This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/material.c

2013 lines
48 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/material.c
* \ingroup bke
*/
#include <string.h>
#include <math.h>
#include <stddef.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_customdata_types.h"
#include "DNA_ID.h"
#include "DNA_meta_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_utildefines.h"
#include "BLI_bpath.h"
#include "BKE_animsys.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_icons.h"
#include "BKE_image.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
#include "BKE_curve.h"
#include "GPU_material.h"
/* used in UI and render */
Material defmaterial;
/* called on startup, creator.c */
void init_def_material(void)
{
init_material(&defmaterial);
}
/* not material itself */
void free_material(Material *ma)
{
MTex *mtex;
int a;
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
if(ma->ramp_col) MEM_freeN(ma->ramp_col);
if(ma->ramp_spec) MEM_freeN(ma->ramp_spec);
BKE_free_animdata((ID *)ma);
if(ma->preview)
BKE_previewimg_free(&ma->preview);
BKE_icon_delete((struct ID*)ma);
ma->id.icon_id = 0;
/* is no lib link block, but material extension */
if(ma->nodetree) {
ntreeFreeTree(ma->nodetree);
MEM_freeN(ma->nodetree);
}
if(ma->gpumaterial.first)
GPU_material_free(ma);
}
void init_material(Material *ma)
{
ma->r= ma->g= ma->b= ma->ref= 0.8;
ma->specr= ma->specg= ma->specb= 1.0;
ma->mirr= ma->mirg= ma->mirb= 1.0;
ma->spectra= 1.0;
ma->amb= 1.0;
ma->alpha= 1.0;
ma->spec= ma->hasize= 0.5;
ma->har= 50;
ma->starc= ma->ringc= 4;
ma->linec= 12;
ma->flarec= 1;
ma->flaresize= ma->subsize= 1.0;
ma->flareboost= 1;
ma->seed2= 6;
ma->friction= 0.5;
ma->refrac= 4.0;
ma->roughness= 0.5;
ma->param[0]= 0.5;
ma->param[1]= 0.1;
ma->param[2]= 0.5;
ma->param[3]= 0.1;
ma->rms= 0.1;
ma->darkness= 1.0;
ma->strand_sta= ma->strand_end= 1.0f;
ma->ang= 1.0;
ma->ray_depth= 2;
ma->ray_depth_tra= 2;
ma->fresnel_mir= 0.0;
ma->fresnel_tra= 0.0;
ma->fresnel_tra_i= 1.25;
ma->fresnel_mir_i= 1.25;
ma->tx_limit= 0.0;
ma->tx_falloff= 1.0;
ma->shad_alpha= 1.0f;
ma->gloss_mir = ma->gloss_tra= 1.0;
ma->samp_gloss_mir = ma->samp_gloss_tra= 18;
ma->adapt_thresh_mir = ma->adapt_thresh_tra = 0.005;
ma->dist_mir = 0.0;
ma->fadeto_mir = MA_RAYMIR_FADETOSKY;
ma->rampfac_col= 1.0;
ma->rampfac_spec= 1.0;
ma->pr_lamp= 3; /* two lamps, is bits */
ma->pr_type= MA_SPHERE;
ma->sss_radius[0]= 1.0f;
ma->sss_radius[1]= 1.0f;
ma->sss_radius[2]= 1.0f;
ma->sss_col[0]= 1.0f;
ma->sss_col[1]= 1.0f;
ma->sss_col[2]= 1.0f;
ma->sss_error= 0.05f;
ma->sss_scale= 0.1f;
ma->sss_ior= 1.3f;
ma->sss_colfac= 1.0f;
ma->sss_texfac= 0.0f;
ma->sss_front= 1.0f;
ma->sss_back= 1.0f;
ma->vol.density = 1.0f;
ma->vol.emission = 0.0f;
ma->vol.scattering = 1.0f;
ma->vol.reflection = 1.0f;
ma->vol.transmission_col[0] = ma->vol.transmission_col[1] = ma->vol.transmission_col[2] = 1.0f;
ma->vol.reflection_col[0] = ma->vol.reflection_col[1] = ma->vol.reflection_col[2] = 1.0f;
ma->vol.emission_col[0] = ma->vol.emission_col[1] = ma->vol.emission_col[2] = 1.0f;
ma->vol.density_scale = 1.0f;
ma->vol.depth_cutoff = 0.01f;
ma->vol.stepsize_type = MA_VOL_STEP_RANDOMIZED;
ma->vol.stepsize = 0.2f;
ma->vol.shade_type = MA_VOL_SHADE_SHADED;
ma->vol.shadeflag |= MA_VOL_PRECACHESHADING;
ma->vol.precache_resolution = 50;
ma->vol.ms_spread = 0.2f;
ma->vol.ms_diff = 1.f;
ma->vol.ms_intensity = 1.f;
ma->game.flag = GEMAT_BACKCULL;
ma->game.alpha_blend=0;
ma->game.face_orientation=0;
ma->mode= MA_TRACEBLE|MA_SHADBUF|MA_SHADOW|MA_RAYBIAS|MA_TANGENT_STR|MA_ZTRANSP;
ma->shade_flag= MA_APPROX_OCCLUSION;
ma->preview = NULL;
}
Material *add_material(const char *name)
{
Material *ma;
ma= alloc_libblock(&G.main->mat, ID_MA, name);
init_material(ma);
return ma;
}
/* XXX keep synced with next function */
Material *copy_material(Material *ma)
{
Material *man;
int a;
man= copy_libblock(&ma->id);
id_lib_extern((ID *)man->group);
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) {
man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial");
memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex));
id_us_plus((ID *)man->mtex[a]->tex);
}
}
if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col);
if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec);
if (ma->preview) man->preview = BKE_previewimg_copy(ma->preview);
if(ma->nodetree) {
man->nodetree= ntreeCopyTree(ma->nodetree); /* 0 == full new tree */
}
man->gpumaterial.first= man->gpumaterial.last= NULL;
return man;
}
/* XXX (see above) material copy without adding to main dbase */
Material *localize_material(Material *ma)
{
Material *man;
int a;
man= copy_libblock(&ma->id);
BLI_remlink(&G.main->mat, man);
/* no increment for texture ID users, in previewrender.c it prevents decrement */
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) {
man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial");
memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex));
}
}
if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col);
if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec);
man->preview = NULL;
if(ma->nodetree)
man->nodetree= ntreeLocalize(ma->nodetree);
man->gpumaterial.first= man->gpumaterial.last= NULL;
return man;
}
static void extern_local_material(Material *ma)
{
int i;
for(i=0; i < MAX_MTEX; i++) {
if(ma->mtex[i]) id_lib_extern((ID *)ma->mtex[i]->tex);
}
}
void make_local_material(Material *ma)
{
Main *bmain= G.main;
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
int a, is_local= FALSE, is_lib= FALSE;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(ma->id.lib==NULL) return;
/* One local user; set flag and return. */
if(ma->id.us==1) {
id_clear_lib_data(bmain, &ma->id);
extern_local_material(ma);
return;
}
/* Check which other IDs reference this one to determine if it's used by
lib or local */
/* test objects */
ob= bmain->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
}
ob= ob->id.next;
}
/* test meshes */
me= bmain->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
}
me= me->id.next;
}
/* test curves */
cu= bmain->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
}
cu= cu->id.next;
}
/* test mballs */
mb= bmain->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
}
mb= mb->id.next;
}
/* Only local users. */
if(is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &ma->id);
extern_local_material(ma);
}
/* Both user and local, so copy. */
else if(is_local && is_lib) {
Material *man= copy_material(ma);
man->id.us= 0;
/* Remap paths of new ID using old library as base. */
BKE_id_lib_local_paths(bmain, &man->id);
/* do objects */
ob= bmain->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib==NULL) {
ob->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
ob= ob->id.next;
}
/* do meshes */
me= bmain->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib==NULL) {
me->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
me= me->id.next;
}
/* do curves */
cu= bmain->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib==NULL) {
cu->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
cu= cu->id.next;
}
/* do mballs */
mb= bmain->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib==NULL) {
mb->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
mb= mb->id.next;
}
}
}
/* for curve, mball, mesh types */
void extern_local_matarar(struct Material **matar, short totcol)
{
short i;
for(i= 0; i < totcol; i++) {
id_lib_extern((ID *)matar[i]);
}
}
Material ***give_matarar(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->mat);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->mat);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->mat);
}
return NULL;
}
short *give_totcolp(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->totcol);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->totcol);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->totcol);
}
return NULL;
}
/* same as above but for ID's */
Material ***give_matarar_id(ID *id)
{
switch(GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->mat);
break;
case ID_CU:
return &(((Curve *)id)->mat);
break;
case ID_MB:
return &(((MetaBall *)id)->mat);
break;
}
return NULL;
}
short *give_totcolp_id(ID *id)
{
switch(GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->totcol);
break;
case ID_CU:
return &(((Curve *)id)->totcol);
break;
case ID_MB:
return &(((MetaBall *)id)->totcol);
break;
}
return NULL;
}
static void data_delete_material_index_id(ID *id, short index)
{
switch(GS(id->name)) {
case ID_ME:
mesh_delete_material_index((Mesh *)id, index);
break;
case ID_CU:
curve_delete_material_index((Curve *)id, index);
break;
case ID_MB:
/* meta-elems dont have materials atm */
break;
}
}
void material_append_id(ID *id, Material *ma)
{
Material ***matar;
if((matar= give_matarar_id(id))) {
short *totcol= give_totcolp_id(id);
Material **mat= MEM_callocN(sizeof(void *) * ((*totcol) + 1), "newmatar");
if(*totcol) memcpy(mat, *matar, sizeof(void *) * (*totcol));
if(*matar) MEM_freeN(*matar);
*matar= mat;
(*matar)[(*totcol)++]= ma;
id_us_plus((ID *)ma);
test_object_materials(id);
}
}
Material *material_pop_id(ID *id, int index_i, int remove_material_slot)
{
short index= (short)index_i;
Material *ret= NULL;
Material ***matar;
if((matar= give_matarar_id(id))) {
short *totcol= give_totcolp_id(id);
if(index >= 0 && index < (*totcol)) {
ret= (*matar)[index];
id_us_min((ID *)ret);
if (remove_material_slot) {
if(*totcol <= 1) {
*totcol= 0;
MEM_freeN(*matar);
*matar= NULL;
}
else {
Material **mat;
if(index + 1 != (*totcol))
memmove((*matar)+index, (*matar)+(index+1), sizeof(void *) * ((*totcol) - (index + 1)));
(*totcol)--;
mat= MEM_callocN(sizeof(void *) * (*totcol), "newmatar");
memcpy(mat, *matar, sizeof(void *) * (*totcol));
MEM_freeN(*matar);
*matar= mat;
test_object_materials(id);
}
/* decrease mat_nr index */
data_delete_material_index_id(id, index);
}
/* don't remove material slot, only clear it*/
else
(*matar)[index]= NULL;
}
}
return ret;
}
Material *give_current_material(Object *ob, short act)
{
Material ***matarar, *ma;
short *totcolp;
if(ob==NULL) return NULL;
/* if object cannot have material, totcolp==NULL */
totcolp= give_totcolp(ob);
if(totcolp==NULL || ob->totcol==0) return NULL;
if(act<0) {
printf("no!\n");
}
if(act>ob->totcol) act= ob->totcol;
else if(act<=0) act= 1;
if(ob->matbits && ob->matbits[act-1]) { /* in object */
ma= ob->mat[act-1];
}
else { /* in data */
/* check for inconsistency */
if(*totcolp < ob->totcol)
ob->totcol= *totcolp;
if(act>ob->totcol) act= ob->totcol;
matarar= give_matarar(ob);
if(matarar && *matarar) ma= (*matarar)[act-1];
else ma= NULL;
}
return ma;
}
ID *material_from(Object *ob, short act)
{
if(ob==NULL) return NULL;
if(ob->totcol==0) return ob->data;
if(act==0) act= 1;
if(ob->matbits[act-1]) return (ID *)ob;
else return ob->data;
}
Material *give_node_material(Material *ma)
{
if(ma && ma->use_nodes && ma->nodetree) {
bNode *node= nodeGetActiveID(ma->nodetree, ID_MA);
if(node)
return (Material *)node->id;
}
return NULL;
}
/* GS reads the memory pointed at in a specific ordering. There are,
* however two definitions for it. I have jotted them down here, both,
* but I think the first one is actually used. The thing is that
* big-endian systems might read this the wrong way round. OTOH, we
* constructed the IDs that are read out with this macro explicitly as
* well. I expect we'll sort it out soon... */
/* from blendef: */
#define GS(a) (*((short *)(a)))
/* from misc_util: flip the bytes from x */
/* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */
void resize_object_material(Object *ob, const short totcol)
{
Material **newmatar;
char *newmatbits;
if(totcol==0) {
if(ob->totcol) {
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
ob->mat= NULL;
ob->matbits= NULL;
}
}
else if(ob->totcol<totcol) {
newmatar= MEM_callocN(sizeof(void *)*totcol, "newmatar");
newmatbits= MEM_callocN(sizeof(char)*totcol, "newmatbits");
if(ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *)*ob->totcol);
memcpy(newmatbits, ob->matbits, sizeof(char)*ob->totcol);
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat= newmatar;
ob->matbits= newmatbits;
}
ob->totcol= totcol;
if(ob->totcol && ob->actcol==0) ob->actcol= 1;
if(ob->actcol>ob->totcol) ob->actcol= ob->totcol;
}
void test_object_materials(ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
Object *ob;
short *totcol;
if(id==NULL || (totcol=give_totcolp_id(id))==NULL) {
return;
}
for(ob= G.main->object.first; ob; ob= ob->id.next) {
if(ob->data==id) {
resize_object_material(ob, *totcol);
}
}
}
void assign_material_id(ID *id, Material *ma, short act)
{
Material *mao, **matar, ***matarar;
short *totcolp;
if(act>MAXMAT) return;
if(act<1) act= 1;
/* prevent crashing when using accidentally */
BLI_assert(id->lib == NULL);
if(id->lib) return;
/* test arraylens */
totcolp= give_totcolp_id(id);
matarar= give_matarar_id(id);
if(totcolp==NULL || matarar==NULL) return;
if(act > *totcolp) {
matar= MEM_callocN(sizeof(void *)*act, "matarray1");
if(*totcolp) {
memcpy(matar, *matarar, sizeof(void *)*(*totcolp));
MEM_freeN(*matarar);
}
*matarar= matar;
*totcolp= act;
}
/* in data */
mao= (*matarar)[act-1];
if(mao) mao->id.us--;
(*matarar)[act-1]= ma;
if(ma)
id_us_plus((ID *)ma);
test_object_materials(id);
}
void assign_material(Object *ob, Material *ma, short act)
{
Material *mao, **matar, ***matarar;
char *matbits;
short *totcolp;
if(act>MAXMAT) return;
if(act<1) act= 1;
/* prevent crashing when using accidentally */
BLI_assert(ob->id.lib == NULL);
if(ob->id.lib) return;
/* test arraylens */
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==NULL || matarar==NULL) return;
if(act > *totcolp) {
matar= MEM_callocN(sizeof(void *)*act, "matarray1");
if(*totcolp) {
memcpy(matar, *matarar, sizeof(void *)*(*totcolp));
MEM_freeN(*matarar);
}
*matarar= matar;
*totcolp= act;
}
if(act > ob->totcol) {
matar= MEM_callocN(sizeof(void *)*act, "matarray2");
matbits= MEM_callocN(sizeof(char)*act, "matbits1");
if( ob->totcol) {
memcpy(matar, ob->mat, sizeof(void *)*( ob->totcol ));
memcpy(matbits, ob->matbits, sizeof(char)*(*totcolp));
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat= matar;
ob->matbits= matbits;
ob->totcol= act;
/* copy object/mesh linking, or assign based on userpref */
if(ob->actcol)
ob->matbits[act-1]= ob->matbits[ob->actcol-1];
else
ob->matbits[act-1]= (U.flag & USER_MAT_ON_OB)? 1: 0;
}
/* do it */
if(ob->matbits[act-1]) { /* in object */
mao= ob->mat[act-1];
if(mao) mao->id.us--;
ob->mat[act-1]= ma;
}
else { /* in data */
mao= (*matarar)[act-1];
if(mao) mao->id.us--;
(*matarar)[act-1]= ma;
}
if(ma)
id_us_plus((ID *)ma);
test_object_materials(ob->data);
}
/* XXX - this calls many more update calls per object then are needed, could be optimized */
void assign_matarar(struct Object *ob, struct Material ***matar, short totcol)
{
int actcol_orig= ob->actcol;
short i;
while(object_remove_material_slot(ob)) {};
/* now we have the right number of slots */
for(i=0; i<totcol; i++)
assign_material(ob, (*matar)[i], i+1);
if(actcol_orig > ob->totcol)
actcol_orig= ob->totcol;
ob->actcol= actcol_orig;
}
short find_material_index(Object *ob, Material *ma)
{
Material ***matarar;
short a, *totcolp;
if(ma==NULL) return 0;
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==NULL || matarar==NULL) return 0;
for(a=0; a<*totcolp; a++)
if((*matarar)[a]==ma)
break;
if(a<*totcolp)
return a+1;
return 0;
}
int object_add_material_slot(Object *ob)
{
if(ob==NULL) return FALSE;
if(ob->totcol>=MAXMAT) return FALSE;
assign_material(ob, NULL, ob->totcol+1);
ob->actcol= ob->totcol;
return TRUE;
}
static void do_init_render_material(Material *ma, int r_mode, float *amb)
{
MTex *mtex;
int a, needuv=0, needtang=0;
if(ma->flarec==0) ma->flarec= 1;
/* add all texcoflags from mtex, texco and mapto were cleared in advance */
for(a=0; a<MAX_MTEX; a++) {
/* separate tex switching */
if(ma->septex & (1<<a)) continue;
mtex= ma->mtex[a];
if(mtex && mtex->tex && (mtex->tex->type | (mtex->tex->use_nodes && mtex->tex->nodetree) )) {
ma->texco |= mtex->texco;
ma->mapto |= mtex->mapto;
/* always get derivatives for these textures */
if ELEM3(mtex->tex->type, TEX_IMAGE, TEX_PLUGIN, TEX_ENVMAP) ma->texco |= TEXCO_OSA;
else if(mtex->texflag & (MTEX_COMPAT_BUMP|MTEX_3TAP_BUMP|MTEX_5TAP_BUMP)) ma->texco |= TEXCO_OSA;
if(ma->texco & (TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM|TEXCO_STRAND|TEXCO_STRESS)) needuv= 1;
else if(ma->texco & (TEXCO_GLOB|TEXCO_UV|TEXCO_OBJECT|TEXCO_SPEED)) needuv= 1;
else if(ma->texco & (TEXCO_LAVECTOR|TEXCO_VIEW|TEXCO_STICKY)) needuv= 1;
if((ma->mapto & MAP_NORM) && (mtex->normapspace == MTEX_NSPACE_TANGENT))
needtang= 1;
}
}
if(needtang) ma->mode |= MA_NORMAP_TANG;
else ma->mode &= ~MA_NORMAP_TANG;
if(ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE)) {
needuv= 1;
if(r_mode & R_OSA) ma->texco |= TEXCO_OSA; /* for texfaces */
}
if(needuv) ma->texco |= NEED_UV;
/* since the raytracer doesnt recalc O structs for each ray, we have to preset them all */
if(r_mode & R_RAYTRACE) {
if((ma->mode & (MA_RAYMIRROR|MA_SHADOW_TRA)) || ((ma->mode & MA_TRANSP) && (ma->mode & MA_RAYTRANSP))) {
ma->texco |= NEED_UV|TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM;
if(r_mode & R_OSA) ma->texco |= TEXCO_OSA;
}
}
if(amb) {
ma->ambr= ma->amb*amb[0];
ma->ambg= ma->amb*amb[1];
ma->ambb= ma->amb*amb[2];
}
/* will become or-ed result of all node modes */
ma->mode_l= ma->mode;
ma->mode_l &= ~MA_SHLESS;
if(ma->strand_surfnor > 0.0f)
ma->mode_l |= MA_STR_SURFDIFF;
/* parses the geom+tex nodes */
if(ma->nodetree && ma->use_nodes)
ntreeShaderGetTexcoMode(ma->nodetree, r_mode, &ma->texco, &ma->mode_l);
}
static void init_render_nodetree(bNodeTree *ntree, Material *basemat, int r_mode, float *amb)
{
bNode *node;
for(node=ntree->nodes.first; node; node= node->next) {
if(node->id) {
if(GS(node->id->name)==ID_MA) {
Material *ma= (Material *)node->id;
if(ma!=basemat) {
do_init_render_material(ma, r_mode, amb);
basemat->texco |= ma->texco;
basemat->mode_l |= ma->mode_l & ~(MA_TRANSP|MA_ZTRANSP|MA_RAYTRANSP);
}
}
else if(node->type==NODE_GROUP)
init_render_nodetree((bNodeTree *)node->id, basemat, r_mode, amb);
}
}
}
void init_render_material(Material *mat, int r_mode, float *amb)
{
do_init_render_material(mat, r_mode, amb);
if(mat->nodetree && mat->use_nodes) {
init_render_nodetree(mat->nodetree, mat, r_mode, amb);
if (!mat->nodetree->execdata)
mat->nodetree->execdata = ntreeShaderBeginExecTree(mat->nodetree, 1);
}
}
void init_render_materials(Main *bmain, int r_mode, float *amb)
{
Material *ma;
/* clear these flags before going over materials, to make sure they
* are cleared only once, otherwise node materials contained in other
* node materials can go wrong */
for(ma= bmain->mat.first; ma; ma= ma->id.next) {
if(ma->id.us) {
ma->texco= 0;
ma->mapto= 0;
}
}
/* two steps, first initialize, then or the flags for layers */
for(ma= bmain->mat.first; ma; ma= ma->id.next) {
/* is_used flag comes back in convertblender.c */
ma->flag &= ~MA_IS_USED;
if(ma->id.us)
init_render_material(ma, r_mode, amb);
}
do_init_render_material(&defmaterial, r_mode, amb);
}
/* only needed for nodes now */
void end_render_material(Material *mat)
{
if(mat && mat->nodetree && mat->use_nodes) {
if (mat->nodetree->execdata)
ntreeShaderEndExecTree(mat->nodetree->execdata, 1);
}
}
void end_render_materials(Main *bmain)
{
Material *ma;
for(ma= bmain->mat.first; ma; ma= ma->id.next)
if(ma->id.us)
end_render_material(ma);
}
static int material_in_nodetree(bNodeTree *ntree, Material *mat)
{
bNode *node;
for(node=ntree->nodes.first; node; node= node->next) {
if(node->id && GS(node->id->name)==ID_MA) {
if(node->id==(ID*)mat)
return 1;
}
else if(node->type==NODE_GROUP)
if(material_in_nodetree((bNodeTree*)node->id, mat))
return 1;
}
return 0;
}
int material_in_material(Material *parmat, Material *mat)
{
if(parmat==mat)
return 1;
else if(parmat->nodetree && parmat->use_nodes)
return material_in_nodetree(parmat->nodetree, mat);
else
return 0;
}
/* ****************** */
static char colname_array[125][20]= {
"Black","DarkRed","HalfRed","Red","Red",
"DarkGreen","DarkOlive","Brown","Chocolate","OrangeRed",
"HalfGreen","GreenOlive","DryOlive","Goldenrod","DarkOrange",
"LightGreen","Chartreuse","YellowGreen","Yellow","Gold",
"Green","LawnGreen","GreenYellow","LightOlive","Yellow",
"DarkBlue","DarkPurple","HotPink","VioletPink","RedPink",
"SlateGray","DarkGrey","PalePurple","IndianRed","Tomato",
"SeaGreen","PaleGreen","GreenKhaki","LightBrown","LightSalmon",
"SpringGreen","PaleGreen","MediumOlive","YellowBrown","LightGold",
"LightGreen","LightGreen","LightGreen","GreenYellow","PaleYellow",
"HalfBlue","DarkSky","HalfMagenta","VioletRed","DeepPink",
"SteelBlue","SkyBlue","Orchid","LightHotPink","HotPink",
"SeaGreen","SlateGray","MediumGrey","Burlywood","LightPink",
"SpringGreen","Aquamarine","PaleGreen","Khaki","PaleOrange",
"SpringGreen","SeaGreen","PaleGreen","PaleWhite","YellowWhite",
"LightBlue","Purple","MediumOrchid","Magenta","Magenta",
"RoyalBlue","SlateBlue","MediumOrchid","Orchid","Magenta",
"DeepSkyBlue","LightSteelBlue","LightSkyBlue","Violet","LightPink",
"Cyan","DarkTurquoise","SkyBlue","Grey","Snow",
"Mint","Mint","Aquamarine","MintCream","Ivory",
"Blue","Blue","DarkMagenta","DarkOrchid","Magenta",
"SkyBlue","RoyalBlue","LightSlateBlue","MediumOrchid","Magenta",
"DodgerBlue","SteelBlue","MediumPurple","PalePurple","Plum",
"DeepSkyBlue","PaleBlue","LightSkyBlue","PalePurple","Thistle",
"Cyan","ColdBlue","PaleTurquoise","GhostWhite","White"
};
void automatname(Material *ma)
{
int nr, r, g, b;
float ref;
if(ma==NULL) return;
if(ma->mode & MA_SHLESS) ref= 1.0;
else ref= ma->ref;
r= (int)(4.99f*(ref*ma->r));
g= (int)(4.99f*(ref*ma->g));
b= (int)(4.99f*(ref*ma->b));
nr= r + 5*g + 25*b;
if(nr>124) nr= 124;
new_id(&G.main->mat, (ID *)ma, colname_array[nr]);
}
int object_remove_material_slot(Object *ob)
{
Material *mao, ***matarar;
Object *obt;
short *totcolp;
short a, actcol;
if (ob==NULL || ob->totcol==0) {
return FALSE;
}
/* this should never happen and used to crash */
if (ob->actcol <= 0) {
printf("%s: invalid material index %d, report a bug!\n", __func__, ob->actcol);
BLI_assert(0);
return FALSE;
}
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
*
* after that check indices in mesh/curve/mball!!!
*/
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(*matarar==NULL) return FALSE;
/* we delete the actcol */
mao= (*matarar)[ob->actcol-1];
if(mao) mao->id.us--;
for(a=ob->actcol; a<ob->totcol; a++)
(*matarar)[a-1]= (*matarar)[a];
(*totcolp)--;
if(*totcolp==0) {
MEM_freeN(*matarar);
*matarar= NULL;
}
actcol= ob->actcol;
obt= G.main->object.first;
while(obt) {
if(obt->data==ob->data) {
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
mao= obt->mat[actcol-1];
if(mao) mao->id.us--;
for(a=actcol; a<obt->totcol; a++) {
obt->mat[a-1]= obt->mat[a];
obt->matbits[a-1]= obt->matbits[a];
}
obt->totcol--;
if(obt->actcol > obt->totcol) obt->actcol= obt->totcol;
if(obt->totcol==0) {
MEM_freeN(obt->mat);
MEM_freeN(obt->matbits);
obt->mat= NULL;
obt->matbits= NULL;
}
}
obt= obt->id.next;
}
/* check indices from mesh */
if (ELEM4(ob->type, OB_MESH, OB_CURVE, OB_SURF, OB_FONT)) {
data_delete_material_index_id((ID *)ob->data, actcol-1);
freedisplist(&ob->disp);
}
return TRUE;
}
/* r g b = current value, col = new value, fac==0 is no change */
/* if g==NULL, it only does r channel */
void ramp_blend(int type, float r_col[3], const float fac, const float col[3])
{
float tmp, facm= 1.0f-fac;
switch (type) {
case MA_RAMP_BLEND:
r_col[0] = facm*(r_col[0]) + fac*col[0];
if(r_col[1]) {
r_col[1] = facm*(r_col[1]) + fac*col[1];
r_col[2] = facm*(r_col[2]) + fac*col[2];
}
break;
case MA_RAMP_ADD:
r_col[0] += fac*col[0];
if(r_col[1]) {
r_col[1] += fac*col[1];
r_col[2] += fac*col[2];
}
break;
case MA_RAMP_MULT:
r_col[0] *= (facm + fac*col[0]);
if(r_col[1]) {
r_col[1] *= (facm + fac*col[1]);
r_col[2] *= (facm + fac*col[2]);
}
break;
case MA_RAMP_SCREEN:
r_col[0] = 1.0f - (facm + fac*(1.0f - col[0])) * (1.0f - r_col[0]);
if(r_col[1]) {
r_col[1] = 1.0f - (facm + fac*(1.0f - col[1])) * (1.0f - r_col[1]);
r_col[2] = 1.0f - (facm + fac*(1.0f - col[2])) * (1.0f - r_col[2]);
}
break;
case MA_RAMP_OVERLAY:
if(r_col[0] < 0.5f)
r_col[0] *= (facm + 2.0f*fac*col[0]);
else
r_col[0] = 1.0f - (facm + 2.0f*fac*(1.0f - col[0])) * (1.0f - r_col[0]);
if(r_col[1]) {
if(r_col[1] < 0.5f)
r_col[1] *= (facm + 2.0f*fac*col[1]);
else
r_col[1] = 1.0f - (facm + 2.0f*fac*(1.0f - col[1])) * (1.0f - r_col[1]);
if(r_col[2] < 0.5f)
r_col[2] *= (facm + 2.0f*fac*col[2]);
else
r_col[2] = 1.0f - (facm + 2.0f*fac*(1.0f - col[2])) * (1.0f - r_col[2]);
}
break;
case MA_RAMP_SUB:
r_col[0] -= fac*col[0];
if(r_col[1]) {
r_col[1] -= fac*col[1];
r_col[2] -= fac*col[2];
}
break;
case MA_RAMP_DIV:
if(col[0]!=0.0f)
r_col[0] = facm*(r_col[0]) + fac*(r_col[0])/col[0];
if(r_col[1]) {
if(col[1]!=0.0f)
r_col[1] = facm*(r_col[1]) + fac*(r_col[1])/col[1];
if(col[2]!=0.0f)
r_col[2] = facm*(r_col[2]) + fac*(r_col[2])/col[2];
}
break;
case MA_RAMP_DIFF:
r_col[0] = facm*(r_col[0]) + fac*fabsf(r_col[0]-col[0]);
if(r_col[1]) {
r_col[1] = facm*(r_col[1]) + fac*fabsf(r_col[1]-col[1]);
r_col[2] = facm*(r_col[2]) + fac*fabsf(r_col[2]-col[2]);
}
break;
case MA_RAMP_DARK:
tmp=col[0]+((1-col[0])*facm);
if(tmp < r_col[0]) r_col[0]= tmp;
if(r_col[1]) {
tmp=col[1]+((1-col[1])*facm);
if(tmp < r_col[1]) r_col[1]= tmp;
tmp=col[2]+((1-col[2])*facm);
if(tmp < r_col[2]) r_col[2]= tmp;
}
break;
case MA_RAMP_LIGHT:
tmp= fac*col[0];
if(tmp > r_col[0]) r_col[0]= tmp;
if(r_col[1]) {
tmp= fac*col[1];
if(tmp > r_col[1]) r_col[1]= tmp;
tmp= fac*col[2];
if(tmp > r_col[2]) r_col[2]= tmp;
}
break;
case MA_RAMP_DODGE:
if(r_col[0] !=0.0f){
tmp = 1.0f - fac*col[0];
if(tmp <= 0.0f)
r_col[0] = 1.0f;
else if ((tmp = (r_col[0]) / tmp)> 1.0f)
r_col[0] = 1.0f;
else
r_col[0] = tmp;
}
if(r_col[1]) {
if(r_col[1] !=0.0f){
tmp = 1.0f - fac*col[1];
if(tmp <= 0.0f )
r_col[1] = 1.0f;
else if ((tmp = (r_col[1]) / tmp) > 1.0f )
r_col[1] = 1.0f;
else
r_col[1] = tmp;
}
if(r_col[2] !=0.0f){
tmp = 1.0f - fac*col[2];
if(tmp <= 0.0f)
r_col[2] = 1.0f;
else if ((tmp = (r_col[2]) / tmp) > 1.0f )
r_col[2] = 1.0f;
else
r_col[2] = tmp;
}
}
break;
case MA_RAMP_BURN:
tmp = facm + fac*col[0];
if(tmp <= 0.0f)
r_col[0] = 0.0f;
else if (( tmp = (1.0f - (1.0f - (r_col[0])) / tmp )) < 0.0f)
r_col[0] = 0.0f;
else if (tmp > 1.0f)
r_col[0]=1.0f;
else
r_col[0] = tmp;
if(r_col[1]) {
tmp = facm + fac*col[1];
if(tmp <= 0.0f)
r_col[1] = 0.0f;
else if (( tmp = (1.0f - (1.0f - (r_col[1])) / tmp )) < 0.0f )
r_col[1] = 0.0f;
else if(tmp >1.0f)
r_col[1]=1.0f;
else
r_col[1] = tmp;
tmp = facm + fac*col[2];
if(tmp <= 0.0f)
r_col[2] = 0.0f;
else if (( tmp = (1.0f - (1.0f - (r_col[2])) / tmp )) < 0.0f )
r_col[2] = 0.0f;
else if(tmp >1.0f)
r_col[2]= 1.0f;
else
r_col[2] = tmp;
}
break;
case MA_RAMP_HUE:
if(r_col[1]){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
if(colS!=0 ){
rgb_to_hsv(r_col[0],r_col[1],r_col[2],&rH,&rS,&rV);
hsv_to_rgb( colH , rS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm*(r_col[0]) + fac*tmpr;
r_col[1] = facm*(r_col[1]) + fac*tmpg;
r_col[2] = facm*(r_col[2]) + fac*tmpb;
}
}
break;
case MA_RAMP_SAT:
if(r_col[1]){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(r_col[0],r_col[1],r_col[2],&rH,&rS,&rV);
if(rS!=0){
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, (facm*rS +fac*colS), rV, r_col+0, r_col+1, r_col+2);
}
}
break;
case MA_RAMP_VAL:
if(r_col[1]){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(r_col[0],r_col[1],r_col[2],&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, rS, (facm*rV +fac*colV), r_col+0, r_col+1, r_col+2);
}
break;
case MA_RAMP_COLOR:
if(r_col[1]){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
if(colS!=0){
rgb_to_hsv(r_col[0],r_col[1],r_col[2],&rH,&rS,&rV);
hsv_to_rgb( colH, colS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm*(r_col[0]) + fac*tmpr;
r_col[1] = facm*(r_col[1]) + fac*tmpg;
r_col[2] = facm*(r_col[2]) + fac*tmpb;
}
}
break;
case MA_RAMP_SOFT:
if (r_col[1]){
float scr, scg, scb;
/* first calculate non-fac based Screen mix */
scr = 1.0f - (1.0f - col[0]) * (1.0f - r_col[0]);
scg = 1.0f - (1.0f - col[1]) * (1.0f - r_col[1]);
scb = 1.0f - (1.0f - col[2]) * (1.0f - r_col[2]);
r_col[0] = facm*(r_col[0]) + fac*(((1.0f - r_col[0]) * col[0] * (r_col[0])) + (r_col[0] * scr));
r_col[1] = facm*(r_col[1]) + fac*(((1.0f - r_col[1]) * col[1] * (r_col[1])) + (r_col[1] * scg));
r_col[2] = facm*(r_col[2]) + fac*(((1.0f - r_col[2]) * col[2] * (r_col[2])) + (r_col[2] * scb));
}
break;
case MA_RAMP_LINEAR:
if (col[0] > 0.5f)
r_col[0] = r_col[0] + fac*(2.0f*(col[0]-0.5f));
else
r_col[0] = r_col[0] + fac*(2.0f*(col[0]) - 1.0f);
if (r_col[1]){
if (col[1] > 0.5f)
r_col[1] = r_col[1] + fac*(2.0f*(col[1]-0.5f));
else
r_col[1] = r_col[1] + fac*(2.0f*(col[1]) -1.0f);
if (col[2] > 0.5f)
r_col[2] = r_col[2] + fac*(2.0f*(col[2]-0.5f));
else
r_col[2] = r_col[2] + fac*(2.0f*(col[2]) - 1.0f);
}
break;
}
}
/* copy/paste buffer, if we had a propper py api that would be better */
static Material matcopybuf;
static short matcopied= 0;
void clear_matcopybuf(void)
{
memset(&matcopybuf, 0, sizeof(Material));
matcopied= 0;
}
void free_matcopybuf(void)
{
int a;
for(a=0; a<MAX_MTEX; a++) {
if(matcopybuf.mtex[a]) {
MEM_freeN(matcopybuf.mtex[a]);
matcopybuf.mtex[a]= NULL;
}
}
if(matcopybuf.ramp_col) MEM_freeN(matcopybuf.ramp_col);
if(matcopybuf.ramp_spec) MEM_freeN(matcopybuf.ramp_spec);
matcopybuf.ramp_col= NULL;
matcopybuf.ramp_spec= NULL;
if(matcopybuf.nodetree) {
ntreeFreeTree(matcopybuf.nodetree);
MEM_freeN(matcopybuf.nodetree);
matcopybuf.nodetree= NULL;
}
matcopied= 0;
}
void copy_matcopybuf(Material *ma)
{
int a;
MTex *mtex;
if(matcopied)
free_matcopybuf();
memcpy(&matcopybuf, ma, sizeof(Material));
if(matcopybuf.ramp_col) matcopybuf.ramp_col= MEM_dupallocN(matcopybuf.ramp_col);
if(matcopybuf.ramp_spec) matcopybuf.ramp_spec= MEM_dupallocN(matcopybuf.ramp_spec);
for(a=0; a<MAX_MTEX; a++) {
mtex= matcopybuf.mtex[a];
if(mtex) {
matcopybuf.mtex[a]= MEM_dupallocN(mtex);
}
}
matcopybuf.nodetree= ntreeCopyTree(ma->nodetree);
matcopybuf.preview= NULL;
matcopybuf.gpumaterial.first= matcopybuf.gpumaterial.last= NULL;
matcopied= 1;
}
void paste_matcopybuf(Material *ma)
{
int a;
MTex *mtex;
ID id;
if(matcopied==0)
return;
/* free current mat */
if(ma->ramp_col) MEM_freeN(ma->ramp_col);
if(ma->ramp_spec) MEM_freeN(ma->ramp_spec);
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
if(ma->nodetree) {
ntreeFreeTree(ma->nodetree);
MEM_freeN(ma->nodetree);
}
GPU_material_free(ma);
id= (ma->id);
memcpy(ma, &matcopybuf, sizeof(Material));
(ma->id)= id;
if(matcopybuf.ramp_col) ma->ramp_col= MEM_dupallocN(matcopybuf.ramp_col);
if(matcopybuf.ramp_spec) ma->ramp_spec= MEM_dupallocN(matcopybuf.ramp_spec);
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex) {
ma->mtex[a]= MEM_dupallocN(mtex);
if(mtex->tex) id_us_plus((ID *)mtex->tex);
}
}
ma->nodetree= ntreeCopyTree(matcopybuf.nodetree);
}
/*********************** texface to material convert functions **********************/
/* encode all the TF information into a single int */
static int encode_tfaceflag(MTFace *tf, int convertall)
{
/* calculate the flag */
int flag = tf->mode;
/* options that change the material offline render */
if (!convertall) {
flag &= ~TF_OBCOL;
}
/* clean flags that are not being converted */
flag &= ~TF_TEX;
flag &= ~TF_SHAREDVERT;
flag &= ~TF_SHAREDCOL;
flag &= ~TF_CONVERTED;
/* light tface flag is ignored in GLSL mode */
flag &= ~TF_LIGHT;
/* 15 is how big the flag can be - hardcoded here and in decode_tfaceflag() */
flag |= tf->transp << 15;
/* increase 1 so flag 0 is different than no flag yet */
return flag + 1;
}
/* set the material options based in the tface flag */
static void decode_tfaceflag(Material *ma, int flag, int convertall)
{
int alphablend;
GameSettings *game= &ma->game;
/* flag is shifted in 1 to make 0 != no flag yet (see encode_tfaceflag) */
flag -= 1;
alphablend = flag >> 15; //encoded in the encode_tfaceflag function
(*game).flag = 0;
/* General Material Options */
if ((flag & TF_DYNAMIC)==0) (*game).flag |= GEMAT_NOPHYSICS;
/* Material Offline Rendering Properties */
if (convertall) {
if (flag & TF_OBCOL) ma->shade_flag |= MA_OBCOLOR;
}
/* Special Face Properties */
if ((flag & TF_TWOSIDE)==0) (*game).flag |= GEMAT_BACKCULL;
if (flag & TF_INVISIBLE)(*game).flag |= GEMAT_INVISIBLE;
if (flag & TF_BMFONT) (*game).flag |= GEMAT_TEXT;
/* Face Orientation */
if (flag & TF_BILLBOARD) (*game).face_orientation |= GEMAT_HALO;
else if (flag & TF_BILLBOARD2) (*game).face_orientation |= GEMAT_BILLBOARD;
else if (flag & TF_SHADOW) (*game).face_orientation |= GEMAT_SHADOW;
/* Alpha Blend */
if (flag & TF_ALPHASORT && ELEM(alphablend, TF_ALPHA, TF_ADD)) (*game).alpha_blend = GEMAT_ALPHA_SORT;
else if (alphablend & TF_ALPHA) (*game).alpha_blend = GEMAT_ALPHA;
else if (alphablend & TF_ADD) (*game).alpha_blend = GEMAT_ADD;
else if (alphablend & TF_CLIP) (*game).alpha_blend = GEMAT_CLIP;
}
/* boolean check to see if the mesh needs a material */
static int check_tfaceneedmaterial(int flag)
{
// check if the flags we have are not deprecated != than default material options
// also if only flags are visible and collision see if all objects using this mesh have this option in physics
/* flag is shifted in 1 to make 0 != no flag yet (see encode_tfaceflag) */
flag -=1;
// deprecated flags
flag &= ~TF_OBCOL;
flag &= ~TF_SHAREDVERT;
flag &= ~TF_SHAREDCOL;
/* light tface flag is ignored in GLSL mode */
flag &= ~TF_LIGHT;
// automatic detected if tex image has alpha
flag &= ~(TF_ALPHA << 15);
// automatic detected if using texture
flag &= ~TF_TEX;
// settings for the default NoMaterial
if (flag == TF_DYNAMIC)
return 0;
else
return 1;
}
/* return number of digits of an integer */
// XXX to be optmized or replaced by an equivalent blender internal function
static int integer_getdigits(int number)
{
int i=0;
if (number == 0) return 1;
while (number != 0){
number = (int)(number/10);
i++;
}
return i;
}
static void calculate_tface_materialname(char *matname, char *newname, int flag)
{
// if flag has only light and collision and material matches those values
// you can do strcpy(name, mat_name);
// otherwise do:
int digits = integer_getdigits(flag);
/* clamp the old name, remove the MA prefix and add the .TF.flag suffix
e.g. matname = "MALoooooooooooooongName"; newname = "Loooooooooooooon.TF.2" */
sprintf(newname, "%.*s.TF.%0*d", MAX_ID_NAME-(digits+5), matname, digits, flag);
}
/* returns -1 if no match */
static short mesh_getmaterialnumber(Mesh *me, Material *ma)
{
short a;
for (a=0; a<me->totcol; a++) {
if (me->mat[a] == ma) {
return a;
}
}
return -1;
}
/* append material */
static short mesh_addmaterial(Mesh *me, Material *ma)
{
material_append_id(&me->id, NULL);
me->mat[me->totcol-1]= ma;
id_us_plus(&ma->id);
return me->totcol-1;
}
static void set_facetexture_flags(Material *ma, Image *image)
{
if(image) {
ma->mode |= MA_FACETEXTURE;
/* we could check if the texture has alpha, but then more meshes sharing the same
* material may need it. Let's make it simple. */
if(BKE_image_has_alpha(image))
ma->mode |= MA_FACETEXTURE_ALPHA;
}
}
/* returns material number */
static short convert_tfacenomaterial(Main *main, Mesh *me, MTFace *tf, int flag)
{
Material *ma;
char idname[MAX_ID_NAME];
short mat_nr= -1;
/* new material, the name uses the flag*/
sprintf(idname, "MAMaterial.TF.%0*d", integer_getdigits(flag), flag);
if ((ma= BLI_findstring(&main->mat, idname+2, offsetof(ID, name)+2))) {
mat_nr= mesh_getmaterialnumber(me, ma);
/* assign the material to the mesh */
if(mat_nr == -1) mat_nr= mesh_addmaterial(me, ma);
/* if needed set "Face Textures [Alpha]" Material options */
set_facetexture_flags(ma, tf->tpage);
}
/* create a new material */
else {
ma= add_material(idname+2);
if(ma){
printf("TexFace Convert: Material \"%s\" created.\n", idname+2);
mat_nr= mesh_addmaterial(me, ma);
/* if needed set "Face Textures [Alpha]" Material options */
set_facetexture_flags(ma, tf->tpage);
decode_tfaceflag(ma, flag, 1);
// the final decoding will happen after, outside the main loop
// for now store the flag into the material and change light/tex/collision
// store the flag as a negative number
ma->game.flag = -flag;
id_us_min((ID *)ma);
}
else printf("Error: Unable to create Material \"%s\" for Mesh \"%s\".", idname+2, me->id.name+2);
}
/* set as converted, no need to go bad to this face */
tf->mode |= TF_CONVERTED;
return mat_nr;
}
/* Function to fully convert materials */
static void convert_tfacematerial(Main *main, Material *ma)
{
Mesh *me;
Material *mat_new;
MFace *mf;
MTFace *tf;
int flag, index;
int a;
short mat_nr;
CustomDataLayer *cdl;
char idname[MAX_ID_NAME];
for(me=main->mesh.first; me; me=me->id.next){
/* check if this mesh uses this material */
for(a=0;a<me->totcol;a++)
if(me->mat[a] == ma) break;
/* no material found */
if (a == me->totcol) continue;
/* get the active tface layer */
index= CustomData_get_active_layer_index(&me->fdata, CD_MTFACE);
cdl= (index == -1)? NULL: &me->fdata.layers[index];
if (!cdl) continue;
/* loop over all the faces and stop at the ones that use the material*/
for(a=0, mf=me->mface; a<me->totface; a++, mf++) {
if(me->mat[mf->mat_nr] != ma) continue;
/* texface data for this face */
tf = ((MTFace*)cdl->data) + a;
flag = encode_tfaceflag(tf, 1);
/* the name of the new material */
calculate_tface_materialname(ma->id.name, (char *)&idname, flag);
if ((mat_new= BLI_findstring(&main->mat, idname+2, offsetof(ID, name)+2))) {
/* material already existent, see if the mesh has it */
mat_nr = mesh_getmaterialnumber(me, mat_new);
/* material is not in the mesh, add it */
if(mat_nr == -1) mat_nr= mesh_addmaterial(me, mat_new);
}
/* create a new material */
else {
mat_new=copy_material(ma);
if(mat_new){
/* rename the material*/
strcpy(mat_new->id.name, idname);
id_us_min((ID *)mat_new);
mat_nr= mesh_addmaterial(me, mat_new);
decode_tfaceflag(mat_new, flag, 1);
}
else {
printf("Error: Unable to create Material \"%s\" for Mesh \"%s.", idname+2, me->id.name+2);
mat_nr = mf->mat_nr;
continue;
}
}
/* if the material has a texture but no texture channel
* set "Face Textures [Alpha]" Material options
* actually we need to run it always, because of old behavior
* of using face texture if any texture channel was present (multitex) */
//if((!mat_new->mtex[0]) && (!mat_new->mtex[0]->tex))
set_facetexture_flags(mat_new, tf->tpage);
/* set the material number to the face*/
mf->mat_nr = mat_nr;
}
/* remove material from mesh */
for(a=0;a<me->totcol;)
if(me->mat[a] == ma) material_pop_id(&me->id, a, 1);else a++;
}
}
#define MAT_BGE_DISPUTED -99999
int do_version_tface(Main *main, int fileload)
{
Mesh *me;
Material *ma;
MFace *mf;
MTFace *tf;
CustomDataLayer *cdl;
int a;
int flag;
int index;
/* sometimes mesh has no materials but will need a new one. In those
* cases we need to ignore the mf->mat_nr and only look at the face
* mode because it can be zero as uninitialized or the 1st created material
*/
int nomaterialslots;
/* alert to user to check the console */
int nowarning = 1;
/* mark all the materials to conversion with a flag
* if there is tface create a complete flag for that storing in flag
* if there is tface and flag > 0: creates a new flag based on this face
* if flags are different set flag to -1
*/
/* 1st part: marking mesh materials to update */
for(me=main->mesh.first; me; me=me->id.next){
if (me->id.lib) continue;
/* get the active tface layer */
index= CustomData_get_active_layer_index(&me->fdata, CD_MTFACE);
cdl= (index == -1)? NULL: &me->fdata.layers[index];
if (!cdl) continue;
nomaterialslots = (me->totcol==0?1:0);
/* loop over all the faces*/
for(a=0, mf=me->mface; a<me->totface; a++, mf++) {
/* texface data for this face */
tf = ((MTFace*)cdl->data) + a;
/* conversion should happen only once */
if (fileload)
tf->mode &= ~TF_CONVERTED;
else {
if((tf->mode & TF_CONVERTED)) continue;
else tf->mode |= TF_CONVERTED;
}
/* no material slots */
if(nomaterialslots) {
flag = encode_tfaceflag(tf, 1);
/* create/find a new material and assign to the face */
if (check_tfaceneedmaterial(flag)) {
mf->mat_nr= convert_tfacenomaterial(main, me, tf, flag);
}
/* else mark them as no-material to be reverted to 0 later */
else {
mf->mat_nr = -1;
}
}
else if(mf->mat_nr < me->totcol) {
ma= me->mat[mf->mat_nr];
/* no material create one if necessary */
if(!ma) {
/* find a new material and assign to the face */
flag = encode_tfaceflag(tf, 1);
/* create/find a new material and assign to the face */
if (check_tfaceneedmaterial(flag))
mf->mat_nr= convert_tfacenomaterial(main, me, tf, flag);
continue;
}
/* we can't read from this if it comes from a library,
* at doversion time: direct_link might not have happened on it,
* so ma->mtex is not pointing to valid memory yet.
* later we could, but it's better not */
else if(ma->id.lib)
continue;
/* material already marked as disputed */
else if(ma->game.flag == MAT_BGE_DISPUTED)
continue;
/* found a material */
else {
flag = encode_tfaceflag(tf, ((fileload)?0:1));
/* first time changing this material */
if (ma->game.flag == 0)
ma->game.flag= -flag;
/* mark material as disputed */
else if (ma->game.flag != -flag) {
ma->game.flag = MAT_BGE_DISPUTED;
continue;
}
/* material ok so far */
else {
ma->game.flag = -flag;
/* some people uses multitexture with TexFace by creating a texture
* channel which not neccessarly the tf->tpage image. But the game engine
* was enabling it. Now it's required to set "Face Texture [Alpha] in the
* material settings. */
if(!fileload)
set_facetexture_flags(ma, tf->tpage);
}
}
}
else
continue;
}
/* if we didn't have material slot and now we do, we need to
* make sure the materials are correct */
if(nomaterialslots) {
if (me->totcol>0) {
for(a=0, mf=me->mface; a<me->totface; a++, mf++) {
if (mf->mat_nr == -1) {
/* texface data for this face */
tf = ((MTFace*)cdl->data) + a;
mf->mat_nr= convert_tfacenomaterial(main, me, tf, encode_tfaceflag(tf, 1));
}
}
}
else {
for(a=0, mf=me->mface; a<me->totface; a++, mf++) {
mf->mat_nr=0;
}
}
}
}
/* 2nd part - conversion */
/* skip library files */
/* we shouldn't loop through the materials created in the loop. make the loop stop at its original length) */
for (ma= main->mat.first, a=0; ma; ma= ma->id.next, a++) {
if (ma->id.lib) continue;
/* disputed material */
if (ma->game.flag == MAT_BGE_DISPUTED) {
ma->game.flag = 0;
if (fileload) {
printf("Warning: material \"%s\" skipped - to convert old game texface to material go to the Help menu.\n", ma->id.name+2);
nowarning = 0;
}
else
convert_tfacematerial(main, ma);
continue;
}
/* no conflicts in this material - 90% of cases
* convert from tface system to material */
else if (ma->game.flag < 0) {
decode_tfaceflag(ma, -(ma->game.flag), 1);
/* material is good make sure all faces using
* this material are set to converted */
if (fileload) {
for(me=main->mesh.first; me; me=me->id.next){
/* check if this mesh uses this material */
for(a=0;a<me->totcol;a++)
if(me->mat[a] == ma) break;
/* no material found */
if (a == me->totcol) continue;
/* get the active tface layer */
index= CustomData_get_active_layer_index(&me->fdata, CD_MTFACE);
cdl= (index == -1)? NULL: &me->fdata.layers[index];
if (!cdl) continue;
/* loop over all the faces and stop at the ones that use the material*/
for (a=0, mf=me->mface; a<me->totface; a++, mf++) {
if (me->mat[mf->mat_nr] == ma) {
/* texface data for this face */
tf = ((MTFace*)cdl->data) + a;
tf->mode |= TF_CONVERTED;
}
}
}
}
}
/* material is not used by faces with texface
* set the default flag - do it only once */
else
if (fileload)
ma->game.flag = GEMAT_BACKCULL;
}
return nowarning;
}