
vert->blb = box;
vert->used = false;
vert->index = i++;
box->v[TR] = vert++;
vert->trb = vert->blb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~BRF;
vert->brb = box;
vert->used = false;
vert->index = i++;
box->v[TL] = vert++;
vert->trb = vert->blb = vert->brb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~TLF;
vert->tlb = box;
vert->used = false;
vert->index = i++;
box->v[BR] = vert++;
}
vert = NULL;
/* Pack the First box!
* then enter the main box-packing loop */
box = boxarray; /* get the first box */
/* First time, no boxes packed */
box->v[BL]->free = 0; /* Can't use any if these */
box->v[BR]->free &= ~(BLF | BRF);
box->v[TL]->free &= ~(BLF | TLF);
tot_x = box->w;
tot_y = box->h;
/* This sets all the vertex locations */
box_xmin_set(box, 0.0f);
box_ymin_set(box, 0.0f);
box->x = box->y = 0.0f;
for (i = 0; i < 4; i++) {
box->v[i]->used = true;
#ifdef USE_PACK_BIAS
vert_bias_update(box->v[i]);
#endif
}
for (i = 0; i < 3; i++)
vertex_pack_indices[i] = box->v[i + 1]->index;
verts_pack_len = 3;
box++; /* next box, needed for the loop below */
/* ...done packing the first box */
/* Main boxpacking loop */
for (box_index = 1; box_index < len; box_index++, box++) {
/* These floats are used for sorting re-sorting */
vs_ctx.box_width = box->w;
vs_ctx.box_height = box->h;
qsort_r(vertex_pack_indices, (size_t)verts_pack_len, sizeof(int), vertex_sort, &vs_ctx);
#ifdef USE_FREE_STRIP
/* strip free vertices */
i = verts_pack_len - 1;
while ((i != 0) && vs_ctx.vertarray[vertex_pack_indices[i]].free == 0) {
i--;
}
verts_pack_len = i + 1;
#endif
/* Pack the box in with the others */
/* sort the verts */
isect = true;
for (i = 0; i < verts_pack_len && isect; i++) {
vert = &vs_ctx.vertarray[vertex_pack_indices[i]];
/* printf("\ttesting vert %i %i %i %f %f\n", i,
* vert->free, verts_pack_len, vert->x, vert->y); */
/* This vert has a free quadrant
* Test if we can place the box here
* vert->free & quad_flags[j] - Checks
* */
for (j = 0; (j < 4) && isect; j++) {
if (vert->free & quad_flag(j)) {
switch (j) {
case BL:
box_xmax_set(box, vert->x);
box_ymax_set(box, vert->y);
break;
case TR:
box_xmin_set(box, vert->x);
box_ymin_set(box, vert->y);
break;
case TL:
box_xmax_set(box, vert->x);
box_ymin_set(box, vert->y);
break;
case BR:
box_xmin_set(box, vert->x);
box_ymax_set(box, vert->y);
break;
}
/* Now we need to check that the box intersects
* with any other boxes
* Assume no intersection... */
isect = false;
if ( /* Constrain boxes to positive X/Y values */
box_xmin_get(box) < 0.0f || box_ymin_get(box) < 0.0f ||
/* check for last intersected */
(vert->isect_cache[j] &&
box_isect(box, vert->isect_cache[j])))
{
/* Here we check that the last intersected
* box will intersect with this one using
* isect_cache that can store a pointer to a
* box for each quadrant
* big speedup */
isect = true;
}
else {
/* do a full search for colliding box
* this is really slow, some spatially divided
* data-structure would be better */
for (box_test = boxarray; box_test != box; box_test++) {
if (box_isect(box, box_test)) {
/* Store the last intersecting here as cache
* for faster checking next time around */
vert->isect_cache[j] = box_test;
isect = true;
break;
}
}
}
if (!isect) {
/* maintain the total width and height */
tot_x = max_ff(box_xmax_get(box), tot_x);
tot_y = max_ff(box_ymax_get(box), tot_y);
/* Place the box */
vert->free &= (signed char)(~quad_flag(j));
switch (j) {
case TR:
box->v[BL] = vert;
vert->trb = box;
break;
case TL:
box->v[BR] = vert;
vert->tlb = box;
break;
case BR:
box->v[TL] = vert;
vert->brb = box;
break;
case BL:
box->v[TR] = vert;
vert->blb = box;
break;
}
/* Mask free flags for verts that are
* on the bottom or side so we don't get
* boxes outside the given rectangle ares
*
* We can do an else/if here because only the first
* box can be at the very bottom left corner */
if (box_xmin_get(box) <= 0) {
box->v[TL]->free &= ~(TLF | BLF);
box->v[BL]->free &= ~(TLF | BLF);
}
else if (box_ymin_get(box) <= 0) {
box->v[BL]->free &= ~(BRF | BLF);
box->v[BR]->free &= ~(BRF | BLF);
}
/* The following block of code does a logical
* check with 2 adjacent boxes, its possible to
* flag verts on one or both of the boxes
* as being used by checking the width or
* height of both boxes */
if (vert->tlb && vert->trb && (box == vert->tlb || box == vert->trb)) {
if (UNLIKELY(fabsf(vert->tlb->h - vert->trb->h) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->trb->v[TL])
# define B (vert->tlb->v[TR])
# define MASK (BLF | BRF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->tlb->v[TR]->free &= ~BLF;
vert->trb->v[TL]->free &= ~BRF;
#endif
}
else if (vert->tlb->h > vert->trb->h) {
vert->trb->v[TL]->free &= ~(TLF | BLF);
}
else /* if (vert->tlb->h < vert->trb->h) */ {
vert->tlb->v[TR]->free &= ~(TRF | BRF);
}
}
else if (vert->blb && vert->brb && (box == vert->blb || box == vert->brb)) {
if (UNLIKELY(fabsf(vert->blb->h - vert->brb->h) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->blb->v[BR])
# define B (vert->brb->v[BL])
# define MASK (TRF | TLF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->blb->v[BR]->free &= ~TRF;
vert->brb->v[BL]->free &= ~TLF;
#endif
}
else if (vert->blb->h > vert->brb->h) {
vert->brb->v[BL]->free &= ~(TLF | BLF);
}
else /* if (vert->blb->h < vert->brb->h) */ {
vert->blb->v[BR]->free &= ~(TRF | BRF);
}
}
/* Horizontal */
if (vert->tlb && vert->blb && (box == vert->tlb || box == vert->blb)) {
if (UNLIKELY(fabsf(vert->tlb->w - vert->blb->w) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->blb->v[TL])
# define B (vert->tlb->v[BL])
# define MASK (TRF | BRF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->blb->v[TL]->free &= ~TRF;
vert->tlb->v[BL]->free &= ~BRF;
#endif
}
else if (vert->tlb->w > vert->blb->w) {
vert->blb->v[TL]->free &= ~(TLF | TRF);
}
else /* if (vert->tlb->w < vert->blb->w) */ {
vert->tlb->v[BL]->free &= ~(BLF | BRF);
}
}
else if (vert->trb && vert->brb && (box == vert->trb || box == vert->brb)) {
if (UNLIKELY(fabsf(vert->trb->w - vert->brb->w) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->brb->v[TR])
# define B (vert->trb->v[BR])
# define MASK (TLF | BLF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->brb->v[TR]->free &= ~TLF;
vert->trb->v[BR]->free &= ~BLF;
#endif
}
else if (vert->trb->w > vert->brb->w) {
vert->brb->v[TR]->free &= ~(TLF | TRF);
}
else /* if (vert->trb->w < vert->brb->w) */ {
vert->trb->v[BR]->free &= ~(BLF | BRF);
}
}
/* End logical check */
for (k = 0; k < 4; k++) {
if (box->v[k]->used == false) {
box->v[k]->used = true;
#ifdef USE_PACK_BIAS
vert_bias_update(box->v[k]);
#endif
vertex_pack_indices[verts_pack_len] = box->v[k]->index;
verts_pack_len++;
}
}
/* The Box verts are only used internally
* Update the box x and y since thats what external
* functions will see */
box->x = box_xmin_get(box);
box->y = box_ymin_get(box);
}
}
}
}
}
*r_tot_x = tot_x;
*r_tot_y = tot_y;
/* free all the verts, not really needed because they shouldn't be
* touched anymore but accessing the pointers would crash blender */
for (box_index = 0; box_index < len; box_index++) {
box = boxarray + box_index;
box->v[0] = box->v[1] = box->v[2] = box->v[3] = NULL;
}
MEM_freeN(vertex_pack_indices);
MEM_freeN(vs_ctx.vertarray);
}