666 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			666 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * 
 | |
|  * Contributor(s): Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_arithb.h"
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_blenlib.h"
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)";
 | |
| char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative";
 | |
| char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate";
 | |
| char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse";
 | |
| char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion";
 | |
| char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion";
 | |
| char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion";
 | |
| char Quaternion_copy_doc[] = "() - return a copy of the quat";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| struct PyMethodDef Quaternion_methods[] = {
 | |
| 	{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
 | |
| 	{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
 | |
| 	{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
 | |
| 	{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
 | |
| 	{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
 | |
| 	{"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc},
 | |
| 	{"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
 | |
| 	{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
 | |
| 	{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| //-----------------------------METHODS------------------------------
 | |
| //----------------------------Quaternion.toEuler()------------------
 | |
| //return the quat as a euler
 | |
| PyObject *Quaternion_ToEuler(QuaternionObject * self)
 | |
| {
 | |
| 	float eul[3];
 | |
| 	int x;
 | |
| 
 | |
| 	QuatToEul(self->quat, eul);
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		eul[x] *= (180 / (float)Py_PI);
 | |
| 	}
 | |
| 	return newEulerObject(eul, Py_NEW);
 | |
| }
 | |
| //----------------------------Quaternion.toMatrix()------------------
 | |
| //return the quat as a matrix
 | |
| PyObject *Quaternion_ToMatrix(QuaternionObject * self)
 | |
| {
 | |
| 	float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
 | |
| 	QuatToMat3(self->quat, (float (*)[3]) mat);
 | |
| 
 | |
| 	return newMatrixObject(mat, 3, 3, Py_NEW);
 | |
| }
 | |
| //----------------------------Quaternion.normalize()----------------
 | |
| //normalize the axis of rotation of [theta,vector]
 | |
| PyObject *Quaternion_Normalize(QuaternionObject * self)
 | |
| {
 | |
| 	NormalQuat(self->quat);
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Quaternion.inverse()------------------
 | |
| //invert the quat
 | |
| PyObject *Quaternion_Inverse(QuaternionObject * self)
 | |
| {
 | |
| 	double mag = 0.0f;
 | |
| 	int x;
 | |
| 
 | |
| 	for(x = 1; x < 4; x++) {
 | |
| 		self->quat[x] = -self->quat[x];
 | |
| 	}
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		mag += (self->quat[x] * self->quat[x]);
 | |
| 	}
 | |
| 	mag = sqrt(mag);
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		self->quat[x] /= (float)(mag * mag);
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Quaternion.identity()-----------------
 | |
| //generate the identity quaternion
 | |
| PyObject *Quaternion_Identity(QuaternionObject * self)
 | |
| {
 | |
| 	self->quat[0] = 1.0;
 | |
| 	self->quat[1] = 0.0;
 | |
| 	self->quat[2] = 0.0;
 | |
| 	self->quat[3] = 0.0;
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Quaternion.negate()-------------------
 | |
| //negate the quat
 | |
| PyObject *Quaternion_Negate(QuaternionObject * self)
 | |
| {
 | |
| 	int x;
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		self->quat[x] = -self->quat[x];
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Quaternion.conjugate()----------------
 | |
| //negate the vector part
 | |
| PyObject *Quaternion_Conjugate(QuaternionObject * self)
 | |
| {
 | |
| 	int x;
 | |
| 	for(x = 1; x < 4; x++) {
 | |
| 		self->quat[x] = -self->quat[x];
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Quaternion.copy()----------------
 | |
| //return a copy of the quat
 | |
| PyObject *Quaternion_copy(QuaternionObject * self)
 | |
| {
 | |
| 	return newQuaternionObject(self->quat, Py_NEW);	
 | |
| }
 | |
| 
 | |
| //----------------------------dealloc()(internal) ------------------
 | |
| //free the py_object
 | |
| static void Quaternion_dealloc(QuaternionObject * self)
 | |
| {
 | |
| 	Py_XDECREF(self->coerced_object);
 | |
| 	//only free py_data
 | |
| 	if(self->data.py_data){
 | |
| 		PyMem_Free(self->data.py_data);
 | |
| 	}
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| //----------------------------getattr()(internal) ------------------
 | |
| //object.attribute access (get)
 | |
| static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
 | |
| {
 | |
| 	int x;
 | |
| 	double mag = 0.0f;
 | |
| 	float vec[3];
 | |
| 
 | |
| 	if(STREQ(name,"w")){
 | |
| 		return PyFloat_FromDouble(self->quat[0]);
 | |
| 	}else if(STREQ(name, "x")){
 | |
| 		return PyFloat_FromDouble(self->quat[1]);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		return PyFloat_FromDouble(self->quat[2]);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		return PyFloat_FromDouble(self->quat[3]);
 | |
| 	}
 | |
| 	if(STREQ(name, "magnitude")) {
 | |
| 		for(x = 0; x < 4; x++) {
 | |
| 			mag += self->quat[x] * self->quat[x];
 | |
| 		}
 | |
| 		mag = sqrt(mag);
 | |
| 		return PyFloat_FromDouble(mag);
 | |
| 	}
 | |
| 	if(STREQ(name, "angle")) {
 | |
| 		mag = self->quat[0];
 | |
| 		mag = 2 * (saacos(mag));
 | |
| 		mag *= (180 / Py_PI);
 | |
| 		return PyFloat_FromDouble(mag);
 | |
| 	}
 | |
| 	if(STREQ(name, "axis")) {
 | |
| 		mag = self->quat[0] * (Py_PI / 180);
 | |
| 		mag = 2 * (saacos(mag));
 | |
| 		mag = sin(mag / 2);
 | |
| 		for(x = 0; x < 3; x++) {
 | |
| 			vec[x] = (float)(self->quat[x + 1] / mag);
 | |
| 		}
 | |
| 		Normalize(vec);
 | |
| 		//If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations
 | |
| 		if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
 | |
| 			EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
 | |
| 			EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
 | |
| 			vec[0] = 1.0f;
 | |
| 		}
 | |
| 		return (PyObject *) newVectorObject(vec, 3, Py_NEW);
 | |
| 	}
 | |
| 	if(STREQ(name, "wrapped")){
 | |
| 		if(self->wrapped == Py_WRAP)
 | |
| 			return EXPP_incr_ret((PyObject *)Py_True);
 | |
| 		else 
 | |
| 			return EXPP_incr_ret((PyObject *)Py_False);
 | |
| 	}
 | |
| 
 | |
| 	return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
 | |
| }
 | |
| //----------------------------setattr()(internal) ------------------
 | |
| //object.attribute access (set)
 | |
| static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(q);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"quaternion.attribute = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(STREQ(name,"w")){
 | |
| 		self->quat[0] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "x")){
 | |
| 		self->quat[1] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		self->quat[2] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		self->quat[3] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else{
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"quaternion.attribute = x: unknown attribute\n");
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------print object (internal)--------------
 | |
| //print the object to screen
 | |
| static PyObject *Quaternion_repr(QuaternionObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	BLI_strncpy(str,"[",1024);
 | |
| 	for(i = 0; i < 4; i++){
 | |
| 		if(i < (3)){
 | |
| 			sprintf(buffer, "%.6f, ", self->quat[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f", self->quat[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 	strcat(str, "](quaternion)");
 | |
| 
 | |
| 	return PyString_FromString(str);
 | |
| }
 | |
| //------------------------tp_richcmpr
 | |
| //returns -1 execption, 0 false, 1 true
 | |
| static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	QuaternionObject *quatA = NULL, *quatB = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (!QuaternionObject_Check(objectA) || !QuaternionObject_Check(objectB)){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			return EXPP_incr_ret(Py_True); 
 | |
| 		}else{
 | |
| 			return EXPP_incr_ret(Py_False);
 | |
| 		}
 | |
| 	}
 | |
| 	quatA = (QuaternionObject*)objectA;
 | |
| 	quatB = (QuaternionObject*)objectB;
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_EQ:
 | |
| 			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		return EXPP_incr_ret(Py_True);
 | |
| 	}else{
 | |
| 		return EXPP_incr_ret(Py_False);
 | |
| 	}
 | |
| }
 | |
| //------------------------tp_doc
 | |
| static char QuaternionObject_doc[] = "This is a wrapper for quaternion objects.";
 | |
| //---------------------SEQUENCE PROTOCOLS------------------------
 | |
| //----------------------------len(object)------------------------
 | |
| //sequence length
 | |
| static int Quaternion_len(QuaternionObject * self)
 | |
| {
 | |
| 	return 4;
 | |
| }
 | |
| //----------------------------object[]---------------------------
 | |
| //sequence accessor (get)
 | |
| static PyObject *Quaternion_item(QuaternionObject * self, int i)
 | |
| {
 | |
| 	if(i < 0 || i >= 4)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | |
| 		"quaternion[attribute]: array index out of range\n");
 | |
| 	return PyFloat_FromDouble(self->quat[i]);
 | |
| 
 | |
| }
 | |
| //----------------------------object[]-------------------------
 | |
| //sequence accessor (set)
 | |
| static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(ob);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"quaternion[attribute] = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(i < 0 || i >= 4){
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_IndexError,
 | |
| 			"quaternion[attribute] = x: array assignment index out of range\n");
 | |
| 	}
 | |
| 	self->quat[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (get)
 | |
| static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
 | |
| {
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	CLAMP(begin, 0, 4);
 | |
| 	if (end<0) end= 5+end;
 | |
| 	CLAMP(end, 0, 4);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				PyFloat_FromDouble(self->quat[count]));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (set)
 | |
| static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
 | |
| 			     PyObject * seq)
 | |
| {
 | |
| 	int i, y, size = 0;
 | |
| 	float quat[4];
 | |
| 	PyObject *q, *f;
 | |
| 
 | |
| 	CLAMP(begin, 0, 4);
 | |
| 	if (end<0) end= 5+end;
 | |
| 	CLAMP(end, 0, 4);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	size = PySequence_Length(seq);
 | |
| 	if(size != (end - begin)){
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"quaternion[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		q = PySequence_GetItem(seq, i);
 | |
| 		if (q == NULL) { // Failed to read sequence
 | |
| 			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 				"quaternion[begin:end] = []: unable to read sequence\n");
 | |
| 		}
 | |
| 
 | |
| 		f = PyNumber_Float(q);
 | |
| 		if(f == NULL) { // parsed item not a number
 | |
| 			Py_DECREF(q);
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"quaternion[begin:end] = []: sequence argument not a number\n");
 | |
| 		}
 | |
| 
 | |
| 		quat[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,q);
 | |
| 	}
 | |
| 	//parsed well - now set in vector
 | |
| 	for(y = 0; y < size; y++){
 | |
| 		self->quat[begin + y] = quat[y];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| //------------------------NUMERIC PROTOCOLS----------------------
 | |
| //------------------------obj + obj------------------------------
 | |
| //addition
 | |
| static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	int x;
 | |
| 	float quat[4];
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 
 | |
| 	quat1 = (QuaternionObject*)q1;
 | |
| 	quat2 = (QuaternionObject*)q2;
 | |
| 
 | |
| 	if(quat1->coerced_object || quat2->coerced_object){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Quaternion addition: arguments not valid for this operation....\n");
 | |
| 	}
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		quat[x] = quat1->quat[x] + quat2->quat[x];
 | |
| 	}
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //------------------------obj - obj------------------------------
 | |
| //subtraction
 | |
| static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	int x;
 | |
| 	float quat[4];
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 
 | |
| 	quat1 = (QuaternionObject*)q1;
 | |
| 	quat2 = (QuaternionObject*)q2;
 | |
| 
 | |
| 	if(quat1->coerced_object || quat2->coerced_object){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Quaternion addition: arguments not valid for this operation....\n");
 | |
| 	}
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		quat[x] = quat1->quat[x] - quat2->quat[x];
 | |
| 	}
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //------------------------obj * obj------------------------------
 | |
| //mulplication
 | |
| static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	int x;
 | |
| 	float quat[4], scalar;
 | |
| 	double dot = 0.0f;
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 	PyObject *f = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 	PointObject *pt = NULL;
 | |
| 
 | |
| 	quat1 = (QuaternionObject*)q1;
 | |
| 	quat2 = (QuaternionObject*)q2;
 | |
| 
 | |
| 	if(quat1->coerced_object){
 | |
| 		if (PyFloat_Check(quat1->coerced_object) || 
 | |
| 			PyInt_Check(quat1->coerced_object)){	// FLOAT/INT * QUAT
 | |
| 			f = PyNumber_Float(quat1->coerced_object);
 | |
| 			if(f == NULL) { // parsed item not a number
 | |
| 				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 					"Quaternion multiplication: arguments not acceptable for this operation\n");
 | |
| 			}
 | |
| 
 | |
| 			scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			Py_DECREF(f);
 | |
| 			for(x = 0; x < 4; x++) {
 | |
| 				quat[x] = quat2->quat[x] * scalar;
 | |
| 			}
 | |
| 			return newQuaternionObject(quat, Py_NEW);
 | |
| 		}
 | |
| 	}else{
 | |
| 		if(quat2->coerced_object){
 | |
| 			if (PyFloat_Check(quat2->coerced_object) || 
 | |
| 				PyInt_Check(quat2->coerced_object)){	// QUAT * FLOAT/INT
 | |
| 				f = PyNumber_Float(quat2->coerced_object);
 | |
| 				if(f == NULL) { // parsed item not a number
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Quaternion multiplication: arguments not acceptable for this operation\n");
 | |
| 				}
 | |
| 
 | |
| 				scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 				Py_DECREF(f);
 | |
| 				for(x = 0; x < 4; x++) {
 | |
| 					quat[x] = quat1->quat[x] * scalar;
 | |
| 				}
 | |
| 				return newQuaternionObject(quat, Py_NEW);
 | |
| 			}else if(VectorObject_Check(quat2->coerced_object)){  //QUAT * VEC
 | |
| 				vec = (VectorObject*)quat2->coerced_object;
 | |
| 				if(vec->size != 3){
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Quaternion multiplication: only 3D vector rotations currently supported\n");
 | |
| 				}
 | |
| 				return quat_rotation((PyObject*)quat1, (PyObject*)vec);
 | |
| 			}else if(PointObject_Check(quat2->coerced_object)){  //QUAT * POINT
 | |
| 				pt = (PointObject*)quat2->coerced_object;
 | |
| 				if(pt->size != 3){
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Quaternion multiplication: only 3D point rotations currently supported\n");
 | |
| 				}
 | |
| 				return quat_rotation((PyObject*)quat1, (PyObject*)pt);
 | |
| 			}
 | |
| 		}else{  //QUAT * QUAT (dot product)
 | |
| 			for(x = 0; x < 4; x++) {
 | |
| 				dot += quat1->quat[x] * quat1->quat[x];
 | |
| 			}
 | |
| 			return PyFloat_FromDouble(dot);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 		"Quaternion multiplication: arguments not acceptable for this operation\n");
 | |
| }
 | |
| //------------------------coerce(obj, obj)-----------------------
 | |
| //coercion of unknown types to type QuaternionObject for numeric protocols
 | |
| /*Coercion() is called whenever a math operation has 2 operands that
 | |
|  it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | |
|  evaluate some of these operations like: (vector * 2), however, for math
 | |
|  to proceed, the unknown operand must be cast to a type that python math will
 | |
|  understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | |
|  then call vector.multiply(vector, scalar_cast_as_vector)*/
 | |
| static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
 | |
| {
 | |
| 	if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2) ||
 | |
| 			PointObject_Check(*q2)) {
 | |
| 		PyObject *coerced = EXPP_incr_ret(*q2);
 | |
| 		*q2 = newQuaternionObject(NULL,Py_NEW);
 | |
| 		((QuaternionObject*)*q2)->coerced_object = coerced;
 | |
| 		Py_INCREF (*q1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 		"quaternion.coerce(): unknown operand - can't coerce for numeric protocols");
 | |
| }
 | |
| //-----------------PROTOCOL DECLARATIONS--------------------------
 | |
| static PySequenceMethods Quaternion_SeqMethods = {
 | |
| 	(inquiry) Quaternion_len,					/* sq_length */
 | |
| 	(binaryfunc) 0,								/* sq_concat */
 | |
| 	(intargfunc) 0,								/* sq_repeat */
 | |
| 	(intargfunc) Quaternion_item,				/* sq_item */
 | |
| 	(intintargfunc) Quaternion_slice,			/* sq_slice */
 | |
| 	(intobjargproc) Quaternion_ass_item,		/* sq_ass_item */
 | |
| 	(intintobjargproc) Quaternion_ass_slice,	/* sq_ass_slice */
 | |
| };
 | |
| static PyNumberMethods Quaternion_NumMethods = {
 | |
| 	(binaryfunc) Quaternion_add,				/* __add__ */
 | |
| 	(binaryfunc) Quaternion_sub,				/* __sub__ */
 | |
| 	(binaryfunc) Quaternion_mul,				/* __mul__ */
 | |
| 	(binaryfunc) 0,								/* __div__ */
 | |
| 	(binaryfunc) 0,								/* __mod__ */
 | |
| 	(binaryfunc) 0,								/* __divmod__ */
 | |
| 	(ternaryfunc) 0,							/* __pow__ */
 | |
| 	(unaryfunc) 0,								/* __neg__ */
 | |
| 	(unaryfunc) 0,								/* __pos__ */
 | |
| 	(unaryfunc) 0,								/* __abs__ */
 | |
| 	(inquiry) 0,								/* __nonzero__ */
 | |
| 	(unaryfunc) 0,								/* __invert__ */
 | |
| 	(binaryfunc) 0,								/* __lshift__ */
 | |
| 	(binaryfunc) 0,								/* __rshift__ */
 | |
| 	(binaryfunc) 0,								/* __and__ */
 | |
| 	(binaryfunc) 0,								/* __xor__ */
 | |
| 	(binaryfunc) 0,								/* __or__ */
 | |
| 	(coercion)  Quaternion_coerce,				/* __coerce__ */
 | |
| 	(unaryfunc) 0,								/* __int__ */
 | |
| 	(unaryfunc) 0,								/* __long__ */
 | |
| 	(unaryfunc) 0,								/* __float__ */
 | |
| 	(unaryfunc) 0,								/* __oct__ */
 | |
| 	(unaryfunc) 0,								/* __hex__ */
 | |
| 
 | |
| };
 | |
| //------------------PY_OBECT DEFINITION--------------------------
 | |
| PyTypeObject quaternion_Type = {
 | |
| PyObject_HEAD_INIT(NULL)		//tp_head
 | |
| 	0,								//tp_internal
 | |
| 	"quaternion",						//tp_name
 | |
| 	sizeof(QuaternionObject),			//tp_basicsize
 | |
| 	0,								//tp_itemsize
 | |
| 	(destructor)Quaternion_dealloc,		//tp_dealloc
 | |
| 	0,								//tp_print
 | |
| 	(getattrfunc)Quaternion_getattr,	//tp_getattr
 | |
| 	(setattrfunc) Quaternion_setattr,	//tp_setattr
 | |
| 	0,								//tp_compare
 | |
| 	(reprfunc) Quaternion_repr,			//tp_repr
 | |
| 	&Quaternion_NumMethods,				//tp_as_number
 | |
| 	&Quaternion_SeqMethods,				//tp_as_sequence
 | |
| 	0,								//tp_as_mapping
 | |
| 	0,								//tp_hash
 | |
| 	0,								//tp_call
 | |
| 	0,								//tp_str
 | |
| 	0,								//tp_getattro
 | |
| 	0,								//tp_setattro
 | |
| 	0,								//tp_as_buffer
 | |
| 	Py_TPFLAGS_DEFAULT,				//tp_flags
 | |
| 	QuaternionObject_doc,				//tp_doc
 | |
| 	0,								//tp_traverse
 | |
| 	0,								//tp_clear
 | |
| 	(richcmpfunc)Quaternion_richcmpr,	//tp_richcompare
 | |
| 	0,								//tp_weaklistoffset
 | |
| 	0,								//tp_iter
 | |
| 	0,								//tp_iternext
 | |
| 	0,								//tp_methods
 | |
| 	0,								//tp_members
 | |
| 	0,								//tp_getset
 | |
| 	0,								//tp_base
 | |
| 	0,								//tp_dict
 | |
| 	0,								//tp_descr_get
 | |
| 	0,								//tp_descr_set
 | |
| 	0,								//tp_dictoffset
 | |
| 	0,								//tp_init
 | |
| 	0,								//tp_alloc
 | |
| 	0,								//tp_new
 | |
| 	0,								//tp_free
 | |
| 	0,								//tp_is_gc
 | |
| 	0,								//tp_bases
 | |
| 	0,								//tp_mro
 | |
| 	0,								//tp_cache
 | |
| 	0,								//tp_subclasses
 | |
| 	0,								//tp_weaklist
 | |
| 	0								//tp_del
 | |
| };
 | |
| //------------------------newQuaternionObject (internal)-------------
 | |
| //creates a new quaternion object
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newQuaternionObject(float *quat, int type)
 | |
| {
 | |
| 	QuaternionObject *self;
 | |
| 	int x;
 | |
| 	
 | |
| 	self = PyObject_NEW(QuaternionObject, &quaternion_Type);
 | |
| 	self->data.blend_data = NULL;
 | |
| 	self->data.py_data = NULL;
 | |
| 	self->coerced_object = NULL;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->data.blend_data = quat;
 | |
| 		self->quat = self->data.blend_data;
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->data.py_data = PyMem_Malloc(4 * sizeof(float));
 | |
| 		self->quat = self->data.py_data;
 | |
| 		if(!quat) { //new empty
 | |
| 			Quaternion_Identity(self);
 | |
| 			Py_DECREF(self);
 | |
| 		}else{
 | |
| 			for(x = 0; x < 4; x++){
 | |
| 				self->quat[x] = quat[x];
 | |
| 			}
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ //bad type
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | 
