This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_edgenet.c
Brecht Van Lommel afb4b65167 Random number generator: replace a bunch of usage of the global random number
generator with a local one. It's not thread safe and will not give repeatable
results, so in most cases it should not be used.

Also fixes #34992 where the noise texture of a displacement modifier was not
properly random in opengl animation render, because the seed got reset to a
fixed value by an unrelated function while for final render it changed each
frame.
2013-04-15 23:12:40 +00:00

1275 lines
29 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_edgenet.c
* \ingroup bmesh
*
* Edge-Net for filling in open edge-loops.
*/
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_smallhash.h"
#include "BLI_rand.h"
#include "BLI_heap.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
#define EDGE_MARK 1
#define EDGE_VIS 2
#define FACE_NEW 1
#define ELE_NEW 1
#define ELE_ORIG 4
#define FACE_IGNORE 16
typedef struct EPathNode {
struct EPathNode *next, *prev;
BMVert *v;
BMEdge *e;
BMEdge *cure;
} EPathNode;
typedef struct EPath {
ListBase nodes;
float weight;
int group;
} EPath;
typedef struct PathBase {
BLI_mempool *nodepool, *pathpool;
} PathBase;
typedef struct EdgeData {
int tag;
int ftag;
BMDiskLink v1_disk_link, v2_disk_link;
} EdgeData;
typedef struct VertData {
BMEdge *e;
float no[3], offco[3], sco[3]; /* offco is vertex coordinate slightly offset randomly */
int tag;
} VertData;
static int count_edge_faces(BMesh *bm, BMEdge *e);
/**** rotation system code * */
BLI_INLINE BMDiskLink *rs_edge_link_get(BMEdge *e, BMVert *v, EdgeData *e_data)
{
return v == ((BMEdge *)e)->v1 ? &(((EdgeData *)e_data)->v1_disk_link) :
&(((EdgeData *)e_data)->v2_disk_link);
}
static bool rotsys_append_edge(BMEdge *e, BMVert *v,
EdgeData *edata, VertData *vdata)
{
EdgeData *ed = &edata[BM_elem_index_get(e)];
VertData *vd = &vdata[BM_elem_index_get(v)];
if (!vd->e) {
Link *e1 = (Link *)rs_edge_link_get(e, v, ed);
vd->e = e;
e1->next = e1->prev = (Link *)e;
}
else {
BMDiskLink *dl1, *dl2, *dl3;
EdgeData *ved = &edata[BM_elem_index_get(vd->e)];
dl1 = rs_edge_link_get(e, v, ed);
dl2 = rs_edge_link_get(vd->e, v, ved);
dl3 = dl2->prev ? rs_edge_link_get(dl2->prev, v, &edata[BM_elem_index_get(dl2->prev)]) : NULL;
dl1->next = vd->e;
dl1->prev = dl2->prev;
dl2->prev = e;
if (dl3) {
dl3->next = e;
}
}
return true;
}
static void UNUSED_FUNCTION(rotsys_remove_edge)(BMEdge *e, BMVert *v,
EdgeData *edata, VertData *vdata)
{
EdgeData *ed = edata + BM_elem_index_get(e);
VertData *vd = vdata + BM_elem_index_get(v);
BMDiskLink *e1, *e2;
e1 = rs_edge_link_get(e, v, ed);
if (e1->prev) {
e2 = rs_edge_link_get(e1->prev, v, ed);
e2->next = e1->next;
}
if (e1->next) {
e2 = rs_edge_link_get(e1->next, v, ed);
e2->prev = e1->prev;
}
if (vd->e == e)
vd->e = (e != e1->next) ? e1->next : NULL;
e1->next = e1->prev = NULL;
}
static BMEdge *rotsys_nextedge(BMEdge *e, BMVert *v,
EdgeData *edata, VertData *UNUSED(vdata))
{
if (v == e->v1)
return edata[BM_elem_index_get(e)].v1_disk_link.next;
if (v == e->v2)
return edata[BM_elem_index_get(e)].v2_disk_link.next;
return NULL;
}
static BMEdge *rotsys_prevedge(BMEdge *e, BMVert *v,
EdgeData *edata, VertData *UNUSED(vdata))
{
if (v == e->v1)
return edata[BM_elem_index_get(e)].v1_disk_link.prev;
if (v == e->v2)
return edata[BM_elem_index_get(e)].v2_disk_link.prev;
return NULL;
}
static void rotsys_reverse(BMEdge *UNUSED(e), BMVert *v, EdgeData *edata, VertData *vdata)
{
BMEdge **edges = NULL;
BMEdge *e_first;
BMEdge *e;
BLI_array_staticdeclare(edges, BM_DEFAULT_NGON_STACK_SIZE);
int i, totedge;
e = e_first = vdata[BM_elem_index_get(v)].e;
do {
BLI_array_append(edges, e);
e = rotsys_nextedge(e, v, edata, vdata);
} while (e != e_first);
totedge = BLI_array_count(edges);
for (i = 0; i < totedge / 2; i++) {
SWAP(BMEdge *, edges[i], edges[totedge - 1 - i]);
}
vdata[BM_elem_index_get(v)].e = NULL;
for (i = 0; i < totedge; i++) {
rotsys_append_edge(edges[i], v, edata, vdata);
}
BLI_array_free(edges);
}
static int UNUSED_FUNCTION(rotsys_count)(BMVert *v, EdgeData *edata, VertData *vdata)
{
BMEdge *e = vdata[BM_elem_index_get(v)].e;
int i = 0;
if (!e)
return 0;
do {
if (!e)
return 0;
e = rotsys_nextedge(e, v, edata, vdata);
if (i >= (1 << 20)) {
printf("bmesh error: infinite loop in disk cycle!\n");
return 0;
}
i += 1;
} while (e != vdata[BM_elem_index_get(v)].e);
return i;
}
static int UNUSED_FUNCTION(rotsys_fill_faces)(BMesh *bm, EdgeData *edata, VertData *vdata)
{
BMIter iter;
BMEdge *e, **edges = NULL;
BLI_array_declare(edges);
BMVert *v, **verts = NULL;
BMFace *f;
BLI_array_declare(verts);
SmallHash visithash, *hash = &visithash;
int i;
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
BMEdge *e2, *starte;
BMVert *startv;
int rad, ok;
rad = count_edge_faces(bm, e);
if (rad < 2) {
starte = e;
}
else {
continue;
}
/* do two passes, going forward then backward */
for (i = 0; i < 2; i++) {
BLI_smallhash_init(hash);
BLI_array_empty(verts);
BLI_array_empty(edges);
startv = v = starte->v1;
e2 = starte;
ok = 1;
if (!v || !e2)
continue;
do {
if (BLI_smallhash_haskey(hash, (intptr_t)e2) ||
BLI_smallhash_haskey(hash, (intptr_t)v))
{
ok = 0;
break;
}
BLI_array_append(verts, v);
BLI_array_append(edges, e2);
BLI_smallhash_insert(hash, (intptr_t)e2, NULL);
v = BM_edge_other_vert(e2, v);
e2 = i ? rotsys_prevedge(e2, v, edata, vdata) : rotsys_nextedge(e2, v, edata, vdata);
} while (e2 != starte && v != startv);
BLI_smallhash_release(hash);
if (!ok || BLI_array_count(edges) < 3)
continue;
f = BM_face_create_ngon(bm, verts[0], verts[1], edges, BLI_array_count(edges), BM_CREATE_NO_DOUBLE);
if (UNLIKELY(f == NULL)) {
continue;
}
}
}
return 0;
}
static void rotsys_make_consistent(BMesh *bm, EdgeData *edata, VertData *vdata)
{
BMIter iter;
BMEdge *e;
BMVert *v, **stack = NULL;
BLI_array_declare(stack);
int i;
for (i = 0; i < bm->totvert; i++) {
vdata[i].tag = 0;
}
while (1) {
VertData *vd;
BMVert *startv = NULL;
float dis;
v = BM_iter_new(&iter, bm, BM_VERTS_OF_MESH, NULL);
for (i = 0; i < bm->totvert; i++, BM_iter_step(&iter)) {
vd = vdata + BM_elem_index_get(v);
if (vd->tag)
continue;
if (!startv || dot_v3v3(vd->offco, vd->offco) > dis) {
dis = dot_v3v3(vd->offco, vd->offco);
startv = v;
}
}
if (!startv)
break;
vd = vdata + BM_elem_index_get(startv);
BLI_array_empty(stack);
BLI_array_append(stack, startv);
vd->tag = 1;
while (BLI_array_count(stack)) {
v = BLI_array_pop(stack);
vd = vdata + BM_elem_index_get(v);
if (!vd->e)
continue;
e = vd->e;
do {
BMVert *v2 = BM_edge_other_vert(e, v);
VertData *vd2 = vdata + BM_elem_index_get(v2);
if (dot_v3v3(vd->no, vd2->no) < 0.0f + FLT_EPSILON * 2) {
rotsys_reverse(e, v2, edata, vdata);
mul_v3_fl(vd2->no, -1.0f);
}
if (!vd2->tag) {
BLI_array_append(stack, v2);
vd2->tag = 1;
}
e = rotsys_nextedge(e, v, edata, vdata);
} while (e != vd->e);
}
}
BLI_array_free(stack);
}
static void init_rotsys(BMesh *bm, EdgeData *edata, VertData *vdata)
{
BMIter iter;
BMEdge *e;
BMEdge **edges = NULL;
BLI_array_staticdeclare(edges, BM_DEFAULT_NGON_STACK_SIZE);
BMVert *v;
RNG *rng;
/* BMVert **verts = NULL; */
/* BLI_array_staticdeclare(verts, BM_DEFAULT_NGON_STACK_SIZE); */ /* UNUSE */
int i;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
BMIter eiter;
float no[3], cent[3];
int j, k = 0, totedge = 0;
if (BM_elem_index_get(v) == -1)
continue;
BLI_array_empty(edges);
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e, EDGE_MARK)) {
BLI_array_append(edges, e);
totedge++;
}
}
copy_v3_v3(cent, v->co);
zero_v3(no);
for (i = 0; i < totedge; i++) {
BMEdge *e1, *e2;
float cno[3], vec1[3], vec2[3];
e1 = edges[i];
e2 = edges[(i + 1) % totedge];
sub_v3_v3v3(vec1, (BM_edge_other_vert(e1, v))->co, v->co);
sub_v3_v3v3(vec2, (BM_edge_other_vert(e2, v))->co, v->co);
cross_v3_v3v3(cno, vec1, vec2);
normalize_v3(cno);
if (i && dot_v3v3(cno, no) < 0.0f + FLT_EPSILON * 10)
mul_v3_fl(cno, -1.0f);
add_v3_v3(no, cno);
normalize_v3(no);
}
/* generate plane-flattened coordinates */
for (i = 0; i < totedge; i++) {
BMEdge *e1;
BMVert *v2;
float cvec[3], vec1[3];
e1 = edges[i];
v2 = BM_edge_other_vert(e1, v);
sub_v3_v3v3(vec1, v2->co, v->co);
cross_v3_v3v3(cvec, vec1, no);
cross_v3_v3v3(vec1, cvec, no);
normalize_v3(vec1);
mul_v3_fl(vec1, len_v3v3(v2->co, v->co));
add_v3_v3(vec1, v->co);
copy_v3_v3(vdata[BM_elem_index_get(v2)].sco, vec1);
}
rng = BLI_rng_new_srandom(0);
/* first, ensure no 0 or 180 angles between adjacent
* (and that adjacent's adjacent) edges */
for (i = 0, k = 0; i < totedge; i++) {
BMEdge *e1, *e2, *e3 = NULL;
BMVert *v1, *v2, *v3;
VertData *vd1, *vd2, *vd3;
float vec1[3], vec2[3], vec3[3], size;
int s1, s2, s3;
if (totedge < 3)
continue;
e1 = edges[(i + totedge - 1) % totedge];
e2 = edges[i];
e3 = edges[(i + 1) % totedge];
v1 = BM_edge_other_vert(e1, v);
v2 = BM_edge_other_vert(e2, v);
v3 = BM_edge_other_vert(e3, v);
vd1 = vdata + BM_elem_index_get(v1);
vd2 = vdata + BM_elem_index_get(v2);
vd3 = vdata + BM_elem_index_get(v3);
sub_v3_v3v3(vec1, vd1->sco, cent);
sub_v3_v3v3(vec2, vd2->sco, cent);
sub_v3_v3v3(vec3, vd3->sco, cent);
size = (len_v3(vec1) + len_v3(vec3)) * 0.01f;
normalize_v3(vec1); normalize_v3(vec2); normalize_v3(vec3);
#ifdef STRAIGHT
#undef STRAIGHT
#endif
#define STRAIGHT(vec11, vec22) (fabsf(dot_v3v3((vec11), (vec22))) > 1.0f - ((float)FLT_EPSILON * 1000.0f))
s1 = STRAIGHT(vec1, vec2); s2 = STRAIGHT(vec2, vec3); s3 = STRAIGHT(vec1, vec3);
if (s1 || s2 || s3) {
copy_v3_v3(cent, v->co);
for (j = 0; j < 3; j++) {
float fac = (BLI_rng_get_float(rng) - 0.5f) * size;
cent[j] += fac;
}
if (k < 2000) {
i = 0;
k++;
continue;
}
else {
k++;
continue;
}
}
}
BLI_rng_free(rng);
copy_v3_v3(vdata[BM_elem_index_get(v)].offco, cent);
//copy_v3_v3(v->co, cent);
/* now, sort edges so the triangle fan of all edges
* has a consistent normal. this is the same as
* sorting by polar coordinates along a group normal */
for (j = 0; j < totedge; j++) {
for (i = 0; i < totedge; i++) {
BMEdge *e1, *e2, *e3 = NULL;
BMVert *v1, *v2, *v3;
VertData *vd1, *vd2, *vd3;
float vec1[3], vec2[3], vec3[3], n1[3], n2[3], n3[3];
e1 = edges[(i + totedge - 1) % totedge];
e2 = edges[i];
e3 = edges[(i + 1) % totedge];
v1 = BM_edge_other_vert(e1, v);
v2 = BM_edge_other_vert(e2, v);
v3 = BM_edge_other_vert(e3, v);
vd1 = vdata + BM_elem_index_get(v1);
vd2 = vdata + BM_elem_index_get(v2);
vd3 = vdata + BM_elem_index_get(v3);
sub_v3_v3v3(vec1, vd1->sco, cent);
sub_v3_v3v3(vec2, vd2->sco, cent);
sub_v3_v3v3(vec3, vd3->sco, cent);
cross_v3_v3v3(n1, vec1, vec2);
cross_v3_v3v3(n2, vec2, vec3);
cross_v3_v3v3(n3, vec1, vec3);
/* this case happens often enough and probably not worth bothering users with,
* maybe enable for debugging code but not for everyday use - campbell */
#if 0
/* Other way to determine if two vectors approach are (nearly) parallel: the
* cross product of the two vectors will approach zero */
{
int s1, s2, s3;
s1 = (dot_v3v3(n1, n1) < (0.0f + FLT_EPSILON * 10));
s2 = (dot_v3v3(n2, n2) < (0.0f + FLT_EPSILON * 10));
s3 = (totedge < 3) ? 0 : (dot_v3v3(n3, n3) < (0.0f + FLT_EPSILON * 10));
if (s1 || s2 || s3) {
fprintf(stderr, "%s: s1: %d, s2: %d, s3: %dx (bmesh internal error)\n", __func__, s1, s2, s3);
}
}
#endif
normalize_v3(n1); normalize_v3(n2); normalize_v3(n3);
if (dot_v3v3(n1, n2) < 0.0f) {
if (dot_v3v3(n1, n3) >= 0.0f + FLT_EPSILON * 10) {
SWAP(BMEdge *, edges[i], edges[(i + 1) % totedge]);
}
else {
SWAP(BMEdge *, edges[(i + totedge - 1) % totedge], edges[(i + 1) % totedge]);
SWAP(BMEdge *, edges[i], edges[(i + 1) % totedge]);
}
}
}
}
#undef STRAIGHT
zero_v3(no);
/* yay, edges are sorted */
for (i = 0; i < totedge; i++) {
BMEdge *e1 = edges[i], *e2 = edges[(i + 1) % totedge];
float eno[3];
normal_tri_v3(eno, BM_edge_other_vert(e1, v)->co, v->co, BM_edge_other_vert(e2, v)->co);
add_v3_v3(no, eno);
rotsys_append_edge(edges[i], v, edata, vdata);
}
normalize_v3(no);
copy_v3_v3(vdata[BM_elem_index_get(v)].no, no);
}
/* now, make sure rotation system is topologically consistent
* (e.g. vert normals consistently point either inside or outside) */
rotsys_make_consistent(bm, edata, vdata);
//rotsys_fill_faces(bm, edata, vdata);
#if 0
/* create visualizing geometry */
BMVert *lastv;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
BMVert *v2;
BMFace *f;
int totedge = BM_vert_edge_count(v);
if (BM_elem_index_get(v) == -1)
continue;
//cv = BM_vert_create(bm, cent, v);
//BM_elem_index_set(cv, -1); /* set_dirty! */
i = 0;
e = vdata[BM_elem_index_get(v)].e;
lastv = NULL;
do {
BMEdge *e2;
BMVert *v2;
float f = ((float)i / (float)totedge) * 0.35 + 0.05;
float co[3];
if (!e)
break;
if (!BM_edge_other_vert(e, v))
continue;
sub_v3_v3v3(co, (BM_edge_other_vert(e, v))->co, vdata[BM_elem_index_get(v)].offco);
mul_v3_fl(co, f);
add_v3_v3(co, vdata[BM_elem_index_get(v)].offco);
v2 = BM_vert_create(bm, co, NULL);
BM_elem_index_set(v2, -1); /* set_dirty! */
//BM_edge_create(bm, cv, v2, NULL, 0);
BM_vert_select_set(bm, v2, true);
if (lastv) {
e2 = BM_edge_create(bm, lastv, v2, NULL, 0);
BM_edge_select_set(bm, e2, true);
}
lastv = v2;
e = rotsys_nextedge(e, v, edata, vdata);
i++;
} while (e != vdata[BM_elem_index_get(v)].e);
}
#endif
BLI_array_free(edges);
}
static PathBase *edge_pathbase_new(void)
{
PathBase *pb = MEM_callocN(sizeof(PathBase), "PathBase");
pb->nodepool = BLI_mempool_create(sizeof(EPathNode), 1, 512, BLI_MEMPOOL_SYSMALLOC);
pb->pathpool = BLI_mempool_create(sizeof(EPath), 1, 512, BLI_MEMPOOL_SYSMALLOC);
return pb;
}
static void edge_pathbase_free(PathBase *pathbase)
{
BLI_mempool_destroy(pathbase->nodepool);
BLI_mempool_destroy(pathbase->pathpool);
MEM_freeN(pathbase);
}
static EPath *edge_copy_add_path(PathBase *pb, EPath *path, BMVert *appendv, BMEdge *e)
{
EPath *path2;
EPathNode *node, *node2;
path2 = BLI_mempool_alloc(pb->pathpool);
path2->nodes.first = path2->nodes.last = NULL;
path2->weight = 0.0f;
path2->group = path->group;
for (node = path->nodes.first; node; node = node->next) {
node2 = BLI_mempool_alloc(pb->nodepool);
*node2 = *node;
BLI_addtail(&path2->nodes, node2);
}
node2 = BLI_mempool_alloc(pb->nodepool);
node2->v = appendv;
node2->e = e;
node2->cure = NULL;
BLI_addtail(&path2->nodes, node2);
return path2;
}
static EPath *edge_path_new(PathBase *pb, BMVert *start, BMEdge *starte)
{
EPath *path;
EPathNode *node;
path = BLI_mempool_alloc(pb->pathpool);
node = BLI_mempool_alloc(pb->nodepool);
path->nodes.first = path->nodes.last = NULL;
node->v = start;
node->e = starte;
node->cure = NULL;
BLI_addtail(&path->nodes, node);
path->weight = 0.0f;
return path;
}
static float edge_weight_path(EPath *path, EdgeData *edata, VertData *UNUSED(vdata))
{
EPathNode *node, *first = path->nodes.first;
float w = 0.0;
for (node = path->nodes.first; node; node = node->next) {
if (node->e && node != path->nodes.first) {
w += edata[BM_elem_index_get(node->e)].ftag;
if (node->prev) {
/* BMESH_TOD */
(void)first;
//w += len_v3v3(node->v->co, first->e->v1->co) * 0.0001f;
//w += len_v3v3(node->v->co, first->e->v2->co) * 0.0001f;
}
}
w += 1.0f;
}
return w;
}
static void edge_free_path(PathBase *pathbase, EPath *path)
{
EPathNode *node, *next;
for (node = path->nodes.first; node; node = next) {
next = node->next;
BLI_mempool_free(pathbase->nodepool, node);
}
BLI_mempool_free(pathbase->pathpool, path);
}
static EPath *edge_find_shortest_path(BMesh *bm, BMOperator *op, BMEdge *edge, EdgeData *edata,
VertData *vdata, PathBase *pathbase, int group)
{
BMEdge *e;
GHash *gh = BLI_ghash_ptr_new("createops find shortest path");
BMVert *v1, *v2;
BMVert **verts = NULL;
BLI_array_staticdeclare(verts, 1024);
Heap *heap = BLI_heap_new();
EPath *path = NULL, *path2;
BMVert *startv;
BMVert *endv;
EPathNode *node;
int i;
const bool use_restrict = BMO_slot_bool_get(op->slots_in, "use_restrict");
BMOpSlot *slot_restrict = BMO_slot_get(op->slots_in, "restrict");
startv = edata[BM_elem_index_get(edge)].ftag ? edge->v2 : edge->v1;
endv = edata[BM_elem_index_get(edge)].ftag ? edge->v1 : edge->v2;
path = edge_path_new(pathbase, startv, edge);
BLI_ghash_insert(gh, startv, NULL);
BLI_heap_insert(heap, path->weight, path);
path->group = group;
while (BLI_heap_size(heap)) {
VertData *vd;
EPathNode *last;
BMFace *f = NULL;
path = BLI_heap_popmin(heap);
last = path->nodes.last;
v1 = last->v;
if (v1 == endv) {
/* make sure this path loop doesn't already exists */
i = 0;
BLI_array_empty(verts);
for (i = 0, node = path->nodes.first; node; node = node->next, i++) {
BLI_array_grow_one(verts);
verts[i] = node->v;
}
if (BM_face_exists(verts, i, &f)) {
if (!BMO_elem_flag_test(bm, f, FACE_IGNORE)) {
BLI_ghash_remove(gh, endv, NULL, NULL);
continue;
}
}
break;
}
vd = vdata + BM_elem_index_get(v1);
if (!vd->e)
continue;
v2 = NULL;
while (1) {
if (!last->cure) {
last->cure = e = vdata[BM_elem_index_get(last->v)].e;
}
else {
last->cure = e = rotsys_nextedge(last->cure, last->v, edata, vdata);
if (last->cure == vdata[BM_elem_index_get(last->v)].e) {
v2 = NULL;
break;
}
}
if (e == edge || !BMO_elem_flag_test(bm, e, EDGE_MARK)) {
continue;
}
v2 = BM_edge_other_vert(e, last->v);
if (BLI_ghash_haskey(gh, v2)) {
v2 = NULL;
continue;
}
if (use_restrict) {
int *group_flag = (int *)BMO_slot_map_data_get(slot_restrict, e);
if (group_flag) {
if (!(*group_flag & path->group)) {
v2 = NULL;
continue;
}
}
}
break;
}
if (!v2) {
if (path) {
edge_free_path(pathbase, path);
path = NULL;
}
continue;
}
/* add path back into heap */
BLI_heap_insert(heap, path->weight, path);
/* put v2 in gh ma */
BLI_ghash_insert(gh, v2, NULL);
path2 = edge_copy_add_path(pathbase, path, v2, e);
path2->weight = edge_weight_path(path2, edata, vdata);
BLI_heap_insert(heap, path2->weight, path2);
}
if (path && ((EPathNode *)path->nodes.last)->v != endv) {
edge_free_path(pathbase, path);
path = NULL;
}
BLI_array_free(verts);
BLI_heap_free(heap, NULL);
BLI_ghash_free(gh, NULL, NULL);
return path;
}
static int count_edge_faces(BMesh *bm, BMEdge *e)
{
int i = 0;
BMLoop *l = e->l;
if (!l) {
return 0;
}
do {
if (!BMO_elem_flag_test(bm, l->f, FACE_IGNORE)) {
i++;
}
l = l->radial_next;
} while (l != e->l);
return i;
}
BLI_INLINE void vote_on_winding(BMEdge *edge, EPathNode *node, unsigned int winding[2])
{
BMVert *test_v1, *test_v2;
/* we want to use the reverse winding to the existing order */
BM_edge_ordered_verts(edge, &test_v2, &test_v1);
/* edges vote on which winding wins out */
winding[(test_v1 == node->v)]++;
}
void bmo_edgenet_fill_exec(BMesh *bm, BMOperator *op)
{
BMIter iter;
BMOIter siter;
BMFace *f;
BMEdge *e;
BMVert **verts = NULL;
BLI_array_declare(verts);
EPath *path;
EPathNode *node;
EdgeData *edata;
VertData *vdata;
BMEdge **edges = NULL;
PathBase *pathbase;
BLI_array_declare(edges);
const bool use_restrict = BMO_slot_bool_get(op->slots_in, "use_restrict");
const bool use_fill_check = BMO_slot_bool_get(op->slots_in, "use_fill_check");
const short mat_nr = BMO_slot_int_get(op->slots_in, "mat_nr");
const bool use_smooth = BMO_slot_bool_get(op->slots_in, "use_smooth");
int i, j;
unsigned int winding[2]; /* accumulte winding directions for each edge which has a face */
BMOpSlot *slot_restrict = BMO_slot_get(op->slots_in, "restrict");
BMOpSlot *slot_face_groupmap_out = BMO_slot_get(op->slots_out, "face_groupmap.out");
if (!bm->totvert || !bm->totedge)
return;
pathbase = edge_pathbase_new();
edata = MEM_callocN(sizeof(EdgeData) * bm->totedge, "EdgeData");
vdata = MEM_callocN(sizeof(VertData) * bm->totvert, "VertData");
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_MARK);
BMO_slot_buffer_flag_enable(bm, op->slots_in, "exclude_faces", BM_FACE, FACE_IGNORE);
BM_mesh_elem_index_ensure(bm, BM_VERT);
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
BMO_elem_flag_enable(bm, f, ELE_ORIG);
}
BM_ITER_MESH_INDEX (e, &iter, bm, BM_EDGES_OF_MESH, i) {
BM_elem_index_set(e, i); /* set_inline */
if (!BMO_elem_flag_test(bm, e, EDGE_MARK)) {
edata[i].tag = 2;
}
}
bm->elem_index_dirty &= ~BM_EDGE;
init_rotsys(bm, edata, vdata);
while (1) {
BMEdge *edge = NULL;
int group = 0;
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
/* if restrict is on, only start on faces in the restrict map */
if (use_restrict && !BMO_slot_map_contains(slot_restrict, e))
continue;
if (edata[BM_elem_index_get(e)].tag < 2) {
edge = e;
if (use_restrict) {
int gi_iter = 0, gi_count = 0, gi = 0;
group = BMO_slot_map_int_get(slot_restrict, e);
for (gi_iter = 0; gi_iter < 30; gi_iter++) {
if (group & (1 << gi_iter)) {
gi_count++;
gi = gi_iter;
if (gi_count - 1 == edata[BM_elem_index_get(e)].tag) {
break;
}
}
}
group = (1 << gi);
}
break;
}
}
if (!edge)
break;
edata[BM_elem_index_get(edge)].tag += 1;
path = edge_find_shortest_path(bm, op, edge, edata, vdata, pathbase, group);
if (!path)
continue;
winding[0] = winding[1] = 0;
BLI_array_empty(edges);
BLI_array_empty(verts);
i = 0;
for (node = path->nodes.first; node; node = node->next) {
if (!node->next)
continue;
e = BM_edge_exists(node->v, node->next->v);
/* this should never happe */
if (!e)
break;
/* check on the winding */
if (e->l) {
vote_on_winding(e, node, winding);
}
edata[BM_elem_index_get(e)].ftag++;
BLI_array_grow_one(edges);
edges[i++] = e;
BLI_array_append(verts, node->v);
}
if (edge->l) {
vote_on_winding(edge, path->nodes.last, winding);
}
BLI_array_grow_one(edges);
edges[i++] = edge;
edata[BM_elem_index_get(edge)].ftag++;
for (j = 0; j < i; j++) {
if (count_edge_faces(bm, edges[j]) >= 2) {
edge_free_path(pathbase, path);
break;
}
}
if (j != i) {
continue;
}
if (i) {
BMVert *v1, *v2;
/* to define the winding order must select first edge,
* otherwise we could leave this as-is */
edge = edges[0];
/* if these are even it doesn't really matter what to do,
* with consistent geometry one will be zero, the choice is clear */
if (winding[0] < winding[1]) {
v1 = verts[0];
v2 = verts[1];
}
else {
v1 = verts[1];
v2 = verts[0];
}
if ((use_fill_check == false) ||
/* fairly expensive check - see if there are already faces filling this area */
(BM_face_exists_multi_edge(edges, i) == false))
{
f = BM_face_create_ngon(bm, v1, v2, edges, i, BM_CREATE_NO_DOUBLE);
if (f && !BMO_elem_flag_test(bm, f, ELE_ORIG)) {
BMO_elem_flag_enable(bm, f, FACE_NEW);
f->mat_nr = mat_nr;
if (use_smooth) {
BM_elem_flag_enable(f, BM_ELEM_SMOOTH);
}
}
if (use_restrict) {
BMO_slot_map_int_insert(op, slot_face_groupmap_out, f, path->group);
}
}
}
edge_free_path(pathbase, path);
}
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "faces.out", BM_FACE, FACE_NEW);
BLI_array_free(edges);
BLI_array_free(verts);
edge_pathbase_free(pathbase);
MEM_freeN(edata);
MEM_freeN(vdata);
}
static BMEdge *edge_next(BMesh *bm, BMEdge *e)
{
BMIter iter;
BMEdge *e2;
int i;
for (i = 0; i < 2; i++) {
BM_ITER_ELEM (e2, &iter, i ? e->v2 : e->v1, BM_EDGES_OF_VERT) {
if ((BMO_elem_flag_test(bm, e2, EDGE_MARK)) &&
(!BMO_elem_flag_test(bm, e2, EDGE_VIS)) &&
(e2 != e))
{
return e2;
}
}
}
return NULL;
}
void bmo_edgenet_prepare_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMEdge *e;
BMEdge **edges1 = NULL, **edges2 = NULL, **edges;
BLI_array_declare(edges1);
BLI_array_declare(edges2);
BLI_array_declare(edges);
int ok = 1;
int i, count;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_MARK);
/* validate that each edge has at most one other tagged edge in the
* disk cycle around each of it's vertices */
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
for (i = 0; i < 2; i++) {
count = BMO_iter_elem_count_flag(bm, BM_EDGES_OF_VERT, (i ? e->v2 : e->v1), EDGE_MARK, true);
if (count > 2) {
ok = 0;
break;
}
}
if (!ok) {
break;
}
}
/* we don't have valid edge layouts, retur */
if (!ok) {
return;
}
/* find connected loops within the input edge */
count = 0;
while (1) {
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
if (!BMO_elem_flag_test(bm, e, EDGE_VIS)) {
if (BMO_iter_elem_count_flag(bm, BM_EDGES_OF_VERT, e->v1, EDGE_MARK, true) == 1 ||
BMO_iter_elem_count_flag(bm, BM_EDGES_OF_VERT, e->v2, EDGE_MARK, true) == 1)
{
break;
}
}
}
if (!e) {
break;
}
if (!count) {
edges = edges1;
}
else if (count == 1) {
edges = edges2;
}
else {
break;
}
i = 0;
while (e) {
BMO_elem_flag_enable(bm, e, EDGE_VIS);
BLI_array_grow_one(edges);
edges[i] = e;
e = edge_next(bm, e);
i++;
}
if (!count) {
edges1 = edges;
BLI_array_length_set(edges1, BLI_array_count(edges));
}
else {
edges2 = edges;
BLI_array_length_set(edges2, BLI_array_count(edges));
}
BLI_array_empty(edges);
count++;
}
if (edges1 && BLI_array_count(edges1) > 2 &&
BM_edge_share_vert_check(edges1[0], edges1[BLI_array_count(edges1) - 1]))
{
if (edges2 && BLI_array_count(edges2) > 2 &&
BM_edge_share_vert_check(edges2[0], edges2[BLI_array_count(edges2) - 1]))
{
BLI_array_free(edges1);
BLI_array_free(edges2);
return;
}
else {
edges1 = edges2;
edges2 = NULL;
}
}
if (edges2 && BLI_array_count(edges2) > 2 &&
BM_edge_share_vert_check(edges2[0], edges2[BLI_array_count(edges2) - 1]))
{
edges2 = NULL;
}
/* two unconnected loops, connect the */
if (edges1 && edges2) {
BMVert *v1, *v2, *v3, *v4;
float dvec1[3];
float dvec2[3];
if (BLI_array_count(edges1) == 1) {
v1 = edges1[0]->v1;
v2 = edges1[0]->v2;
}
else {
v1 = BM_vert_in_edge(edges1[1], edges1[0]->v1) ? edges1[0]->v2 : edges1[0]->v1;
i = BLI_array_count(edges1) - 1;
v2 = BM_vert_in_edge(edges1[i - 1], edges1[i]->v1) ? edges1[i]->v2 : edges1[i]->v1;
}
if (BLI_array_count(edges2) == 1) {
v3 = edges2[0]->v1;
v4 = edges2[0]->v2;
}
else {
v3 = BM_vert_in_edge(edges2[1], edges2[0]->v1) ? edges2[0]->v2 : edges2[0]->v1;
i = BLI_array_count(edges2) - 1;
v4 = BM_vert_in_edge(edges2[i - 1], edges2[i]->v1) ? edges2[i]->v2 : edges2[i]->v1;
}
/* if there is ever bow-tie quads between two edges the problem is here! [#30367] */
#if 0
normal_tri_v3(dvec1, v1->co, v2->co, v4->co);
normal_tri_v3(dvec2, v1->co, v4->co, v3->co);
#else
{
/* save some CPU cycles and skip the sqrt and 1 subtraction */
float a1[3], a2[3], a3[3];
sub_v3_v3v3(a1, v1->co, v2->co);
sub_v3_v3v3(a2, v1->co, v4->co);
sub_v3_v3v3(a3, v1->co, v3->co);
cross_v3_v3v3(dvec1, a1, a2);
cross_v3_v3v3(dvec2, a2, a3);
}
#endif
if (dot_v3v3(dvec1, dvec2) < 0.0f) {
SWAP(BMVert *, v3, v4);
}
e = BM_edge_create(bm, v1, v3, NULL, BM_CREATE_NO_DOUBLE);
BMO_elem_flag_enable(bm, e, ELE_NEW);
e = BM_edge_create(bm, v2, v4, NULL, BM_CREATE_NO_DOUBLE);
BMO_elem_flag_enable(bm, e, ELE_NEW);
}
else if (edges1) {
BMVert *v1, *v2;
if (BLI_array_count(edges1) > 1) {
v1 = BM_vert_in_edge(edges1[1], edges1[0]->v1) ? edges1[0]->v2 : edges1[0]->v1;
i = BLI_array_count(edges1) - 1;
v2 = BM_vert_in_edge(edges1[i - 1], edges1[i]->v1) ? edges1[i]->v2 : edges1[i]->v1;
e = BM_edge_create(bm, v1, v2, NULL, BM_CREATE_NO_DOUBLE);
BMO_elem_flag_enable(bm, e, ELE_NEW);
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, ELE_NEW);
BLI_array_free(edges1);
BLI_array_free(edges2);
}