This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_math_solvers.h
Campbell Barton c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00

118 lines
3.8 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2015 Blender Foundation. All rights reserved. */
#pragma once
/** \file
* \ingroup bli
*/
#include "BLI_compiler_attrs.h"
#include "BLI_math_inline.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wredundant-decls"
#endif
/* -------------------------------------------------------------------- */
/** \name Eigen Solvers
* \{ */
/**
* \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
*
* \param m3: the 3D symmetric matrix.
* \return r_eigen_values the computed eigen values (NULL if not needed).
* \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
*/
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
float r_eigen_values[3],
float r_eigen_vectors[3][3]);
/**
* \brief Compute the SVD (Singular Values Decomposition) of given 3D matrix (m3 = USV*).
*
* \param m3: the matrix to decompose.
* \return r_U the computed left singular vector of \a m3 (NULL if not needed).
* \return r_S the computed singular values of \a m3 (NULL if not needed).
* \return r_V the computed right singular vector of \a m3 (NULL if not needed).
*/
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Simple Solvers
* \{ */
/**
* \brief Solve a tridiagonal system of equations:
*
* a[i] * r_x[i-1] + b[i] * r_x[i] + c[i] * r_x[i+1] = d[i]
*
* Ignores a[0] and c[count-1]. Uses the Thomas algorithm, e.g. see wiki.
*
* \param r_x: output vector, may be shared with any of the input ones
* \return true if success
*/
bool BLI_tridiagonal_solve(
const float *a, const float *b, const float *c, const float *d, float *r_x, int count);
/**
* \brief Solve a possibly cyclic tridiagonal system using the Sherman-Morrison formula.
*
* \param r_x: output vector, may be shared with any of the input ones
* \return true if success
*/
bool BLI_tridiagonal_solve_cyclic(
const float *a, const float *b, const float *c, const float *d, float *r_x, int count);
/**
* Generic 3 variable Newton's method solver.
*/
typedef void (*Newton3D_DeltaFunc)(void *userdata, const float x[3], float r_delta[3]);
typedef void (*Newton3D_JacobianFunc)(void *userdata, const float x[3], float r_jacobian[3][3]);
typedef bool (*Newton3D_CorrectionFunc)(void *userdata,
const float x[3],
float step[3],
float x_next[3]);
/**
* \brief Solve a generic f(x) = 0 equation using Newton's method.
*
* \param func_delta: Callback computing the value of f(x).
* \param func_jacobian: Callback computing the Jacobian matrix of the function at x.
* \param func_correction: Callback for forcing the search into an arbitrary custom domain.
* May be NULL.
* \param userdata: Data for the callbacks.
* \param epsilon: Desired precision.
* \param max_iterations: Limit on the iterations.
* \param trace: Enables logging to console.
* \param x_init: Initial solution vector.
* \param result: Final result.
* \return true if success
*/
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
Newton3D_JacobianFunc func_jacobian,
Newton3D_CorrectionFunc func_correction,
void *userdata,
float epsilon,
int max_iterations,
bool trace,
const float x_init[3],
float result[3]);
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic pop
#endif
/** \} */
#ifdef __cplusplus
}
#endif