This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/task.c
Sergey Sharybin 40091ff83a Correction to early output in the parallel range implementation
The used heuristic of checking the value prior to lock is not totally safe
because assignment is not atomic and check might not give proper result.
2015-05-18 16:40:51 +05:00

604 lines
14 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/task.c
* \ingroup bli
*
* A generic task system which can be used for any task based subsystem.
*/
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "atomic_ops.h"
/* Types */
typedef struct Task {
struct Task *next, *prev;
TaskRunFunction run;
void *taskdata;
bool free_taskdata;
TaskPool *pool;
} Task;
struct TaskPool {
TaskScheduler *scheduler;
volatile size_t num;
volatile size_t done;
size_t num_threads;
size_t currently_running_tasks;
ThreadMutex num_mutex;
ThreadCondition num_cond;
void *userdata;
ThreadMutex user_mutex;
volatile bool do_cancel;
};
struct TaskScheduler {
pthread_t *threads;
struct TaskThread *task_threads;
int num_threads;
ListBase queue;
ThreadMutex queue_mutex;
ThreadCondition queue_cond;
volatile bool do_exit;
};
typedef struct TaskThread {
TaskScheduler *scheduler;
int id;
} TaskThread;
/* Task Scheduler */
static void task_pool_num_decrease(TaskPool *pool, size_t done)
{
BLI_mutex_lock(&pool->num_mutex);
BLI_assert(pool->num >= done);
pool->num -= done;
atomic_sub_z(&pool->currently_running_tasks, done);
pool->done += done;
if (pool->num == 0)
BLI_condition_notify_all(&pool->num_cond);
BLI_mutex_unlock(&pool->num_mutex);
}
static void task_pool_num_increase(TaskPool *pool)
{
BLI_mutex_lock(&pool->num_mutex);
pool->num++;
BLI_condition_notify_all(&pool->num_cond);
BLI_mutex_unlock(&pool->num_mutex);
}
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
{
bool found_task = false;
BLI_mutex_lock(&scheduler->queue_mutex);
while (!scheduler->queue.first && !scheduler->do_exit)
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
do {
Task *current_task;
if (!scheduler->queue.first) {
BLI_mutex_unlock(&scheduler->queue_mutex);
BLI_assert(scheduler->do_exit);
return false;
}
for (current_task = scheduler->queue.first;
current_task != NULL;
current_task = current_task->next)
{
TaskPool *pool = current_task->pool;
if (pool->num_threads == 0 ||
pool->currently_running_tasks < pool->num_threads)
{
*task = current_task;
found_task = true;
atomic_add_z(&pool->currently_running_tasks, 1);
BLI_remlink(&scheduler->queue, *task);
break;
}
}
if (!found_task)
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
} while (!found_task);
BLI_mutex_unlock(&scheduler->queue_mutex);
return true;
}
static void *task_scheduler_thread_run(void *thread_p)
{
TaskThread *thread = (TaskThread *) thread_p;
TaskScheduler *scheduler = thread->scheduler;
int thread_id = thread->id;
Task *task;
/* keep popping off tasks */
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
TaskPool *pool = task->pool;
/* run task */
task->run(pool, task->taskdata, thread_id);
/* delete task */
if (task->free_taskdata)
MEM_freeN(task->taskdata);
MEM_freeN(task);
/* notify pool task was done */
task_pool_num_decrease(pool, 1);
}
return NULL;
}
TaskScheduler *BLI_task_scheduler_create(int num_threads)
{
TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
/* multiple places can use this task scheduler, sharing the same
* threads, so we keep track of the number of users. */
scheduler->do_exit = false;
BLI_listbase_clear(&scheduler->queue);
BLI_mutex_init(&scheduler->queue_mutex);
BLI_condition_init(&scheduler->queue_cond);
if (num_threads == 0) {
/* automatic number of threads will be main thread + num cores */
num_threads = BLI_system_thread_count();
}
/* main thread will also work, so we count it too */
num_threads -= 1;
/* launch threads that will be waiting for work */
if (num_threads > 0) {
int i;
scheduler->num_threads = num_threads;
scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads");
scheduler->task_threads = MEM_callocN(sizeof(TaskThread) * num_threads, "TaskScheduler task threads");
for (i = 0; i < num_threads; i++) {
TaskThread *thread = &scheduler->task_threads[i];
thread->scheduler = scheduler;
thread->id = i + 1;
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
MEM_freeN(thread);
}
}
}
return scheduler;
}
void BLI_task_scheduler_free(TaskScheduler *scheduler)
{
Task *task;
/* stop all waiting threads */
BLI_mutex_lock(&scheduler->queue_mutex);
scheduler->do_exit = true;
BLI_condition_notify_all(&scheduler->queue_cond);
BLI_mutex_unlock(&scheduler->queue_mutex);
/* delete threads */
if (scheduler->threads) {
int i;
for (i = 0; i < scheduler->num_threads; i++) {
if (pthread_join(scheduler->threads[i], NULL) != 0)
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
}
MEM_freeN(scheduler->threads);
}
/* Delete task thread data */
if (scheduler->task_threads) {
MEM_freeN(scheduler->task_threads);
}
/* delete leftover tasks */
for (task = scheduler->queue.first; task; task = task->next) {
if (task->free_taskdata)
MEM_freeN(task->taskdata);
}
BLI_freelistN(&scheduler->queue);
/* delete mutex/condition */
BLI_mutex_end(&scheduler->queue_mutex);
BLI_condition_end(&scheduler->queue_cond);
MEM_freeN(scheduler);
}
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
{
return scheduler->num_threads + 1;
}
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
{
task_pool_num_increase(task->pool);
/* add task to queue */
BLI_mutex_lock(&scheduler->queue_mutex);
if (priority == TASK_PRIORITY_HIGH)
BLI_addhead(&scheduler->queue, task);
else
BLI_addtail(&scheduler->queue, task);
BLI_condition_notify_one(&scheduler->queue_cond);
BLI_mutex_unlock(&scheduler->queue_mutex);
}
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
{
Task *task, *nexttask;
size_t done = 0;
BLI_mutex_lock(&scheduler->queue_mutex);
/* free all tasks from this pool from the queue */
for (task = scheduler->queue.first; task; task = nexttask) {
nexttask = task->next;
if (task->pool == pool) {
if (task->free_taskdata)
MEM_freeN(task->taskdata);
BLI_freelinkN(&scheduler->queue, task);
done++;
}
}
BLI_mutex_unlock(&scheduler->queue_mutex);
/* notify done */
task_pool_num_decrease(pool, done);
}
/* Task Pool */
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata)
{
TaskPool *pool = MEM_callocN(sizeof(TaskPool), "TaskPool");
pool->scheduler = scheduler;
pool->num = 0;
pool->num_threads = 0;
pool->currently_running_tasks = 0;
pool->do_cancel = false;
BLI_mutex_init(&pool->num_mutex);
BLI_condition_init(&pool->num_cond);
pool->userdata = userdata;
BLI_mutex_init(&pool->user_mutex);
/* Ensure malloc will go fine from threads,
*
* This is needed because we could be in main thread here
* and malloc could be non-threda safe at this point because
* no other jobs are running.
*/
BLI_begin_threaded_malloc();
return pool;
}
void BLI_task_pool_free(TaskPool *pool)
{
BLI_task_pool_stop(pool);
BLI_mutex_end(&pool->num_mutex);
BLI_condition_end(&pool->num_cond);
BLI_mutex_end(&pool->user_mutex);
MEM_freeN(pool);
BLI_end_threaded_malloc();
}
void BLI_task_pool_push(TaskPool *pool, TaskRunFunction run,
void *taskdata, bool free_taskdata, TaskPriority priority)
{
Task *task = MEM_callocN(sizeof(Task), "Task");
task->run = run;
task->taskdata = taskdata;
task->free_taskdata = free_taskdata;
task->pool = pool;
task_scheduler_push(pool->scheduler, task, priority);
}
void BLI_task_pool_work_and_wait(TaskPool *pool)
{
TaskScheduler *scheduler = pool->scheduler;
BLI_mutex_lock(&pool->num_mutex);
while (pool->num != 0) {
Task *task, *work_task = NULL;
bool found_task = false;
BLI_mutex_unlock(&pool->num_mutex);
BLI_mutex_lock(&scheduler->queue_mutex);
/* find task from this pool. if we get a task from another pool,
* we can get into deadlock */
if (pool->num_threads == 0 ||
pool->currently_running_tasks < pool->num_threads)
{
for (task = scheduler->queue.first; task; task = task->next) {
if (task->pool == pool) {
work_task = task;
found_task = true;
BLI_remlink(&scheduler->queue, task);
break;
}
}
}
BLI_mutex_unlock(&scheduler->queue_mutex);
/* if found task, do it, otherwise wait until other tasks are done */
if (found_task) {
/* run task */
atomic_add_z(&pool->currently_running_tasks, 1);
work_task->run(pool, work_task->taskdata, 0);
/* delete task */
if (work_task->free_taskdata)
MEM_freeN(work_task->taskdata);
MEM_freeN(work_task);
/* notify pool task was done */
task_pool_num_decrease(pool, 1);
}
BLI_mutex_lock(&pool->num_mutex);
if (pool->num == 0)
break;
if (!found_task)
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
}
BLI_mutex_unlock(&pool->num_mutex);
}
int BLI_pool_get_num_threads(TaskPool *pool)
{
if (pool->num_threads != 0) {
return pool->num_threads;
}
else {
return BLI_task_scheduler_num_threads(pool->scheduler);
}
}
void BLI_pool_set_num_threads(TaskPool *pool, int num_threads)
{
/* NOTE: Don't try to modify threads while tasks are running! */
pool->num_threads = num_threads;
}
void BLI_task_pool_cancel(TaskPool *pool)
{
pool->do_cancel = true;
task_scheduler_clear(pool->scheduler, pool);
/* wait until all entries are cleared */
BLI_mutex_lock(&pool->num_mutex);
while (pool->num)
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
BLI_mutex_unlock(&pool->num_mutex);
pool->do_cancel = false;
}
void BLI_task_pool_stop(TaskPool *pool)
{
task_scheduler_clear(pool->scheduler, pool);
BLI_assert(pool->num == 0);
}
bool BLI_task_pool_canceled(TaskPool *pool)
{
return pool->do_cancel;
}
void *BLI_task_pool_userdata(TaskPool *pool)
{
return pool->userdata;
}
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
{
return &pool->user_mutex;
}
size_t BLI_task_pool_tasks_done(TaskPool *pool)
{
return pool->done;
}
/* Parallel range routines */
/**
*
* Main functions:
* - #BLI_task_parallel_range
*
* TODO:
* - #BLI_task_parallel_foreach_listbase (#ListBase - double linked list)
* - #BLI_task_parallel_foreach_link (#Link - single linked list)
* - #BLI_task_parallel_foreach_ghash/gset (#GHash/#GSet - hash & set)
* - #BLI_task_parallel_foreach_mempool (#BLI_mempool - iterate over mempools)
*
* Possible improvements:
*
* - Chunk iterations to reduce number of spin locks.
*/
typedef struct ParallelRangeState {
int start, stop;
void *userdata;
TaskParallelRangeFunc func;
int iter;
int chunk_size;
SpinLock lock;
} ParallelRangeState;
BLI_INLINE bool parallel_range_next_iter_get(
ParallelRangeState * __restrict state,
int * __restrict iter, int * __restrict count)
{
bool result = false;
BLI_spin_lock(&state->lock);
if (state->iter < state->stop) {
*count = min_ii(state->chunk_size, state->stop - state->iter);
*iter = state->iter;
state->iter += *count;
result = true;
}
BLI_spin_unlock(&state->lock);
return result;
}
static void parallel_range_func(
TaskPool * __restrict pool,
void *UNUSED(taskdata),
int UNUSED(threadid))
{
ParallelRangeState * __restrict state = BLI_task_pool_userdata(pool);
int iter, count;
while (parallel_range_next_iter_get(state, &iter, &count)) {
int i;
for (i = 0; i < count; ++i) {
state->func(state->userdata, iter + i);
}
}
}
void BLI_task_parallel_range_ex(
int start, int stop,
void *userdata,
TaskParallelRangeFunc func,
const int range_threshold,
const bool use_dynamic_scheduling)
{
TaskScheduler *task_scheduler;
TaskPool *task_pool;
ParallelRangeState state;
int i, num_threads, num_tasks;
BLI_assert(start < stop);
/* If it's not enough data to be crunched, don't bother with tasks at all,
* do everything from the main thread.
*/
if (stop - start < range_threshold) {
for (i = start; i < stop; ++i) {
func(userdata, i);
}
return;
}
task_scheduler = BLI_task_scheduler_get();
task_pool = BLI_task_pool_create(task_scheduler, &state);
num_threads = BLI_task_scheduler_num_threads(task_scheduler);
/* The idea here is to prevent creating task for each of the loop iterations
* and instead have tasks which are evenly distributed across CPU cores and
* pull next iter to be crunched using the queue.
*/
num_tasks = num_threads * 2;
BLI_spin_init(&state.lock);
state.start = start;
state.stop = stop;
state.userdata = userdata;
state.func = func;
state.iter = start;
if (use_dynamic_scheduling) {
state.chunk_size = 32;
}
else {
state.chunk_size = (stop - start) / (num_tasks);
}
for (i = 0; i < num_tasks; i++) {
BLI_task_pool_push(task_pool,
parallel_range_func,
NULL, false,
TASK_PRIORITY_HIGH);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
BLI_spin_end(&state.lock);
}
void BLI_task_parallel_range(
int start, int stop,
void *userdata,
TaskParallelRangeFunc func)
{
BLI_task_parallel_range_ex(start, stop, userdata, func, 64, false);
}